
Issue 2019-1

December 2019

The Newsletter of the

Formal Aspects of Computing Science

(FACS) Specialist Group

ISSN 0950-1231

FACS

A

C

T

S

FACS FACTS Issue 2019-1 December 2019

2

About FACS FACTS

FACS FACTS (ISSN: 0950-1231) is the newsletter of the BCS Specialist Group on

Formal Aspects of Computing Science (FACS). FACS FACTS is distributed in

electronic form to all FACS members.

Submissions to FACS FACTS are always welcome. Please visit the newsletter

area of the BCS FACS website for further details at:

https://www.bcs.org/membership/member-communities/facs-formal-aspects-

of-computing-science-group/newsletters/

Back issues of FACS FACTS are available for download from:

https://www.bcs.org/membership/member-communities/facs-formal-aspects-

of-computing-science-group/newsletters/back-issues-of-facs-facts/

The FACS FACTS Team

Newsletter Editors

Tim Denvir timdenvir@bcs.org

Brian Monahan brianqmonahan@googlemail.com

Editorial Team:

Jonathan Bowen, John Cooke, Tim Denvir, Brian Monahan, Margaret West.

Contributors to this issue:

Jonathan Bowen, John Cooke, Tim Denvir, Margaret West,

Troy Astarte, Marie Farrell and Matt Luckcuck

BCS-FACS websites
BCS: http://www.bcs-facs.org

LinkedIn: https://www.linkedin.com/groups/2427579/

Facebook: http://www.facebook.com/pages/BCS-FACS/120243984688255

Wikipedia: http://en.wikipedia.org/wiki/BCS-FACS

If you have any questions about BCS-FACS, please send these to Jonathan Bowen

on jonathan.bowen@lsbu.ac.uk.

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/back-issues-of-facs-facts/
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/back-issues-of-facs-facts/
mailto:timdenvir@bcs.org
file:///C:/Users/brian/Desktop/BCS-FACS/FACS-FACTS-2017/2017-1/brianqmonahan@googlemail.com
http://www.bcs-facs.org/
https://www.linkedin.com/groups/2427579/
http://www.facebook.com/pages/BCS-FACS/120243984688255
http://en.wikipedia.org/wiki/BCS-FACS
mailto:jonathan.bowen@lsbu.ac.uk

FACS FACTS Issue 2019-1 December 2019

3

Editorial

Dear readers,

Welcome to FACS FACTS for 2019
1

 - somewhat delayed due to unavoidable

circumstances.

This issue begins with a series of reports on FACS events and other events of

strong interest to FACS. First is a report on the BCS Lovelace Lecture which was

given by Professor Gordon Plotkin on 4
th

 March 2019, titled Languages for

Learning. This is followed by reports on nine further events including the FACS

AGMs in 2018 and 2019, and finally a comprehensive report from Troy Astarte

on the 2019 Annual Peter Landin Semantics Seminar given by Professor David

Turner titled Some History of Functional Programming Languages.

Next there is a feature article on Regulating Safety and Security in Autonomous

Robotic Systems from Matt Luckcuck and Marie Farrell. That is followed by a

Roving Report on the LMS Colloquium on Mathematics of Security from

Margaret West and we conclude with an article by Tim Denvir on The

Temptation to Over-design.

Finally there is a note on Future FACS Events with links and various details,

together with views of the new BCS offices where they will take place: at the

moment we have only one firm event to announce, but more are planned. The

BCS-FACS events website will be updated with the appropriate details as and

when these events are confirmed.

Digitisation Update

In March 2019 we took a collection of past FACS newsletters, reports and

documents from various workshops, which we only had to hand in hard copy,

to be scanned and digitised. This was carried out by Capture All, a firm that

specialises in just that process. We now have these past documents available as

PDF files held on various websites for safe keeping. BCS are for some reason

going to jettison all older documents they hold electronically, and so we are

making sure that we have our own records for posterity.

So we now have recorded as pdf files, 21 newsletters from 1990 to 1998, and

12 from 2000 to 2006. Also, there are 17 miscellaneous documents from

FORTEST meetings in 2002 and 2003; 26 files, mostly of slides, from FACS

Xmas Workshops from 1985-1989; and 4 background papers from a one-day

seminar on Martin Löf Type Theory given by Roland Backhouse in 1987.

Tim Denvir, FACS FACTS co-editor

Jonathan Bowen, FACS Chair

1
 Published in January, 2020

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/

FACS FACTS Issue 2019-1 December 2019

4

BCS Lovelace Lecture: Languages for Learning

Professor Gordon Plotkin

University of Edinburgh

March 4th 2019

Reported by: Tim Denvir

The Lovelace Medal is awarded by the BCS each year to prominent researchers

for their contributions to computer science. Gordon Plotkin won the 2018

medal and gave this Lovelace Lecture in March 2019. Gordon is particularly

well-known for his work on structural operational semantics. It is encouraging

to see the BCS awarding the medal to a theoretical computer scientist whose

work may be considered as accessible only to a limited audience. A transcript of

an interview with the speaker prior to the lecture, and a video of the lecture

itself, can be found at https://www.bcs.org/content-hub/the-lovelace-lecture-

2019-languages-for-learning/. The video consists of the slides and voice-over,

rather than a film of the event, which is useful for anyone wanting to view the

technical detail. Since this video gives the whole lecture, with slides in quality

reproduction, I shall merely give a summary here.

Professor Philippa Gardner, chair of the BCS committee which awarded the

medal to Gordon Plotkin, introduced the event. Philippa was a PhD student of

Gordon’s, and she was at pains to tell us that she left the room when the final

decision was made, to allay any thoughts of bias. I realised that in the audience

were many other past and present PhD students of Gordon’s, and also members

of his family. The latter may have made him more nervous!

Peter O’Hearn gave a more technical introduction to Gordon’s work, covering at

high speed Plotkin’s notions of Parallel Or and Parallel Exists, which resolve the

apparent disagreement between Equality in the Standard Model and Leibniz’

“equality of indiscernibles”, then his Structural Operational Semantics, and then

Algebraic Operations and Generic Effects. Peter O’Hearn also cited Gordon

Plotkin’s nomination for Fellow of the Royal Society, which comprises an

impressive list of achievements.

So, after some fifteen minutes of preamble we heard Gordon’s lecture itself. It

is worth saying that the title, Languages for Learning, refers to languages for

writing programs which themselves learn and then evolve. These have particular

relevance in AI applications. Gordon started by talking about Ada Lovelace’s

https://www.bcs.org/content-hub/the-lovelace-lecture-2019-languages-for-learning/
https://www.bcs.org/content-hub/the-lovelace-lecture-2019-languages-for-learning/

FACS FACTS Issue 2019-1 December 2019

5

program for calculating Bernoulli numbers. Then in 1840 she had the idea for

non-numerical computations. Turing in his 1950 paper Can Computers Think?

alludes to the latter work of Ada Lovelace and rebuts her view that computers

can only do what one instructs them to. Gordon noted that Ada Lovelace’s

proper title was Ada Augusta, Countess of Lovelace, and mused over why she

was always called Lady rather than Countess Lovelace.

Gordon then talked about statistical programming, and started with a simple

example to illustrate Bayes theorem. Thomas Bayes lived from 1702-1761, but

the same principles were independently discovered by Richard Price (1723-

1791) and Pierre-Louis Laplace (1749-1827) who gallantly acknowledged Bayes’

work. Gordon used this example as the basis of a simple probabilistic program.

Interestingly, he noted that Wikipedia lists 46 probabilistic programming

languages. He then moved on to deep learning, that is, programs built from

trainable functions. These use artificial neurons, loosely inspired by the

architecture of the brain. In this context Gordon referred to the 1940s work of

McCulloch and Pitts
2

, a paper I had first come across in the 1960s when

exploring the relationship between languages and automata. It rang a venerable

bell for me.

Tensors can capture terms of numerous dimensions. Such terms are used for

image processing and speech analysis, and are a way of formalising neural

networks. Supervised learning can assist image recognition - e.g. “this is an

elephant”.

So vectors, allied with tensors, can model differentiable programming

languages: Jacobians, which are vectors of and generalisations of Grad (∇), let

us differentiate programs (I assume because programs are implementations of

functions).

Finally Plotkin listed possible other work, some of which was definitely

ambitious: non-smooth functions, non-differentiable functions, imprecise

computation, what do statistics and differentiable programs have in common...

He ended by thanking the audience and acknowledging a list of colleagues,

which he did by displaying a screenful of their names and photos.

After the lecture the actual award, the Lovelace Medal, was presented to Gordon

Plotkin, and Jane Hillston gave a vote of thanks.

2 McCulloch, W. S. and W. H. Pitts: 1943, ‘A Logical Calculus of the Ideas Immanent in Nervous

Activity’, Bulletin of Mathematical Biophysics 7, 115–133.

FACS FACTS Issue 2019-1 December 2019

6

The BCS held this Lovelace Lecture at the Royal Society in London and

advertised it widely to its members. As a result the lecture room was nearly

filled with about 200 people, most of them I imagine not versed in formal or

theoretical aspects of computing. Apart from the speaker, I recognised only two

other computer scientists there, had a drink with one of them and made the

acquaintance of one of the many non-specialists during the pleasant reception

afterwards.

FACS FACTS Issue 2019-1 December 2019

7

FACS Events, 2018–2020

Jonathan Bowen (Chair of BCS-FACS)

Since the last FACS FACTS newsletter issued in August 2018, we have held a

number of seminars and other events. This article provides an overview and

record of these, both past and forthcoming. All FACS events are held at the BCS

London Office unless otherwise stated.

Note that since August 2019, the BCS London Office has moved to 25 Copthall

Avenue, London EC2R 7BP. The nearest tube station is Moorgate, but Bank and

Liverpool Street are within walking distance as well.

Unifying Theories of Refinement

Friday 12 October 2018.

Main speaker: Professor He Jifeng, East China Normal University, Shanghai, China.

Other speakers: Professor Tony Hoare, Microsoft Research, Cambridge, UK &

Professor Jim Woodcock, University of York, UK.

Chair: Professor Jonathan Bowen, London South Bank University, UK.

Overview:

This event celebrated the 20th anniversary of the publication of the book

Unifying Theories of Programming by C.A.R. Hoare and He Jifeng in 1998. The

main talk by Prof. He Jifeng was given in the presence of Prof. Sir Tony Hoare,

who provided some introductory remarks. Prof. Jim Woodcock of the University

of York provided a summary of the talk at the end. Note that 2018 was also the

40th anniversary of the FACS Specialist Group itself and the 30th anniversary of

the associated Formal Aspects of Computing (FAC) journal, so this event was a

triple celebration. The event was chaired by Prof. Jonathan Bowen, Chair of BCS-

FACS.

Biography:

Prof. He Jifeng is a Chinese computer scientist. He graduated from the

mathematics department of Fudan University in 1965. From 1965 to 1985, he

was an instructor at East China Normal University. During 1980–81, he was a

visiting scholar at Stanford University and the University of San Francisco in

https://en.wikipedia.org/wiki/Jonathan_Bowen
https://en.wikipedia.org/wiki/He_Jifeng
https://en.wikipedia.org/wiki/Unifying_Theories_of_Programming
https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/He_Jifeng
https://en.wikipedia.org/wiki/Jim_Woodcock

FACS FACTS Issue 2019-1 December 2019

8

California, United States. From 1984 to 1998, He Jifeng was a senior research

fellow at the Programming Research Group in the Oxford University Computing

Laboratory (now the Oxford University Department of Computer Science). He

worked extensively on formal aspects of computing science. In particular, he

worked with Prof. Sir Tony Hoare, latterly on Unifying Theories of Programming

(UTP), resulting in a book of that name. Since 1986, He Jifeng has been

Professor of Computer Science at East China Normal University in Shanghai. In

1996, he also became Professor of Computer Science at Shanghai Jiao Tong

University. In 1998, he became a senior research fellow at the International

Institute for Software Technology (UNU-IIST), United Nations University, based in

Macau. He moved back to Shanghai in 2005. He Jifeng’s research interests

include sound methods for the specification of computer systems,

communications, application and standards, and techniques for designing and

implementing those specifications in software and/or hardware with high

reliability. In 2005, he was elected to the Chinese Academy of Sciences. In

2013, his 70th birthday was celebrated at East China Normal University with an

international three-day Festschrift in association with the International

Conference on Theoretical Aspects of Computing (ICTAC).

He Jifeng and Tony Hoare

http://unifyingtheories.org/

FACS FACTS Issue 2019-1 December 2019

9

Tony Hoare He Jifeng

Jim Woodcock FACS networking

FACS @ 40 cakes

FACS FACTS Issue 2019-1 December 2019

10

Coresets at the Heart of Big Data

Wednesday 17 October 2018.

Speaker: Stephane Chretien, National Physical Laboratory, Teddington, UK.

Abstract:

Big Data is pervasive nowadays due to extensive monitoring in health science

and engineering. Data is now considered to be a high value resource, both for

knowledge mining and as a commercial asset. Most of the work usually

undertaken to extract valuable information from datasets consists of basic

statistical procedures: dimension reduction, manifold learning, clustering,

regression, etc. However, in the realm of Big Data most of these statistical

procedures cannot be performed because of the computational burden

associated with the size of the dataset and the loss of statistical significance.

One recent approach to statistical analysis of Big Data is based on efficiently

extracting relevant sample subsets and then performing the usual procedures

on this subsample. Obviously, uniform sampling can lead to severe biases with

potentially dramatic consequences. The aim of this talk is to provide an

overview of the techniques recently devised for intelligent sub sampling and

their connections to beautiful concepts such as modern probability and high

dimensional geometry.

http://www.npl.co.uk/people/stephane-chretien

FACS FACTS Issue 2019-1 December 2019

11

Verifying CSP and its Offspring

Thursday 1 November 2018.

Venue: London Mathematical Society, De Morgan House, 57–58 Russell

Square, London, WC1B 4HS.

Joint event with the London Mathematical Society.

Speaker: Professor Bill Roscoe, University of Oxford, UK.

Abstract:

I like to give systems semantics with a straightforward, refinement-based

verification model. This is true of CSP, Timed CSP, Occam, and new work on

CSM (a vehicle for translating model-based languages such as UML). This has

paid off with many successful verification projects from the transputer, many

military systems, systems for creating correct embedded software, to security

analysis. I touch on the expressiveness of CSP, the virtues of refinement and the

challenges of scalability and accessibility by non-specialists.

Bill Roscoe introduced by Rob Hierons

http://www.cs.ox.ac.uk/bill.roscoe/

FACS FACTS Issue 2019-1 December 2019

12

Bill Roscoe delivering the 2008 FACS/LMS lecture

FACS – 2018 AGM

Monday 10 December 2018.

Agenda:

1. Apologies (Jonathan Bowen)

2. Minutes of the previous AGM (Roger Carsley/Jonathan Bowen)

3. Chairman’s Report (Jonathan Bowen)

4. Subcommittees Reports (Subcommittee chairs)

5. Statement of Accounts (John Cooke)

6. Election of Officers and Committee Members (Jonathan Bowen)

7. Future events (Jonathan Bowen/Sofia Meacham et al.)

8. Suggested changes to the AGM

9. Archiving of FACS publications and website (Tim Denvir/Jonathan Bowen)

10. Any other business

The FACS AGM was followed by the Annual Peter Landin Semantics Seminar.

https://www.bcs.org/content/ConWebDoc/59880

FACS FACTS Issue 2019-1 December 2019

13

Annual Peter Landin Semantics Seminar:

Algebraic Methods for Specification and Formal Development of

Software

Monday 10 December 2018.

Speaker: Professor Don Sannella, University of Edinburgh, Scotland, UK.

Background:

Peter Landin (1930–2009) was a pioneer whose ideas underpin modern computing. In

the 1950s and 1960s, Landin showed that programs could be defined in terms of

mathematical functions, translated into functional expressions in the lambda calculus,

and their meaning calculated with an abstract mathematical machine. Compiler writers

and designers of modern-day programming languages alike owe much to Landin’s

pioneering work. Each year, a leading figure in computer science pays tribute to

Landin’s contribution to computing through a public seminar.

Abstract:

A software module can be modelled as a many-sorted algebra consisting of a collection

of sets of data values together with functions over those sets, taking the view that the

correctness of input/output behaviour is all that matters. Such a module can be

specified by giving properties that the functions are required to satisfy. On this simple

basis, an elegant account of formal development of verified software systems from

specifications of requirements can be built, which treats modular structure in a

compositional way, allowing large systems to be treated by decomposition into smaller

components. The fit with systems built using the functional programming paradigm is

most straightforward, but the ideas generalise smoothly to other contexts.

Don Sannella delivering the 2018 FACS Peter Landin Semantics Seminar

https://en.wikipedia.org/wiki/Don_Sannella

FACS FACTS Issue 2019-1 December 2019

14

Ontologies for Data Provenance and Curation

Friday 15 March 2019.

Speaker: Clifford Brown, National Physical Laboratory, Teddington, UK.

Abstract:

The reproducibility issue, even if not a crisis, is still a major problem for science

and engineering. Factors not originally considered relevant can be highly

relevant. These factors can influence the outputs from a measurement process.

In this seminar, we investigate the use of Semantic Web technologies as a basis

to enhance the capture of provenance meta-data and data curation. These

technologies have the potential to lead to a better understanding of

reproducibility and hence resolution of problems it might be causing. We also

explore the role played by logic and UML in this work.

Biography: Clifford Brown, originally trained as a physicist, has worked in the IT industry

and academia for over 30 years. He is currently working in the Data Science group of the

National Physical Laboratory in Teddington working on Data Curation and Provenance for

Scientific research.

https://www.linkedin.com/in/clifford-brown-869b8b70/

FACS FACTS Issue 2019-1 December 2019

15

Composing Protocols

Wednesday 3 April 2019.

Co-sponsor: Formal Methods Europe (FME).

Speaker: Professor Farhad Arbab, CWI and Leiden University, The Netherlands.

Abstract:

Despite significant advances in concurrency theory, constructs and models for

programming of concurrent applications have essentially stagnated in the past half-

century. In contrast to advances in abstractions and constructs for sequential

programming, no truly abstract protocol constructs have evolved to raise the level of

concurrent programming. Consequently, programmers today use the same

cumbersome, error-prone concurrency constructs of traditional action-centric models

of concurrency to express protocols in modern software as they did 50 years ago:

processes, threads, locks, semaphores, monitors, rendezvous, etc. Among other

disadvantages, the unavailability of high-level protocol constructs in contemporary

programming languages hampers full utilisation of the enormous potential offered by

massively parallel hardware platforms in real-life applications.

In this talk, we motivate the need for interaction-centric models of concurrency, and

present Reo as a premier concrete example of such alternatives. Reo offers a language

that treats concurrency protocols as explicit first-class constructs, called connector

circuits. More complex protocols in Reo result from composition of simpler, and

eventually primitive, protocols. Treating protocols as concrete constructs yields a very

expressive formal model of concurrency with highly useful software engineering

properties, such as fully-compositional construction and verification, scalability, and

verbatim reuse. Specifying the protocol of a concurrent system in Reo produces a

connector circuit that mirrors the architecture of that system with high fidelity.

Moreover, treating such specifications directly as high-level programs opens up new

possibilities for compilation and optimization techniques to generate efficient

executable code whose performance can meet or beat that of hand-crafted versions of

those same protocols programmed in traditional models of concurrency.

Farhad Arbib delivering the 2019 FACS/FME lecture

https://homepages.cwi.nl/~farhad/

FACS FACTS Issue 2019-1 December 2019

16

Doctoral Symposium

Thursday 6 June 2019 (all-day event).

Speakers: Simon Thompson, BT Research, UK & Philip Davies, University of

Bournemouth, UK

Co-organizers: Sofia Meacham and Jonathan Bowen, in cooperation with

Marwan Elnaghi (BCS London Central Branch).

Programme

09:30 Registration and refreshments.

10:00 Dr Marwan Elnaghi, Academic Lead, BCS London Central Branch.

10:15 Help! Can you use verification to create trust in AI systems? Dr Simon

Thompson, Head of Practice, Big Data and Customer Experience, BT

Research, UK.

11:15 Break and refreshments

11:45 The Scientific Method: A Reality Check. Dr Philip Davies, Bournemouth

University, UK

12:45 Buffet lunch.

14:00 Roundtable discussion of abstracts and research issues

15:00 Plenary discussion about key issues in research and learnings from the

roundtable discussions

16:00 Close

Marwan Elnaghi (BCS London Central Branch) and Sofia Meacham

FACS FACTS Issue 2019-1 December 2019

17

The Doctorial Symposium included two keynote lectures and a poster session

for the students.

Simon Thompson Sofia Meacham and Philip Davies

Poster session at the Doctoral Symposium

FACS FACTS Issue 2019-1 December 2019

18

Students at the Doctoral Symposium

FACS FACTS Issue 2019-1 December 2019

19

Help! Can you use verification to create trust in AI Systems?

Dr. Simon Thompson

Presented at the FACS/BCS Doctoral Symposium 6/6/2019

Abstract:

AI people take great delight in using mathematics to create proofs of the

properties & correctness of their reasoning systems. However, it’s recently

dawned on everyone that the functioning of individual AI systems in particular

contexts, and the functioning of the systems of systems that are being

composed from various AI’s as the technology breaks out into the wild, is

poorly understood.

At this talk the audience was asked to consider the difference between a

modern AI system and a traditional computer program, modern AI consists of

an opaque model induced from a (typically) vast data set, and other artefacts,

modern AI evolves – or adapts as conditions change – with human intervention

or not, and acts autonomously in its environment. And modern AI is deployed

in business processes that often contain other AI components with which it

interacts.

The “other artefacts” that are typically stirred into modern AI systems include;

the training regimes that are part of the art of creating a system, evaluation

systems that guide the evolution of models, embeddings that contextualise and

transform input data and parameter transfers from other pretrained (or

intermediately trained models).

This complexity becomes challenging when we move beyond the artisanal use

of AI and it becomes democratized and productionised. As that happens it

becomes hard to identify all the models involved in an attack or a failure, or

even to differentiate when it is that a model is misused unintentionally.

At BT we are developing approaches to establishing a chain of custody for our

AI models that will allow us to meaningfully administer and account for our

future AI estate. Huge challenges remain, and we hope that the FACS

community will step up to help solve them.

How can we understand and predict the behaviour of AI systems that we can’t

fully analyse? What kinds of statements about limits of use and trust is it

possible to make for systems of systems of this type? How do we evaluate the

integrity and safety of these systems and thus help people and society avoid

sudden and unexpected harm? Most importantly can we create models that

allow us to understand the reaction of our community to the introduction of AI

systems? This technology might enable us to avoid future catastrophes and

support the adoption of AI as tools to overcome the societal challenges around

us now – there is a real need for the FACS community to step forward and help!

FACS FACTS Issue 2019-1 December 2019

20

When to Trust a Self-Driving Car...

Thursday, 21 November 2019.

Venue: London Mathematical Society, De Morgan House, 57–58 Russell

Square, London, WC1B 4HS.

Joint event with the London Mathematical Society In association with the

British Computer Society Formal Aspects of Computing Science (BCS-FACS), the

LMS hosts an annual evening seminar on aspects of the computer science–

mathematics interface. These events are free to anyone who wishes to attend

and have attracted high-quality speakers.

Speaker: Professor Marta Kwiatkowska, University of Oxford, UK.

Abstract:

Computing devices support us in almost all everyday tasks, from mobile phones

and online banking to wearable and implantable medical devices. We are now

experimenting with self-driving cars and robots. Since embedded software at

the heart of these devices must behave correctly in presence of uncertainty,

probabilistic verification techniques have been developed to guarantee their

safety, reliability and resource efficiency. Using illustrative examples, this

lecture will give an overview of the role that probabilistic modelling and

verification can play in a variety of applications, including security, medical

devices, self-driving cars and DNA computing. It will also describe recent

developments towards model synthesis, which aims to build these systems so

that they are correct by construction. Finally, it will explore the problems of

ensuring that systems that rely on learning will behave correctly, both in

situations that they have seen in training, and in situations that they haven’t.

Biography:

Marta Kwiatkowska is Professor of Computing Systems and Fellow of Trinity College, University

of Oxford. She is known for fundamental contributions to the theory and practice of model

checking for probabilistic systems. She led the development of the PRISM model checker

(www.prismmodelchecker.org), the leading software tool in the area. Probabilistic model

checking has been adopted in diverse fields, including distributed computing, wireless

networks, security, robotics, healthcare, systems biology, DNA computing and nanotechnology,

with genuine flaws found and corrected in real-world protocols. Kwiatkowska was awarded two

ERC Advanced Grants, VERIWARE and FUN2MODEL, and is a co-investigator of the EPSRC

Programme Grant on Mobile Autonomy. She was honoured with the Royal Society Milner Award

in 2018 and the Lovelace Medal in 2019, and is a Fellow of the Royal Society, ACM and BCS, and

Member of Academia Europea.

http://www.bcs.org/server.php?show=nav.12459
http://www.cs.ox.ac.uk/marta.kwiatkowska/
http://www.prismmodelchecker.org/

FACS FACTS Issue 2019-1 December 2019

21

FACS – 2019 AGM

Thursday 5 December 2019.

Agenda:

1. Apologies

2. Minutes of the previous AGM

3. Chairman’s Report

4. Subcommittees Reports

5. Statement of Accounts

6. Election of Officers and Committee Members

7. Future events

8. FACS digitization and archiving

9. Any other business

The AGM was held at 4pm and was then followed by the 2019 Annual Peter

Landin Semantics Seminar.

https://www.bcs.org/content/ConWebDoc/59880
https://www.bcs.org/content/ConWebDoc/59880

FACS FACTS Issue 2019-1 December 2019

22

Annual Peter Landin Semantics Seminar:

Some History of Functional Programming Languages

Thursday, 5
th

 December 2019.

Speaker: Professor David Turner, University of Kent, UK.

Reported by: Troy Astarte, University of Newcastle

Abstract:

The talk will revisit a series of milestones in the emergence of lazy, higher

order, polymorphically typed, purely functional programming languages from

their basis in Church’s lambda calculus. Starting with a brief review of the

lambda K calculus (1941) we will go via LISP (1958), Algol 60, Peter Landin’s

ISWIM (1966), PAL (1968), SASL (1973), ML (1973), Miranda (1985) and Haskell.

On the way we will review the case for lazy evaluation and how this has driven

the development of increasingly efficient implementations of normal order

reduction and also discuss the search for a fully adequate static type system.

Biography:

David Turner has been researching functional programming languages and their

implementation since 1969. He is Emeritus Professor of Computation at the University of Kent

where he has spent most of his career. David is best known as the inventor of combinator graph

reduction and for designing and implementing a series of purely functional languages – SASL

(1972), KRC (1981), and Miranda (1985) – that had a strong influence on the development of

the field and the emergence of Haskell. He invented or coinvented some of the ideas which are

now standard in functional programming including pattern matching with guards, list

comprehensions, and the “list of successes” method for eliminating backtracking.

David Turner delivering the 2019 FACS Peter Landin Semantics Seminar

https://en.wikipedia.org/wiki/David_Turner_(computer_scientist)

FACS FACTS Issue 2019-1 December 2019

23

Report:

In a 2001 talk
3

, Peter Landin joked ‘I am one of those people who doesn’t truly

understand something unless he thinks he has invented it.’
4

 Coming from

anyone else, this might seem egotistical: but Landin really was an exceptional

contributor to theoretical computer science—an achievement all the more

impressive considering the main part of his research career spanned less than

10 years. Landin is particularly revered in the functional programming world for

contributing many extremely important concepts, and explaining them in a

lucid and even humorous way.

David Turner, then, had big shoes to fill on a Thursday evening in London. As

luck would have it, he has commensurately big feet: one may apply α-

conversion to rewrite the last sentence of the previous paragraph with ‘Turner’

instead of ‘Landin’ and the sentence remains valid. Consequently, the room in

the new BCS headquarters was very nearly filled—with the eclectic mix of

people one comes to expect at functional programming events—despite the

best efforts of the awkward tablet-based sign-in system at the door. (I had

agreed in advance to write this report on the talk, and spent the majority of the

hour typing away furiously—my apologies to those around me who might have

been a little distracted by the noise!)

Our host for the evening was Jonathan Bowen, whose introduction for Turner

helpfully provided some legitimation for the scholar: by way of the Mathematics

Genealogy Project’s family trees,
5

 we were shown that not only was Turner the

‘nephew’ of Turing, he was also the [great]*-grandson of Poisson, Lagrange,

Euler, and Leibniz. Of greater direct relevance to Turner’s work was his close

connection to both Christopher Strachey, his DPhil supervisor at Oxford, and

Dana Scott, who worked closely with Strachey around the time Turner was in

Oxford too. Indeed, later in his talk, Turner explained that he had learnt

combinatory logic from Scott himself, during Scott’s famous
6

 Michaelmas 1969

term in Oxford.

As Turner took the floor—with a joke that the two presentation screens made

him feel he ought have a co-presenter—he remarked what an honour it was to

3
 Peter J. Landin. Reminiscences. In Program Verification and Semantics: The Early Work, June 2001. URL

https://vimeo.com/8955127. A seminar held at the Science Museum, London.
4
 A quick note on quotation marks: I will use double marks (“”) to indicate quotations of Turner and single marks

(‘’) for other quotations.
5
 https://genealogy.math.ndsu.nodak.edu/id.php?id=75066

6
 If, like me, you have extensively studied the history of denotational semantics.

FACS FACTS Issue 2019-1 December 2019

24

be speaking under the name of Landin. Turner had had the good fortune to

spend a year at Queen Mary University with Landin, as well as having read a

great deal of his papers at university. Turner paid particular homage to Landin’s

‘Next 700’ paper
7

 and its influence on programming language design.

With this, Turner (metaphorically) rolled up his sleeves and began the talk. He

explained that he would sketch the history of functional programming

languages of a particular kind: pure, lazy, and non-strict. The talk would start

with lambda calculus, and run through LISP, ISWIM, SASL, KRC, NPL, ML, HOPE,

and Miranda, before eventually arriving at Haskell. Turner was true to this

schedule, and did indeed make it to Haskell—a language which 2/3 of the

audience had used, according to a quick show of hands.
8

On to the first topic, Alonzo Church’s lambda calculus. Turner explained that

this simple system—a notation with three kinds of term, and three

reduction/conversion rules—was intended to provide a new way to look at the

foundations of mathematics, taking the function as the basic object rather than

the set. Sadly the same paradox (Russell’s) which plagued set-theoretic

foundations still applied; but the enduring legacy was the powerful theory of

typeless pure functions. After briefly explaining some rules and theorems of the

calculus, Turner pointed particularly to the α-conversion rule which says you

can apply variables substitution as long as there are no unwanted name

captures and bade us remember it for the upcoming discussion of LISP. Another

important rule was the second Church-Rosser theorem, which gave a method

for reducing a term to its normal form via delaying evaluation of arguments

rather than passing them by value.

This led into Turner’s next topic: lazy evaluation. This delaying of evaluation

was not generally used in 1960s programming languages, which tended to use

by-value calling, but in order to properly implement lambda calculus, lazy

evaluation was a necessity. Although this could cause efficiency problems,

Turner explained that Chris Wadsworth, a fellow Oxford DPhil student, had

showed a method of graph reduction that compensated for this
9

. Turner himself

then applied a similar notion with his SASL language, which reduced first to

Curry’s SK combinatory logic, and then used Wadsworth’s graph reduction. A

further efficiency step was provided much later by Simon Peyton Jones, who

7
 P. J. Landin. The next 700 programming languages. Communications of the ACM, 9:157–166, 1966.

8
 I rather shamefully kept my hand down; ‘play with Haskell’ has been on my long-term todo list for the past four

years.
9
 Christopher Peter Wadsworth. Semantics and Pragmatics of the Lambda-Calculus. PhD thesis, Programming

Research Group, University of Oxford, September 1971.

FACS FACTS Issue 2019-1 December 2019

25

used larger combinators taken directly from program text, with his Spineless

Tagless G-machine
10

 (“Luckily not heapless too,” quipped Turner, “Otherwise

there would have been nothing left.”).

Having introduced the important basic concepts, Turner turned to

programming languages, starting with John McCarthy’s LISP. This Turner called

“The first
11

 functional programming language with a large and serious user

community.”
12

 LISP had a list-based structure, with basic operators car and cdr,

computational completeness with conditional expressions and recursion, and a

couple of different implementations. Crucially, the S-expression structure

allowed the treating of programs as data and vice-versa; this was powerful, but

a layer of complication above lambda calculus. Turner described this as “a first-

order language made pseudo-higher-order using meta-programming”.

Furthermore, the implementation had a serious problem, known as the ‘funarg

problem’: it didn’t use α-conversion and so evaluations didn’t always come out

right. McCarthy thought at first there was a bug in the implementation, but then

“must have read Church to the end” and realised it was designed wrongly.

Not until Gerald Sussman’s SCHEME in 1975 did the proper static binding

actually appear, argued Turner, as part of a series of LISP myths. He presented

two other myths. First, no “pure” (read: solely applicative) LISP ever existed! LISP

had begun with a FORTRAN-like syntax and had assignment and goto before it

ever had recursion. Second, LISP was not based on lambda calculus. McCarthy’s

main inspiration was Kleene and although he got the word ‘lambda’ from

Church he had not fully read the theory.
13

 Indeed, Turner believes LISP’s most

important contribution was automatic garbage collection, which allowed

algorithms to be written without inclusion of messy allocation concerns.

Now Turner paused the discussion of functional programming languages

temporarily to introduce another important idea: static binding. ALGOL 60,

unlike LISP, had got α-conversion correct, and Turner was impressed with the

Report on the language
14

, calling it a “masterpiece of precise technical writing”

10

 Jones, Simon L. Peyton. Implementing lazy functional languages on stock hardware: the Spineless Tagless G-
machine. Journal of functional programming 2(2):127-202, 1992.
11

 Here I, having been taught by historians to make the sign of the cross upon hearing the word ‘first’, took a deep
breath.
12

 Appropriate caveats had been put in place; I exhaled in relief.
13

 McCarthy admitted this in his paper History of LISP. In Richard L. Wexelblat, editor, History of programming
languages, pages 173–197. Academic Press, 1981.
14

 Peter Naur, editor. Report on the algorithmic language ALGOL 60. Numerische Mathematik, 2(1):106–136, 1960.

FACS FACTS Issue 2019-1 December 2019

26

despite its lack of formal semantics.
15

 Editor Peter Naur’s description of

ALGOL’s call-by-name parameter mechanism is equivalent to Church’s

substitution—so ALGOL 60 actually got closer to lambda calculus than LISP did!

However, the mechanism caused trouble for implementers. In Brian Randell and

Lawford Russell’s book on ALGOL implementation
16

, the authors introduced a

way to handle higher-order procedure passing with a ‘static chain’ which

jumped down the stack, connecting frames to their lexical placement. Landin

then solved the problem that this didn’t properly free stack variables by instead

storing ‘closures’ on the heap—a concept that would turn out essential for

functional programming.

This had been introduced in Landin’s 1960s papers on programming language

design, the best known of which, ‘The Next 700 Programming Languages’

introduced a putative language ISWIM (which stood, in typically dry Landin

fashion, for ‘If You See What I Mean’). The important idea here was that

‘syntactic sugar’ let you have ‘Church without the lambda’—Landin used let and

where for binding and abstraction instead. Another introduction was the use of

indentation to indicate program structure, in place of all the parentheses used

in LISP (Turner explained “Strachey said that LISP might as well stand for ‘Lots

of Irrelevant and Silly Parentheses’”). Landin had worked on a way to handle

jumps in a functional context, and introduced the J operator for this purpose.

Although it was never implemented directly, MIT’s PAL language had all the

main ideas of ISWIM, with first-class labels in place of the J operator. Joe Stoy,

Strachey’s right-hand man at Oxford, brought PAL back from MIT in the 60s and

suggested Turner try to implement it efficiently. The attempt failed: the first-

class labels were a real problem, because they allowed any otherwise closed

context to be re-entered and so nothing could be garbage collected during

execution.

Turner left Oxford in 1972 with his doctoral thesis still unwritten, and took up a

post at St Andrew’s. There he gave a course on programming language theory,

inventing for the task an applicative version of ISWIM, which his colleague Tony

Davie implemented using LISP. The language was named SASL, for ‘St Andrews

Static Language’ (although Turner commented “It could have been ‘St Andrews

Sugared Lambda calculus’”). The language was also inspired by PAL, although

15

 Another Turner—Ray—writes that sufficiently precise technical writing frequently ends up displaying the same
properties as a terse ‘formal’ notation (unambiguous, coherent naming, for example). Raymond Turner. The
meaning of programming languages. American Philosophical Association Newsletter on Philosophy and Computers,
9(1):2–6, 2009.
16

 Brian Randell and Lawford J. Russell. Algol 60 Implementation. Academic Press, Inc., 1964.

FACS FACTS Issue 2019-1 December 2019

27

with a number of changes, crucially multi-level pattern matching. SASL used

call-by-value evaluation with dynamic typing and a purely applicative nature.

There were no lambdas, with let used in their place, but the lambdas were

present in flavour. SASL brought a few advantages over LISP (which Turner had

initially considered for teaching): it was purely functional, had the correct

scoping for free variables, and the multi-level pattern matching helped

readability tremendously.

The dynamic typing was worth particular explanation. Turner noted that SASL

and languages like it were not typeless—they had types, but these were

checked at run time. An advantage of this approach was that you could manage

lists without caring what type the components were; delaying type evaluation

until runtime was the only way to manage this until Robin Milner later showed

how to do it with static polymorphism.

SASL began to take off as a language beyond St Andrews, just as Turner also

experimented with extensions. One such, list comprehensions, was suggested

by John Darlington, and was tried out in the experimental KRC language, which

allowed only one-line equations. KRC also had guards (conditional equations)

instead of conditional expressions. From this experience Turner learnt the

power of lazy lists. SASL became the first multi-site functional programming

language which used this lazy evaluation. Turner explained that laziness

supported reasoning akin to equations: you could substitute equalities without

having to worry about bottom. Another reason for SASL’s growing popularity

was that you could avoid using exotic structures like co-routines by utilising

lazy lists instead—effectively, the partnered co-routine could be treated like

data. SASL also had a feature which replaced the backtracking present in PAL,

although this particular idea didn’t take off until Wadler had given it a name

(list of successes) in 1985
17

; Turner explained this showed the power in giving a

good name to a concept.

Focus now shifted away from Turner’s work to Edinburgh, where important

work on typing was taking place during the 1970s. Rod Burstall had introduced

algebraic datatypes to ISWIM in his 1969 paper on structural induction;
18

 and

Darlington, Burstall’s student, had developed a language called NPL.
19

 This

17

 Philip Wadler. How to replace failure by a list of successes: a method for exception handling, backtracking, and
pattern matching in lazy functional languages. Conference on Functional Programming Languages and Computer
Architecture. Springer, Berlin, Heidelberg, 1985.
18

 R. M. Burstall. Proving properties of programs by structural induction. Computer Journal, 12:41–48, 1969. Earlier
available as Experimental Programming Report, No. 17, DMIP, Edinburgh, 1968.
19

 No relation to the National Physical Laboratory, or indeed IBM’s ‘NPL’ which became PL/I.

FACS FACTS Issue 2019-1 December 2019

28

included multi-equation definitions over algebraic types with pattern matching,

as well as set comprehension expressions. This latter was the inspiration for

Turner’s list comprehensions; Turner took the idea, added lazy evaluation, and

decided lists were better because they could be easily converted back to sets.

NPL saw an evolution of its own, into HOPE, which was higher-order, purely

functional, and—a new notion—strongly, polymorphically, typed (it also lost the

set expressions). This strong polymorphism had come from Milner’s ML, which

had been initially developed as a language for LCF
20

 to express proof tactics.

The robust typing system allowed type sums and type inference—as well as

other clever things—while maintaining a strong type checker.

For Turner, these ideas came together with SASL to shape a language called

Miranda. Taking what he felt at the time were the best features from these

different backgrounds, Miranda nevertheless had one decision Turner rather

regrets now: created types were indicated with an ever-increasing number of *

symbols. This quickly became cumbersome when more than three types

appeared in an expression. Miranda used lexical distinction between functions

and variables, and Turner laments that he did not think to apply this to types as

well, as Haskell later would. Using guarded equations and where declarations

required changing the scope rules for where: it became the whole right-hand

side of equations. Turner explained that he is a minimalist who likes only one

way to do each thing, hence the absence of let. Miranda compiled to SK

combinators and a reduction machine, and its source code was eventually

released publicly: “many years later” than it should have been, Turner admitted.

This was Turner’s allusion to the fact that Haskell had been created as an open-

source alternative to Miranda, which had been proprietary software under

Turner’s control. Haskell was designed to have semantics very like Miranda’s,

with a few syntax changes. Guards were switched to the left-hand side of the

equations, and lexical case was used to distinguish types (Turner joked “You

could now see what was going on without having stars in your eyes”). Haskell

incorporated almost all of Miranda, with some new features too: type classes,

monadic I/O, and nested modules. Type classes, explained Turner, were very

powerful and increased expressiveness—at the cost of additional complexity.

Turner then gave us an example of a short SASL program for identifying

tautologies. He had believed this was not achievable in Haskell, but the solution

existed using type classes. It seemed that Turner remains a little sceptical

about type classes, describing them as “possibly too clever for their own good”

20

 LCF, Logic of Computable Functions, was Milner’s attempt to build a proof system from Scott’s domain theory.

FACS FACTS Issue 2019-1 December 2019

29

and likened the Glasgow Haskell Compiler (ghc) to a comment made by Niklaus

Wirth on PL/I: ‘Like a Swiss Army Knife, it has a blade for everything, but you

might cut your hand trying to get it open!”

Looking at type classes with further suspicion, Turner remarked that one of the

principles of the Haskell design committee was that the new language should

be based on ideas that enjoyed a wide consensus. Type classes must have been

the exception, being a new introduction. Turner then explained the idea of

‘coherence’: a language is coherent if the computational behaviour of the term

is independent of its type. For example, two empty lists added together should

always result in another empty list, regardless of the types of the originals.

Haskell, explained Turner, was deliberately not coherent—type classes enabled

the changing of a term’s behaviour depending on its context. This was

illustrated with overloaded constants: a string formed from the numeral ‘1’ has

a different length depending on its type. A later paper by Wadler
21

 did invent an

alternative to overloading which was coherent, and managed this by avoiding

the overloading of constants. What, speculated Turner, would the type class

system look like without this?

And with that final speculation, Turner’s talk was over. We had been taken on a

journey through a number of various different programming languages, and the

various problems and insights of these had been explored. We now all knew the

chains of events leading to the creation of Turner’s various major contributions

to functional programming, and were left in no doubt as to the significance of

them.

Then began the questions. I was lucky enough to get my hand up first, and

related an anecdote told by Olivier Danvy
22

: he had been taking lunch with

Landin and John Reynolds, and asked them both what they felt the evaluation

mechanism was for denotational semantics. Both answered simultaneously, but

differently: Landin saying “call-by-value” and Reynolds “call-by-name”. What, I

asked, did Turner think? He was just as emphatic as Reynolds that “by-name”

was appropriate, and was furthermore sure that Strachey would have agreed,

having sat through his lectures on denotational semantics—and rather

surprised that Landin hadn’t. Turner remarked as well that he had been very

taken by denotational semantics, and that in some respects SASL was his

attempt to turn the denotational meta-language into a programming language.

21

 Martin Odersky, Philip Wadler, and Martin Wehr. A second look at overloading. FPCA. Vol. 95. 1995.
22

 Olivier Danvy. Peter J. Landin (1930–2009). Higher-Order and Symbolic Computation, 22(2): 191–195, 2009.

FACS FACTS Issue 2019-1 December 2019

30

The next question was on polymorphic strictness; was Haskell’s SEQ present in

Miranda? Yes, replied Turner, and furthermore so was Force, a function for

evaluating a whole data structure. A follow-up question asked about Miranda’s

strictness of Fold-L; Turner explained he believes he followed David Bird’s

suggestion to put SEQ into it. The questioner replied that Haskell has non-strict

Fold-L and that makes a difference. Turner’s response: “Whatever was the right

one, I did that one! But you can check the Miranda source and if it is the wrong

one, please let me know.”

Jeremy Gibbons asked whether list comprehension was first tried in KRC, which

Turner confirmed. He took the idea from Darlington’s NPL set expressions and

made them lazy and lists. Gibbons followed up, explaining that in SETL, a

language developed by Jack Schwartz at NYU, there was a set comprehension

construction—in 1969. Had Darlington known about this? Turner suspected

probably not; he had plenty of contact with Darlington in the early 1970s and if

he had known about it, he likely would have mentioned it to Turner.

Another question asks about the relation between co-recursion and lazy

evaluation. Turner confessed he was not an expert on that. If you construct a

lazy list and want to ensure it always has a next element, there are rules you

can use. Well-founded recursion means you need to show that there is a

constant descent; but rules for lists are a harder problem. Jaco de Bakker

showed one approach which involved constructing a metric for your data and

showing that each co-recurse always decreases the metric. But that might be

more applicable to induction.

Gibbons chimes in again, to ask whether Church encodings of datatypes work

for co-datatypes. Turner says he believes so, and saw an article on it. A

suggestion from the floor is that it might be Burge’s book on recursive

programming
23

, which is discussed as a rather important book. It had parser

combinators in it as early as 1975. Turner also notes that Burge, who worked

for IBM, wrote the book as a way to explain to his managers what he had been

working on for all those years.

The next question asks whether there are practical coherent languages which

make sense. Turner replies that Miranda was very nearly coherent, and the only

non-coherent things would be easily fixable. ML is as well if imperative features

are ignored. Turner reveals he is considering redoing Miranda, and would make

sure it was coherent if so. Gibbons asks whether full coherence would prevent

23

 William H. Burge. Recursive programming techniques. (1975).

FACS FACTS Issue 2019-1 December 2019

31

equality and printing—Turner says that one might follow ML’s path of using a

type to represent equality. Gibbons says the behaviour of show is always

determined by type—is there a way to implement that coherently? Turner’s

response is that the key to coherence is different ways of writing types. You can

have overloaded functions as long as the first argument is coherent.

A question now wonders whether functional programming could be helpful or

relevant in the design of large scale distributed systems, or software/hardware

co-design. Turner is enthusiastic about the prospect. A follow-up asks about

parallelism, which Turner says in principle is great, although the details always

turn out to be hard. He recently examined a PhD on extracting concurrency

from SASL, but it’s tough. When VLSI came out, it was claimed that chip design

was easy. An audience member notes that there is work on at the moment to

translate fragments of C code into circuitry for high-performance hardware.

Turner says that would be even better if the code was functional, but the

audience member rejoins that the idea is to take what people are currently used

to using. Turner remarks that Arvind created a company, Bluespec, which uses

functional programming ideas for chip design.

Another topic of conversation about hardware is the idea of reversible

computing. Essentially the idea is to keep all computation results so that they

can be recalled if needed rather than recalculated; this would conserve energy.

The key is that entropy is increased when computation is performed as

information is lost; if it can be reversed, energy can be conserved. Is there a

relation here with the notion of first-class labels? Turner says it could be

related, and wonders also about a link to databases where you have systems

that involve no throwing away. These systems have become more feasible as

the price of storage decreases.

The very final question relates to the release of Miranda’s source: what are

Turner’s hopes now for it? Turner explains that by releasing the code, he

signals that he is giving up control! But he would like to try rewriting the

compiler in Miranda and releasing that. It’s something he’d been meaning to do

for years.

With that, time was called, and the talk ended. Many conversations continued in

the break room: the event was lively and full of curious characters all united by

their deep passion for functional programming. Even for those—like me—who

did not have such a strong familiarity with the paradigm, the talk was

interesting and engaging; and I’m sure many others were also inspired to

explore this fascinating field even more.

FACS FACTS Issue 2019-1 December 2019

32

FACS FACTS Issue 2019-1 December 2019

33

FACS FACTS Issue 2019-1 December 2019

34

FACS FACTS Issue 2019-1 December 2019

35

FACS FACTS Issue 2019-1 December 2019

36

Roving Report

The LMS Colloquium on Mathematics of Security

Wednesday, 13th November 2019

Venue: London Mathematical Society, De Morgan House, 57–58 Russell

Square, London, WC1B 4HS

(Briefly) reported by: Margaret West

The four speakers were:

Delaram Kahrobaei (York)

Interactions between Group Theory, Cyber Security, Artificial Intelligence,

and Quantum Computation

Christophe Petit (Birmingham)

Rubik's for cryptographers: Babai's conjecture, hash functions and quantum

gates

David Galindo (Birmingham)

Security Models and Designs from E-Voting to Blockchain

Alexei Lisitsa (Liverpool)

Formal Modelling of Smart Contracts Languages, Their Expressive Power and

Verification

The talks were mainly concerned with the mathematical aspects of Post-

Quantum cryptography, in a future world in which Quantum Computers are

widely available. Quantum cryptography is the exploitation of quantum

mechanical properties in the furtherance of data encryption. In contrast, Post-

Quantum cryptography involves the development of Cryptographic algorithms

which are secure against an attack by both a classic and a Quantum Computer

via a secure quantum cryptographic channel. Quantum Computers themselves

were only briefly presented by one of the speakers as an additional

research area for his research group.

I was pleasantly surprised to find that the four speakers at this “all day” event

presented not only on technical mathematics (primarily Group Theory, of

course) but also on the societal aspects of their work. Examples of the latter

included:

https://www.cs.york.ac.uk/people/?group=Academic%20and%20Teaching%20Staff&username=delaram
https://www.cs.bham.ac.uk/~petitcz/
https://www.lms.ac.uk/sites/lms.ac.uk/files/files/petit.pdf
https://www.lms.ac.uk/sites/lms.ac.uk/files/files/petit.pdf
https://www.birmingham.ac.uk/staff/profiles/computer-science/galindo-david.aspx
https://www.lms.ac.uk/sites/lms.ac.uk/files/files/galindo.pdf
https://cgi.csc.liv.ac.uk/~alexei/

FACS FACTS Issue 2019-1 December 2019

37

 Governments creating barriers to voter registration for certain sections of

the population.

 Difficulties for disabled people were also mentioned in voting access and

also e-banking.

Interestingly, Alexei Lisitsa’s talk involved “smart contracts", one of which was

the intriguingly named "Trump-Obama contract", in which Trump produces his

Income tax returns when Obama produces his Birth Certificate!

All in all this was a day both interesting and technically challenging with much

discussion. I hope to write this up in greater detail for a future issue of FACS

FACTS.

See also

https://www.lms.ac.uk/events/lectures/lms-computer-science-colloquium

https://www.lms.ac.uk/events/lectures/lms-computer-science-colloquium

FACS FACTS Issue 2019-1 December 2019

38

The Temptation to Over-design

Musings on Portability, Resilience and Proof

Tim Denvir

Abstract:

Over-design can be dangerous. A product that is over-designed meets its

specification but has extra features or properties. In this piece I give two

contrasting examples of over-design and show how they hamper portability and

confuse diagnostics. Finally, I argue that constructing designs while guided by

formal proofs will avoid these pitfalls: proofs aid not only correctness but

portability and diagnostics too.

I met the first example of over-design when working in electronics. I was

spending a gap-year before university. Semiconductors were in their infancy:

they were the subject of research and development. Thermionic vacuum tubes,

or valves as they were known in Britain, were used in electronics, typically for

amplifying and switching analogue signals. But the earlier computers, such as

the London, Cambridge and Manchester Atlas machines, also used them to

process digital signals. Some readers may be too young to remember these

vacuum tubes, so I shall briefly describe them.

A glass bulb, similar to a light bulb, usually with a metal base, was exhausted

of any gaseous content: a vacuum persisted inside it. This allowed free

electrons to travel under the influence of an electric charge without hindrance.

Hence the term Vacuum Tube. Insulated terminals, usually in the base,

connected with electrodes in the interior. The simplest vacuum tube was a

diode. This, as its name suggests, had two electrodes: an anode and a cathode.

The cathode would be negatively charged. A heater connected to two further

terminals would be positioned close under the cathode to warm it up. This

caused agitated electrons to escape from the surface of the cathode. If the

anode was positively charged, it would collect these free-flowing electrons and

a current of them would flow from the cathode to the anode. But because the

anode was not heated, few electrons would escape from it and almost no

current could flow in the opposite direction. Thus, if an alternating voltage was

applied across the cathode and the anode, the diode would act as a rectifier,

that is it allowed the current to flow only in one direction and converted an

alternating voltage into a direct voltage and current.

A third electrode, a grid in the form of a mesh, could be inserted between the

cathode and the anode. A voltage applied to the grid could control the flow of

current. The resulting device was called a triode. If the static voltage on the

anode was considerably higher than that on the grid, an oscillating voltage

applied to the grid caused an oscillating current between cathode and anode.

FACS FACTS Issue 2019-1 December 2019

39

This translated to an amplified oscillating voltage on the anode: one had the

means of amplifying signals.

Further sophistications, in the shape of two extra grids, were able to stabilise

and make the performance more linear, resulting in the pentode, a vacuum

tube with five electrodes. These became the most prominent of all.

Mullard was generally considered to be the best manufacturer of valves/vacuum

tubes. The different types of valves had specifications: limits to the voltages

you could apply to them, degree of amplification etc. The performance of

Mullard valves would usually exceed their specifications: if you subjected these

products to a temporary stress beyond the specified limit, they would usually

survive. They were, however, rather expensive. But they were a favourite among

the professional manufacturers of quality equipment.

Another manufacturer of vacuum tubes was Brimar. Their products reliably met

their specifications, but were less resilient to abuse. Exceeding their specified

voltages could easily result in permanent failure, and the user circuits could not

rely on performance beyond that which was defined. They were, however, much

cheaper than the Mullard equivalents and were a favourite amongst amateur

electronic designers, builders of home-made radios, hi-fi etc.

The trouble with the supposedly high quality Mullard tubes was that if you

constructed a circuit which worked with those components, then a duplicate

circuit constructed with, say, Brimar components could fail; this despite the

supposedly lower quality components meeting the official specifications. In

other words, this over-design on the part of the high quality components could

hinder the portability of user circuits.

The second time I met this danger was when building an Algol 60 compiler. The

Algol 60 Report
24

 does not allow an integer actual parameter to be supplied to a

procedure or function whose corresponding formal parameter expects a real

number. My first design did allow this, coercing the type from integer to real

when the procedure/function body was executed. I felt that this was what the

user would expect, and that users were “getting more compiler for their

money”! A more experienced colleague persuaded me that I should stick strictly

to the language definition. If I had gone ahead, while my compiler would have

accurately translated and run correct programs, it could hinder the portability

of programs to other compiler implementations. Simply, a program which was

incorrect in this very particular manner would run on my compiler but not on

others even though those compilers were correct.

24 J. W. Backus et al., Revised Report on the Algorithmic Language Algol 60, Comm. ACM Vol.6

Issue 1 1963, also in Numerische Mathematik and the Journal of the BCS.

FACS FACTS Issue 2019-1 December 2019

40

Are there two possible kinds of over-design? The vacuum tubes were a case of

over-designed components. The Algol 60 compiler was a case of an over-

designed environment. Can the example of an over-designed component occur

in a software context? Yes, I think so. Suppose a program makes use of a

standard library of procedures, or in an O-O context, of O-O methods. The

user/programmer could discover (perhaps by experiment) unspecified features

of a procedure or method, and exploit them. Then when the program is

reassembled with a different library – which may nonetheless be correct

according to its specification – the program will fail or behave differently. The

correct library component could then falsely appear to be at fault.

Of course, if the programs are designed to be provably correct with respect to a

formal language definition, and with reference to formal specifications of the

components it uses, this hazard would not arise. In other words, proofs aid not

only correctness but also portability and diagnostics, something which may not

immediately spring to mind.

To paraphrase from the law-courts, “implement the specification, the whole

specification and nothing but the specification”.

FACS FACTS Issue 2019-1 December 2019

41

Future FACS Events

Information on FACS events can be found on the BCS-FACS website, which can

be found under www.bcs-facs.org. We welcome ideas for further FACS events.

Please contact the FACS Chair, Jonathan Bowen, on jonathan.bowen@lsbu.ac.uk

and the FACS Seminar Organizer, Sofia Meacham, on

smeacham@bournemouth.ac.uk.

Jonathan Bowen outside the previous BCS London Office in Southampton Street

Please do remember to come to the new BCS London Office at 25 Copthall

Avenue, London EC2R 7BP, for future BCS-FACS events. The nearest tube station

is Moorgate, with Bank and Liverpool Street stations within walking distance

too. The following are photographs of the new common area and the main

meeting room. We look forward to seeing you at future meetings.

http://www.bcs-facs.org/
mailto:jonathan.bowen@lsbu.ac.uk
mailto:smeacham@bournemouth.ac.uk

FACS FACTS Issue 2019-1 December 2019

42

Common area at the new BCS London Office

Main meeting room at the new BCS London Office

FACS FACTS Issue 2019-1 December 2019

43

FORTHCOMING EVENT

Privacy Assurance in Ubiquitous Systems by Typing in a

Calculus of Context-aware Ambients

Thursday 27 February 2020.

Speaker: Dr Francois Siewe, De Montfort University, Leicester, UK.

Abstract:

In the early 1990s, Mark Weiser introduced ubiquitous computing (Ubicom) as a new

paradigm for the next generation of distributed systems where computers disappear in

the background of the user’s everyday activities, making data and services readily

available anytime and anywhere. From the era of one-computer-many-users

(mainframes) to that of one-computer-one-user (PCs), Ubicom envisions an era of

many-computers-one-user. Current realisation of this vision is the Internet of Things

(IoT) which enables common objects to be enhanced with sensing, computing and

communication capabilities to become smart things capable of collecting, processing

and exchanging data over the Internet. How data are collected, processed, and shared,

must be tightly controlled in many applications (e.g., smart homes and healthcare) to

avoid unintended breaches of privacy. In this talk, Dr Francois Siewe will present the

Calculus of Context-aware Ambients (CCA) used to model the behaviours of Ubicom

systems, and its privacy type system that allows for the control of information flow

among subsystems.

Timing and booking:

Refreshments will be available from 5.15pm. The talk will start at 6pm. Free online registration

at:

https://www.eventbrite.co.uk/e/privacy-assurance-in-ubiquitous-systems-by-typing-in-a-

calculus-of-context-aware-ambients-facs-registration-71624682353

Biography:

Francois Siewe received a Ph.D. degree in Computer Science from De Montfort University, UK.

He obtained a B.Sc. degree in Mathematics and Computer Science, the M.Sc. degree and the

Doctorat de Troisième Cycle degree in Computer Science from the University of Yaounde I,

Cameroon. He is a Reader in Computer Science and Head of the Software Technology Research

Laboratory (STRL) research group in the School of Computer Science and Informatics at De

Montfort University (DMU), UK. Before joining DMU, he was a lecturer and visiting researcher in

the Institute of Technology of Lens at the University of Artois in France. Prior to this, he was a

fellow at the United Nation University/International Institute for Software Technology (UNU/IIST)

in Macau in China, and a lecturer with the Department of Mathematics and Computer Science at

the University of Dschang, in Cameroon. His research interests include software engineering,

formal methods, cyber security, context-aware and pervasive computing, and Internet of Things

(IoT). His research outputs can be found at http://www.cse.dmu.ac.uk/~fsiewe/.

http://www.cse.dmu.ac.uk/~fsiewe/
https://www.eventbrite.co.uk/e/privacy-assurance-in-ubiquitous-systems-by-typing-in-a-calculus-of-context-aware-ambients-facs-registration-71624682353
https://www.eventbrite.co.uk/e/privacy-assurance-in-ubiquitous-systems-by-typing-in-a-calculus-of-context-aware-ambients-facs-registration-71624682353
http://www.cse.dmu.ac.uk/~fsiewe/

FACS FACTS Issue 2019-1 December 2019

44

Forthcoming events

Events Venue (unless otherwise specified):

NEW BCS, The Chartered Institute for IT

Ground Floor, 25 Copthall Avenue, London, EC2R 7BP

The nearest tube station is Moorgate, but Bank and Liverpool Street are within walking

distance as well.

27
th

 February Privacy Assurance in Ubiquitous Systems by Typing in a Calculus of
Context-aware Ambients

Dr Francois Siewe, Reader in Computer Science, De Montfort University

Details of all forthcoming events can be found online here:

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-

computing-science-group/

Please revisit this site for updates as and when further events are confirmed.

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/

FACS FACTS Issue 2019-1 December 2019

45

FACS Committee

Jonathan Bowen

FACS Chair; BCS Liaison

John Cooke

FACS Treasurer and

Publications

Roger Carsley

Minutes Secretary

Ana Cavalcanti

FME Liaison

Brijesh Dongol

Refinement Workshop

Liaison

Rob Hierons

LMS Liaison

Keith Lines

Government and

Standards Liaison

Sofia Meacham

Seminar Organiser

Margaret West

Inclusion Officer and

BCS Women Liaison

Tim Denvir

Co-Editor, FACS FACTS

Brian Monahan

Co-Editor, FACS FACTS

FACS FACTS Issue 2019-1 December 2019

46

FACS is always interested to hear from its members and keen to recruit

additional helpers. Presently we have vacancies for officers to help with fund

raising, to liaise with other specialist groups such as the Requirements

Engineering group and the European Association for Theoretical Computer

Science (EATCS), and to maintain the FACS website. If you are able to help,

please contact the FACS Chair, Professor Jonathan Bowen at the contact points

below:

BCS-FACS

c/o Professor Jonathan Bowen (Chair)

London South Bank University

Email: jonathan.bowen@lsbu.ac.uk

Web: www.bcs-facs.org

You can also contact the other Committee members via this email address.

As well as the official BCS-FACS Specialist Group mailing list run by the BCS for

FACS members, there are also two wider mailing lists on the Formal Aspects of

Computer Science run by JISCmail. The main list <facs@jiscmail.ac.uk> can be

used for relevant messages by any subscribers. An archive of messages is

accessible under http://www.jiscmail.ac.uk/lists/facs.html, including facilities

for subscribing and unsubscribing. The additional <facs-event@jiscmail.ac.uk>

list is specifically for announcements of relevant events. Similarly, an archive of

announcements is accessible under http://www.jiscmail.ac.uk/lists/facs-

events.html with subscribe/unsubscribe options. BCS-FACS announcements are

normally sent to these lists as appropriate, as well as the official BCS-FACS

mailing list, to which BCS members can subscribe by officially joining FACS after

logging onto the BCS website.

mailto:jonathan.bowen@lsbu.ac.uk
http://www.bcs-facs.org/
mailto:facs@jiscmail.ac.uk
http://www.jiscmail.ac.uk/lists/facs.html
mailto:facs-event@jiscmail.ac.uk
http://www.jiscmail.ac.uk/lists/facs-events.html
http://www.jiscmail.ac.uk/lists/facs-events.html
https://www.bcs.org/

