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Exciting times for our discipline!

Robots roam everywhere

Credits: That’s Really Possible, Yamaha/SRI



Beyond digital circuits

Pop quiz, hotshot: what's 
the square root of 13?

Science Photo Library/Alamy
“Scientists invented 
AI made from DNA”

Caltech News

[Qian, Winfree,                                                 [Cherry, Qian, Nature 2018] 
Science 2012]

DNA computing
“Computing with soup”

(The Economist 2012)
Single DNA strands are inputs
and outputs
Also nanostructures and nanorobots



Chips with everything no more…

• Hardware systems (circuits, communications technology) more like software
e.g. programmable networks

• Software methodologies are on the rise

• We are already debugging DNA programs!



Deep learning with everything



Much excitement about self-driving…

www.bsfilms.me - Black Sheep Films

http://www.bsfilms.me/


Out and about in Oxford….



The challenge of autonomous driving

• Complex engineering and AI problem…
• Software at the heart
• Old and new technologies

− computer vision
− sensor fusion
− control
− prediction 
− planning

• Increasing use of deep learning
− requiring high quality data
− powered by GPUs

• Deep science
• Great progress!

Credit: Oxford Robotics Institute

NVIDIA DRIVE PX 2



Would you trust a self-driving car?

Waymo early riders, Tesla, Uber, …
In the UK FiveAI, Oxbotica, …



Unwelcome news recently…

How can this happen if we have 99.9% accuracy?



An AI safety problem…

• Complex scenarios
- goals
- perception
- autonomy
- situation awareness
- context (social, regulatory)
- trust
- ethics

• Safety-critical, so 
guarantees needed

• Should failure occur, accountability needs to be established
Credit: Anita Dufala/Public source



It’s about provable guarantees!

• Modelling = rigorous, mathematical abstraction
• Verification = proof that the model satisfies specification
• Synthesis = correct-by-construction model from specification
• Automated = algorithmic, implemented in software

ModelProgram

void add(Object o) {
buffer[head] = o;

head = (head+1)%size;
}

Object take() {
…

tail=(tail+1)%size;
return buffer[tail];

}

0.4
0.5

0.1



Probabilistic guarantees

• Stochasticity ever present
− randomisation, uncertainty, risk 

• Need quantitative, probabilistic guarantees for:
− safety, security, reliability, performance, resource usage, trust, authentication, …

• Examples
− (reliability) “the probability of the car crashing in the next hour is less than 0.001”
− (energy) “energy usage is below 2000 mA per minute”

• My focus is on automated, tool-supported methodologies
− probabilistic model checker PRISM, www.prismmodelchecker.org
− HVC 2016 Award (joint with Dave Parker and Gethin Norman)

• Applied to a wide range of systems…

http://www.prismmodelchecker.org/


OK, but what is probabilistic verification good for?
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Case study: Cardiac pacemaker

16

• How it works
− reads electrical signals through sensors in the right atrium and right ventricle
− monitors the timing of heart 

beats and local electrical activity
− generates artificial pacing 

signal as necessary

• Safety-critical system!
• The guarantee

• (basic safety) maintain 
60-100 beats per minute

− Killed by code: FDA recalls 23 defective pacemaker devices because of adverse 
health consequences or death, six likely caused by software defects (2010)



Modelling framework

Model the pacemaker and the heart, compose and verify

Quantitative verification of implantable cardiac pacemakers over hybrid heart models. Chen et al, 
Information and Computation 2014



Modelling framework



Modelling framework



Pacemaker verification

• Basic guarantees
− (basic safety) maintain 

60-100 beats per minute
− (energy usage) detailed analysis, 

plotted against timing parameters
of the pacemaker

• Advanced guarantees
− rate-adaptive pacemaker, for patients with

chronotropic deficiency
− (advanced safety) adapt the rate to exercise 

and stress levels
− in silico testing 

Closed-Loop Quantitative Verification of Rate-Adaptive Pacemakers. Paoletti et al, ACM Transactions on 
Cyber-Physical Systems 2018



Synthetic ECG: healthy heart



Bradycardia (slow heart rate)



Bradycardia heart, paced



Parameter synthesis for pacemakers

• Can we adapt the pacing rate to patient’s ECG to
− minimise energy usage?
− maximise cardiac output?
− explore trade offs?

• The guarantee
− (optimal timing delay synthesis):

find values for timing delays that 
optimise a given objective, 
adapted to patient’s ECG

• Significant improvement over default 
values

Synthesising robust and optimal parameters for cardiac pacemakers using symbolic and evolutionary 
computation techniques. Kwiatkowska et al, HSB’16



Trade offs in optimal delay synthesis



Case study: ECG biometrics

• Biometrics increasing in popularity
− are they secure?

• Nymi band
− ECG used as a biometric identifier
− biometric template created first
− compared with real ECG signal

• Proposed uses 
− for access into buildings and 

restricted spaces
− for payment  
− etc

Broken Hearted: How to Attack ECG Biometrics, Ebertz et al., In Proc NDSS 2017



Attack on ECG biometrics

• We use synthetic ECGs to 
impersonate a user
− build model from data, 

41 volunteers
− inject synthetic signals to 

break authentication
− 80% success rate

• Results
− serious weakness
− countermeasures needed

• Modelling essential, good for attacks…

Fig. 4: Arbitrary waveform generator connected to the Nymi
Band via the modified charging lead. The negative output of
the waveform generator is clamped to the electrode facing the
wrist and the positive output is attached to the second electrode
of the band using the modified charging lead.

2) Software Waveform Generator: Nowadays, almost every
personal electronic device, be it mobile or stationary, possesses
a dedicated sound card or integrated sound functionality to
facilitate analog audio output. Audio signals are an electrical
representation of sound, i.e., a mechanical wave that propagates
through a medium. Thus, sound cards need to be able to
output relatively high-frequency signals. This capability can
be harnessed and lets a sound card be utilized as a low-
frequency waveform generator. In most cases, no hardware
modifications are needed and arbitrary electrical signals can
be readily generated, provided that the sound card is driven
with the right software components. Naturally, a sound card
based waveform generator is not as capable as a dedicated
hardware solution and has many limitations such as a narrow
range for the generated voltage. However, the nature of ECG
signals, which are inherently low-frequency and on the order
of a few hundred microvolts, can be generated by a sound
card without any problems The majority of dedicated sound
cards as well as devices with integrated sound support have
output frequencies of up to 20kHz, which is well than enough. A
software waveform generator based on a sound card is therefore
a viable option for signal injection. It not only drastically
reduces cost, but also simplifies the injection method. Figure 5
depicts a possible setup where a software waveform generator
is run on a laptop that injects the generated signal though its
audio output port.

3) Audio Playback: Instead of using a software waveform
generator and changing the function of the sound card, we
explore the possibility of playing back stored ECG signals
on the sound card as actual sound. Such an approach does
not require specialized software, i.e., a software waveform
generator, and might be executed on any device capable of
outputting analog audio signals. This could reduce effort and
complexity of a presentation attack to a great extent.

The challenge of replicating an ECG signal directly as audio
output consists of transforming the digital representation of
an ECG signal into an audio file that can be played back on
the sound card. We wrote software that filters the ECG signal,
applies the correct scaling of voltage levels, sets the sampling
rate and finally stores the signal as an audio file (WAV format).

Fig. 5: A laptop is connected to the Nymi Band via the modified
charging lead. Setup is analogous to the configuration involving
the hardware waveform generator, apart from the coaxial cable
being plugged into the audio output port of a laptop. The laptop
either runs a software waveform generator or is used to play
back an ECG signal that is encoded in an audio file. The laptop
might be replaced through any electronic device with audio
playback capability.

MSE =  0.015

MSE =  0.035 MSE =  0.017
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−25

0

25

50

75

−25

0

25

50

75

0 1 2 3 0 1 2 3
Time [s]

Vo
lta

ge
 le

ve
l [
µ

V]

Fig. 6: Reference ECG signal compared to the ECG traces
measured when the reference signal is injected using three
different injection methods. The traces are captured by the
Nymi Band and read out with the Nymi software development
kit.

The resulting file can then be played back on almost any device
and potentially injected into the sensors of a biometric system
based on ECG recognition.
The contraption we used for the evaluation of the audio playback
as injection method is identical to the hardware setup in Figure 5.
Nevertheless, the attack can be carried out with any device
capable of analog audio output.

C. Injection Quality

In order to validate the presented signal injection methods
and assess their quality, we select a stored reference signal,
reproduce and inject it using each of the three approaches.
We then compare the reference signal to the traces the
electrocardiograph measures while injection takes place. In
case of the Nymi Band, the captured traces can be accessed

5



Case study: Transferability of attack

• Beware your fitness tracker!
• How easy it is to predict attacks 

when collecting data 
from different sources
− ECG
− eye movements
− mouse movements
− touchscreen dynamics
− gait
− etc

• Human study
− easy for eye movements
− ECG more chaotic

When your fitness tracker betrays you, Ebertz et al., In Proc S&P 2018



Case study: DNA origami tiles

• DNA origami tiles: molecular breadboard [Turberfield lab]
• Computation performed by molecular walkers on ‘tracks’
• Build an abstract predictive Markov chain model

Guiding the folding pathway of DNA origami. Dunne et al, Nature 525, pages 82–86, 2015.

50nm



DNA walker circuits

• Computing with 
DNA walkers 

• Branching tracks laid out on DNA origami tile, any Boolean  function 
• The guarantee? walker rates for guaranteed reliability level

30

DNA walker circuits: computational potential, design, and verification. Dannenberg et al, Natural Computing, 2015.



Dimer origami

31



Prediction of dimer origami folding

• Model 276 states 
• Gillespie simulation
• Remarkable predictive ability

Modified tile                    Observed shape     Predicted 



Back to the challenge of autonomous driving…

• Things that can go wrong in perception software
- sensor failure
- object detection failure

• Machine learning 
software
- not clear how it 

works
- does not offer

guarantees

- Opportunities for the 
keen scientist!

Lidar image, Credit: Oxford Robotics Institute



Why worry about safety of self-driving?

− Nexar Traffic Light Challenge: Red light classified as green with 68%/95%/78% 
confidence after one pixel change.

• Deep neural networks are unstable wrt adversarial perturbations
− Nexar Traffic Light Challenge: red light classified as green with 68%/95%/78% 

confidence after one pixel change
• Can reduce to 0% accuracy: can we compute guarantees for neural networks?

34Feature-Guided Black-Box Safety Testing of Deep Neural Networks. Wicker et al, In Proc. TACAS, 2018.



German traffic sign benchmark…

stop 30m 80m           30m go             go
speed speed         speed right        straight
limit limit           limit

Confidence    0.999964           0.99

Safety Verification of Deep Neural Networks. Huang et al, In Proc. CAV, 2017.



Aren’t these artificial?

Real traffic signs in Alaska!

Need to consider physical attacks, not only digital…



Can also attack 3D deep learning…

&ODVVLILHG�DV�&DU�
����&RQILGHQFH

,WHUDWLYH�6DPSOH�
2FFOXVLRQ�RQO\�
UHPRYHV����
SRLQWV

5DQGRP�
2FFOXVLRQ�
UHPRYHV�����

0LVFODVVLILHG���
%DWKWXE�����
&RQILGHQFH

0LVFODVVLILHG���
$LUSODQH�����
&RQILGHQFH

…reduce accuracy to 0% after occlusion of 6.5% of the occupied input space, 
targeting the critical set

Robustness of 3D Deep Learning in an Adversarial Setting. Wicker & K, In Proc. CVPR 2019.



New challenge: verification for ML

• What’s different about machine learning? 
− black box, lacks interpretability
− programming by pattern matching, not logic
− corner cases are unseen examples, not missed conditions
− data quality and coverage crucial
− accuracy can be misleading

• Why is ML difficult to verify?
− foundations of ML not well understood, mix of logic and real valued functions
− training obscure, not clear how to choose the training method
− dependence on choice of loss functions and optimisation
− scalability an issue

• Need synthesis, not just verification…



Guarantees for deep learning!

• Prove that no adversarial examples exist in a neighbourhood around an input
• Compute lower and upper bounds on maximal safety radius

A Game-Based Approximate Verification of Deep Neural Networks with Provable Guarantees. Wu et al, 
CoRR abs/1807.03571, 2018.



Probabilistic guarantees

• Requiring that no adversarial examples exist too strict!

• Need to probabilistic guarantees: probability that local perturbations result in 
predictions that are close to original

• Taking account of the learning process

• Bayesian neural networks have prior on weights
− account for noise, uncertainty, etc
− return an uncertainty measure along with the output

• Need to compute posterior probability
− often intractable
− can we do better?



Statistical robustness guarantees

• Work with Bayesian neural networks

• Define safety with prob 1-𝜀

𝑃𝑟𝑜𝑏(∃y ∈ η s.t. f(x) ≠ f(y) | D) ≤ 𝜀

• i.e. conditioned on training data D

• Method: sample the weights, then employ statistical model checking (Massart
bounds, sequential test)
− compare robustness and accuracy trade offs for different inference methods

IJCAI 2019, https://arxiv.org/abs/1903.01980

x

y



Robustness comparison

AAAI 2019, https://arxiv.org/abs/1809.06452



So have we solved the problem?

43



Trust, ethics, morality and social norms…

• Already merging into 
traffic proving difficult, 
− what about social

subtleties?
− communication, 

multi-modal signals?

• Need to reason about
− trust
− moral decisions
− conflict resolution
− accountability: black box?

• Already developing quantitative 
verification for trust…

http://www.pbs.org/wgbh/nova/next/tech/robot-morals/



Concluding remarks

• Overview of role of probabilistic modelling, verification and synthesis
− safety/performance guarantees, prediction, attacks, optimal synthesis, and more

• Much excitement about potential of the developments in AI
• and exciting opportunities!
• But need to know the limits, also for deep learning

− rigorous foundations, formal verification, safety assurance

• and social implications
− overtrust/undertrust in robots
− ethics of autonomous decision making
− morality of autonomous behaviour

• Many challenges remain 48



A tribute to Robin Milner

• From computers to ubiquitous computing, by 2020

“The most profound technologies are those that
disappear. They weave themselves into everyday 
life until they are indistinguishable from it.” (Weiser, 1993)

• “Ubicomp can empower us” (Milner)
• We must keep a live connection between

theory and application in computer science

• This lecture is a contribution
− practical, algorithmic techniques 

and industrially-relevant tools  
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