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Exciting times for our discipline!

Robots roam everywhere

Credits: That’s Really Possible, Yamaha/SRI



Beyond digital circuits

[Qian, Winfree, [Cherry, Qian, Nature 201 8]
Science 2012]

DNA computing

“Computing with soup”
(The Economist 2012) POﬁ quiz, hotshot: what's  “Scientists invented
t

Single DNA strands are inputs e square root of 13? Al made from DNA”
and outputs Science Photo Library/Alamy Caltech News

Also nanostructures and nanorobots




Chips with everything no more...

Hardware systems (circuits, communications technology) more like software
e.g. programmable networks
Software methodologies are on the rise

- We are already debugging DNA programs!



Deep learning with everything

DeepFace
Closing the Gap to Human-Level
Performance in Face Verification

Yaniv Taigman

97.35% accuracy

Trained on the largest facial
dataset - 4M facial images
belonging to more than 4,000
identities.

Google Translate—here shown on a mebile
phone—will use deep leaming 1o improve its
transiations between texts

Build for voice with Alexa NeEasE

O amazon alexa




Much excitement about self-driving...

www.bsfilms.me - Black Sheep Films



http://www.bsfilms.me/

Out and about in Oxford....




The challenge of autonomous driving

Complex engineering and Al problem...
Software at the heart
Old and new technologies
— computer vision
— sensor fusion
— control
— prediction
— planning
Increasing use of deep learning
— requiring high quality data
— powered by GPUs
Deep science
Great progress!

NVIDIA DRIVE PX 2



Would you trust a self-driving car?

We're looking to learn from people with diverse transportation needs. Here are

some of the first riders who are already using our self-driving cars every day.

Ted and Candace

A typical day in Ted and Candace’s household is full of busy
activities across both the parents and their four children: Abbi,
Brielle, Izzy and Trey. This lively family is now using our self-driving
cars to get to work, shuttle four kids to school and juggle
everything from the parents’ weekly date night to their children’s

soccer practice. They are excited about giving everyone in their

home a greater sense of freedom and independence.

Waymo early riders, Tesla, Uber, ...
In the UK FiveAl, Oxbotica, ...



Unwelcome news recently...

Self-Driving Uber Car Kills Pedestrian in Arizona, Where Robots Roam

Leer en espaiiol

By DAISUKE WAKABAYASHI MARCH 19, 2018

066 Tesla Says Crashed Vehicle Had Been on Autopilot Before Fatal Accident

By CREGORY SCHMIDT MARCH 31, 2018

00

RELATED COVERAGE

Tesla Looked Like the Fi
Ask if It Has One, v

Fatal Tesla Crash Raises New Questions About Autopilot System
U.S. Safety Agency Criticizes Tesla Crash Data Release

How can this happen if we have 99.9% accuracy?



An Al safety problem...

- Complex scenarios

goals

perception

autonomy

situation awareness
context (social, regulatory)
trust

ethics

. Safety-critical, so
guarantees needed
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nita Dufala/Public source

- Should failure occur, accountability needs to be established
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It’s about provable guarantees!

void add(Object o int
buffer&hegd; Lol oy
head = (heixd+1 Yosize; X1
x2
Object take() { r—
x3
tail=(tail+1)%size;
return buffer[tail]; x4

Program

Modelling = rigorous, mathematical abstraction

Verification = proof that the model satisfies specification
Synthesis = correct-by-construction model from specification
Automated = algorithmic, implemented in software

@ ® @
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Probabilistic guarantees

- Stochasticity ever present
— randomisation, uncertainty, risk

Need quantitative, probabilistic guarantees for:
— safety, security, reliability, performance, resource usage, trust, authentication, ...
Examples
— (reliability) “the probability of the car crashing in the next hour is less than 0.001”
— (energy) “energy usage is below 2000 mA per minute”

My focus is on automated, tool-supported methodologies
— probabilistic model checker PRISM, www.prismmodelchecker.org
— HVC 2016 Award (joint with Dave Parker and Gethin Norman)

- Applied to a wide range of systems...



http://www.prismmodelchecker.org/

OK, but what is probabilistic verification good for?

THE SANITATION,
: ‘ THE MEDICINE,
EDUCATION, WINE,
PUBLIC ORDER,
IRRIGATION, ROADS,

n THE FRESH-WATER SYSTEM,
' ‘(\ AND PUBLIC HEALTH

WHAT HAVE THE ROMANS EVER DONE FOR US?

! N\ :‘ ! ALL RIGHT, BUT APART FROM
] ’ ’ ‘ ¥ od
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Case study: Cardiac pacemaker

How it works

— reads electrical signals through sensors in the right atrium and right ventricle

— monitors the timing of heart
beats and local electrical activity

— generates artificial pacing o
signal as necessary ‘ -

Pacemaker
pulse generator

Lead in

. Safety-critical system! fight atrium

- The guarantee 5
- (basic safety) maintain . 01
60-100 beats per minute Leadin ~—

right ventricle |

— Killed by code: FDA recalls 23 defective pacemaker devices because of adverse
health consequences or death, six likely caused by software defects (2010)

16



Modelling framework

Model the pacemaker and the heart, compose and verify

aorta
(to body) atrioventricular
bundle of His
pulmonary
artery

(to lungs)

sinoatrial

(AV) node
right atrium

right bundie - pJ et
branch ; ventricle

right ventricle

Quantitative verification of implantable cardiac pacemakers over hybrid heart models. Chen et a/,
Information and Computation 2014



Modelling framework

aorta
(to body) atrioventricular
bundle of His
pulmonary
artery
(to lungs)

sinoatrial
|SA) node
left bundle
atrioventricular & / t branch
(AV) node

right atrium

left

right bundie entidia

branch

right ventricle

inter VS!
/ t=0

Copyngft €008 Boztor Sowmine Corporation A nofes reseryad,

module VRP

s_vrp:
t_vrp :

[0..2] init O;
clock;

/7 Invariants for clock t_vrp

invariant
(s_vrp = 2 => (t_vrp <= TVRP)) &
(s_vrp =1=> (t_vrp <= 0 ))
endinvariant

[Voet] (s_vrp = 0) -> (s_vrp' = 1) & (t_vrp'=0);

[vP]

(s_vrp = 0) -=> (s_vrp' = 2) & (t_vrp' = 0);



Modelling framework
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/7 Invariants for clock t_vrp

invariant
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Pacemaker verification

- Basic guarantees

— (basic safety) maintain
60-100 beats per minute

— (energy usage) detailed analysis,
plotted against timing parameters

of the pacemaker

- Advanced guarantees

— rate-adaptive pacemaker, for patients with

chronotropic deficiency

— (advanced safety) adapt the rate to exercise

and stress levels
— in silico testing
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Closed-Loop Quantitative Verification of Rate-Adaptive Pacemakers. Paoletti et a/, ACM Transactions on

Cyber-Physical Systems 2018



Synthetic ECG: healthy heart
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Bradycardia (slow heart rate)
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Bradycardia heart, paced
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Parameter synthesis for pacemakers

Can we adapt the pacing rate to patient’s ECG to

— minimise energy usage?
— maximise cardiac output?
— explore trade offs?

The guarantee

— (optimal timing delay synthesis):
find values for timing delays that
optimise a given objective,
adapted to patient’s ECG

Significant improvement over default
values

TLRI{ms)

a) Bradycardia: slow heart rate
o _Default

1800
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‘1000

2000 400 600 800 1000 1200 1400 1600 1800
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2000

Svynthesising robust and optimal parameters for cardiac pacemakers using symbolic and evolutionary

computation techniques. Kwiatkowska et a/, HSB’16




Trade offs in optimal delay synthesis
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Case study: ECG biometrics

Biometrics increasing in popularity
— are they secure?

Nymi band
— ECG used as a biometric identifier
— biometric template created first
— compared with real ECG signal

Proposed uses

— for access into buildings and
restricted spaces

— for payment
— etc

Broken Hearted: How to Attack ECG Biometrics, Ebertz et al., In Proc NDSS 2017




Attack on ECG biometrics

- We use synthetic ECGs to
Impersonate a user

Reference signal Hardware waveform generator
— build model from data, 75-
41 volunteers 50-
— inject synthetic signals to . 25- m
break authentication 2. 0
— 80% success rate s
- Software waveform generator Audio playback
> 75-
- Results % . MSE = 0.035
— serious weakness ~
— countermeasures needed 0-
25~ I I I I I I I I
0 1 2 3 0 1 2 3
Time [s]

- Modelling essential, good for attacks...



Case study: Transferability of attack

- Beware your fitness tracker!

- How easy it is to predict attacks
when collecting data
from different sources

— ECG
— eye movements
— mouse movements

— touchscreen dynamics target target
. &
o a I t .':\ y 0@" ‘@"\(\ "-..
) - 90”% - ™ LEGEND
- etC . :smartphone
a4 A “- ) 4
ViCt’Im - adversary 06 pOpUJation \,,NI SeCUrlty
- Human StUdy 7 & measure
— easy for eye movements ° °
— ECG more chaotic source source

When your fitness tracker betrays you, Ebertz et al., In Proc S&P 2018




Case study: DNA origami tiles

a
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- DNA origami tiles: molecular breadboard [Turberfield lab]
- Computation performed by molecular walkers on ‘tracks’
- Build an abstract predictive Markov chain model

Guiding the folding pathway of DNA origami. Dunne et a/, Nature 525, pages 82-86, 2015.




DNA walker circuits

- Computing with 1
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- Branching tracks laid out on DNA origami tile, any Boolean function
- The guarantee? walker rates for guaranteed reliability level

DNA walker circuits: computational potential, design, and verification. Dannenberg et a/, Natural Computing, 2015.




Dimer origami

31



Prediction of dimer origami folding

- Model 276 states " ; f B ™
. Gillespie simulation 04 TH—H B ST
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Back to the challenge of autonomous driving...

+ Things that can go wrong in perception software
- sensor failure
— object detection failure

Machine learning
software

— not clear how it
works

- does not offer
guarantees

— Opportunities for the
keen scientist!

Lidar image, Credit: Oxford Robotics Institute



Why worry about safety of self-driving?

(a) (b)

Deep neural networks are unstable wrt adversarial perturbations

— Nexar Traffic Light Challenge: red light classified as green with 68%/95%/78%
confidence after one pixel change

Can reduce to 0% accuracy: can we compute guarantees for neural networks?

Feature-Guided Black-Box Safety Testing of Deep Neural Networks. Wicker et a/, In Proc. TACAS, 2018. 34




German traffic sign benchmark...

e P

stop 30m 80m go go
speed speed speed right straight
limit limit limit
Confidence 0.999964 0.99

Safety Verification of Deep Neural Networks. Huang et a/, In Proc. CAV, 2017.




Aren’t these artificial?

Real traffic signs in Alaskal

Need to consider physical attacks, not only digital...



Can also attack 3D deep learning...
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VoxNet: Robustness: ISO vs. Random (MN4(

w— Random Occhussor
IS0 Occhusion
® Report from Q1 et al 2017

Percent Occluded

...reduce accuracy to 0% after occlusion of 6.5% of the occupied input space,
targeting the critical set

Robustness of 3D Deep Learning in an Adversarial Setting. Wicker & K, In Proc. CVPR 20109.




New challenge: verification for ML

- What’s different about machine learning?

— black box, lacks interpretability

— programming by pattern matching, not logic

— corner cases are unseen examples, not missed conditions
— data quality and coverage crucial

— accuracy can be misleading

- Why is ML difficult to verify?

— foundations of ML not well understood, mix of logic and real valued functions
— training obscure, not clear how to choose the training method

— dependence on choice of loss functions and optimisation

— scalability an issue

Need synthesis, not just verification...



Guarantees for deep learning!

- Prove that no adversarial examples exist in a neighbourhood around an input
- Compute lower and upper bounds on maximal safety radius

Iterations of MCTS
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0.025 17
. 16
(] (0]
= 002+ Convergence Trend of 5 =
| MaeE ‘ <
b Upper Bound B
T T
o 4
= =
g 0015 B
c c i
3 g
m 12 @ i
§ 0.01 ,—’7 | o
3 1 21
: 5|
Convergence Trend of 40 H
y Lower Bound
0.005 ¥ -1
2
10 10’ 10

107 10>
lterations of Admissible A*

A Game-Based Approximate Verification of Deep Neural Networks with Provable Guarantees. Wu et a/,
CoRR abs/1807.03571, 2018.




Probabilistic guarantees

Requiring that no adversarial examples exist too strict!

Need to probabilistic guarantees: probability that local perturbations result in
predictions that are close to original

- Taking account of the learning process

Bayesian neural networks have prior on weights
— account for noise, uncertainty, etc
— return an uncertainty measure along with the output

Need to compute posterior probability
— often intractable
— can we do better?



Statistical robustness guarantees

- Work with Bayesian neural networks

X
- Define safety with prob 1-¢ ° /T\\

Prob(3y e ns.t. f(x) = f(y) | D) < ¢
- i.e. conditioned on training data D

- Method: sample the weights, then employ statistical model checking (Massart
bounds, sequential test)

— compare robustness and accuracy trade offs for different inference methods

IJCAI 2019, https://arxiv.org/abs/1903.01980




Robustness comparison
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So have we solved the problem?

'l hate them': Locals reportedly
are frustrated with Alphabet's
self-driving cars

* Alphabet's self-driving cars are said to be annoying their neighbors in Arizona,
where Waymo has been testing its vehicles for the last year.

* More than a dozen locals told The Information they they hated the cars, which
often struggle to cross a T-intersection near the company'’s office.

* The anecdotes highlight how challenging it is for self-driving cars, which are
programmed to drive conservatively, to handle certain situations.

Published 3:04 PM ET Tus, 28 Aug 2018 | Updated 12:53 PM ET Wed, 29 Aug 2018

S cnBC

Source: Waymo

Self-driving cars should be allowed to
mount pavements and break speed limit
in emergencies

( f share ) \iwl @ 2'8

A Tesla Model S
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Trust, ethics, morality and social norms...

- Already merging into
traffic proving difficult,

— what about social
subtleties?

— communication,
multi-modal signals?

Need to reason about
— trust

— moral decisions
— conflict resolution
— accountability: black box?

A car is merging on the freeway. How fast should it drive?

- Already developing quantitative
verification for trust...

http://www.pbs.org/wgbh/nova/next/tech/robot-morals/



Concluding remarks

- Overview of role of probabilistic modelling, verification and synthesis
— safety/performance guarantees, prediction, attacks, optimal synthesis, and more

Much excitement about potential of the developments in Al
- and exciting opportunities!
But need to know the limits, also for deep learning

— rigorous foundations, formal verification, safety assurance

- and social implications

— overtrust/undertrust in robots

— ethics of autonomous decision making
— morality of autonomous behaviour

Many challenges remain

48



A tribute to Robin Milner

- This lecture is a contribution

From computers to ubiquitous computing, by 2020

“The most profound technologies are those that
disappear. They weave themselves into everyday
life until they are indistinguishable from it.” (Weiser, 1993)

- “Ubicomp can empower us” (Milner)

- We must keep a live connection between
theory and application in computer science

— practical, algorithmic techniques
and industrially-relevant tools
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