
New Ways of Using Formal
Models in Industry

Michael Leuschel

Overview
• Part 1: Overview of 25 years of history of B

• taken from FMICS 2020 article with Michael Butler, Philipp Körner,
Sebastian Krings, Thierry Lecomte, Luis-Fernando Mejia, Laurent Voisin 
entitled “The First Twenty-Five Years of Industrial Use of the B-Method” 
 
 

• Part 2: Commandments and Lessons using B and building tools for B, Z,
and other formal methods (mainly the tool ProB https://prob.hhu.de)
inspired by Bowen, Hall, Hinchey

https://prob.hhu.de

Part 1: History

Formal Methods
• Mathematical techniques to produce correct software and

systems

• Highly recommended e.g. for SIL3/SIL4 railway
applications (CENELEC)

• Some Benefits: Problems detected earlier and correction
less costly, lower level testing (unit) not required as SW
execution errors proven impossible

B Formal Method

Specification Tool Support

Refinement

Origins of B
• Train protection system SACEM for Paris RER Line A

• put into operation in 1988, sketch of the B-Method by Jean-Raymond Abrial

• 1989 project by Alstom, RATP, SNCF to develop tools and train engineers

• Paris Metro Line 14 contract won by Matra Transport (now Siemens Transportation
Systems)

• 1995: B tools industrialised by Digilog (then Steria, now CLEARSY) leading to Atelier-B

• ready by end 1998:110 kLOC B model, 
83% automatic proof, 86 kLOC Ada

• Still in version 1.0, no single issue caused by software

B Logical Foundations

• Typed first-order predicate logic with equality

• Well-Definedness Conditions to stay in two-valued logic

• Arithmetic over mathematical integers and implementable integers

• Set theory

• Sets, Relations, Functions, Sequences

• including higher-order functions

• B is simpler than its predecessor Z

• and provides structuring and refinement for proving and code generation

p∈dom(a)↣dom(a) ∧ ∀i·(i∈1‥(size(a)−1) ⇒ p(a(i)) < p(a(i+1)))

related state-based formal methods:
Z, TLA+, Alloy, VDM, ASM

B Structuring
• Enables decomposing a specification

• Ensures that code generated for a B machine can be safely re-used

• Ensures tractable proof obligations

• Some key concepts:

• VARIABLES vs CONSTANTS and associated INVARIANTS and PROPERTIES

• OPERATIONS to modify variable values

• Various B machine structuring mechanisms (INCLUDES, USES, SEES, …)

• REFINEMENT and IMPLEMENTATION machines

B Structuring
M0.mch

M1.ref

REFINEMENT

M2.imp

IMPLEMENTATION

Q0.mch

IMPORTS

Q1.ref

REFINEMENT

Code
for M0

Code
Generator A

Code
for M0

Code
Generator B

…

Refinement
Proof

Refinement
Proof

Invariant
Proof

• B for Software:

• about 30% of CBTC systems worldwide employ the B formal method

• Urbalis 400, Alstom, over 100 metro lines worldwide, 25% of worldwide CBTC market
FM

Success
Story

Source: ClearSy

One citation

• “Beyond the technological challenge of using such a complex formal
method in an industrial context, it is now clear for us that building
software using B is not more expensive than using conventional
methods. Better, due to our experience in using this method, we can
assert that using B is cheaper when considering the whole
development process (from specification to validation and sometimes
certification)”

• From: Didier Essamé, Daniel Dollé: B in Large-Scale Projects: The
Canarsie Line CBTC Experience. In: LNCS Vol. 4355, Springer.

B for System Modelling

Event-B for System Modelling
• Analyse an entire system of components

• Ensure that together they ensure safety (and functionality)

• Talks about events rather than operations

• Refinement

• used to structure reasoning, view a system at different levels of
granularity

• requires a more liberal view of refinement

First paper
on Event-B

already published
by Abrial in 1996

Foundations of Event-B

• Described in book “Modelling in Event-B” by Abrial (2010).

• Better proof automation thanks to simpler substitutions (aka statements)
and proof obligations (witnesses, …)

• More expressive and flexible refinement

• Some changes to expressions and predicates

• Foundations realised in the Rodin platform

Tool Support for Event-B
• Rodin

• Eclipse-based IDE for POG, proof, …

• Atelier B

• also supports Event-B projects with POG and proof

• ProB

• Multi-Level Animation, Visualization, Model Checking

CBTC models of ClearSy
• Thales Toronto installed CBTC system for NYC Subway Line 7

• CBTC = Communication-based Train Control: automatic train control
system using a combination of classical trackside train detection (TTD)
and position reports sent by trains

• ClearSy was asked to perform a formal verification of the safety of the
system for Thales Toronto

• from November 2010 until December 2012

• ClearSy was using the Event-B along with the Atelier-B prover

🚊

http://www.tools.clearsy.com/resources/formal-proofs-for-the-nyct-line-7-modernization-project/

Summary of Results
• CBTC system safety (no collision, no derailment, no overspeeding,

correct tracking,…) formally verified with B and Atelier-B

• Key properties and knowledge extracted and put into the formal model

• Formal model was reused for NYCT I2S [Sabatier, RSSR16], similar
analyses have since then been carried out (Octys CBTC by RATP
[Comptier et al., RSSR17],…)

• Showed that a large industrial, safety-critical system could be effectively
formally analysed and proven correct using Event-B

Alstom Zone Controller

• System analysis carried out in 2018 for a large software system (CBTC
Zone Controller) by Alstom, ClearSy and University of Düsseldorf
[Comptier et al., RSSR’19]

• Software for this component generated using classical B

• Analysis with Atelier B and ProB

• Enabled to extract key safety properties which enable future evolution
of the component

ETCS Hybrid Level 3
• Several formal methods case done of the ETCS Hybrid Level 3

(HL3) principles

• B Model and system developed by Thales and University of
Düsseldorf

• Identified over 50 issues in various versions of the HL3
specification

• Formal model was used in real-time for field demonstration in
December 2017 at ETCS National Integration Facility in Hitchin/
UK, providing evidence that the HL3 principles are consistent
and allow desired operational behaviour

20

B for Data Validation

Data Validation
• What is the use of a formally proven software if some of its (non trivial)

parameters are wrong ?

• Data Validation: Automatic check of large data sets against properties

• Properties : international standards, national regulations, manufacturer
habits, customer requirements, safety assumptions made during
development, …

• E.g. metro line static data used by the automatic pilot (software) to drive
safely

B for Data Validation

• Express properties in B: works well with graph-based properties or if
software already developed with B

• Initial developments

• OVADO for RATP, based on predicateB

• ProB for Siemens in 2008/2009 within Deploy EU project

Aspects of Data Validation
• Focus on expressivity: B language extended (IF-THEN-ELSE, LET for

expressions, external functions for string manipulation, regular
expressions)

• Tool certification: Tool certified for T2 usage according to EN50128

• extensive testing and validation and/or double chain

• Full automation, scale to large data values, provide user feedback

B for Data Validation: Industrial Uses

• Line 1 Paris, the second CDGVAL line LISA at the CDG airport in Paris, São Paulo line 4, ALGER line 1, Barcelona line 9,
all by Siemens using RDV built-on top of ProB,

• more metro lines in Paris managed by RATP using OVADO which includes a tool developed called predicateB as first
chain (development funded by CLEARSY and been maintained and evolved by Systerel for the last 15 years) and ProB
as secondary tool chain

• Alstom for their URBALIS 400 CBTC system in 2014 using a tool based on ProB called DTVT developed by CLEARSY
for various lines, e.g., in Mexico, Toronto, São Paulo and Panama

• Alstom and SNCF also applied data validation for ETCS-Level 1 software in 2018 using another tool developed by
CLEARSY using ProB.

• Together with Systerel, Alstom conducted data validation of the Octys CBTC for RATP in 2017 using the OVADO tool.

• by Thales using a tool based on ProB called Rubin for checking engineering rules of their ETCS Radio Block Centre

• Other tools based on ProB were developed by CLEARSY such as Dave for General Electric or the latest generation tool
called Caval. FM

Success
Story

Reflections

see FMICS’2020 article
The First Twenty-Five Years

of Industrial Use of the B-Method

for common success, fail factors,…

Summary: B and its Uses
• B for software development (classical B): refine specification until B0, apply code generators

• Line 14 Paris, Alstom U400, …

• FM success story, new potential for hardware (LCHIP)

• B for system modelling (Event-B): verify critical properties, 
understand why a system is correct

• CBTC Flushing Line, NYCT I2S, Octys, Hybrid Level 3, …

• Activities have increased in last years, potential for executable models

• B for data validation: express properties and B and check data (possibly using a double chain)

• DTVT, Ovado, Dave, Olaf, Caval, Rubin, … for Line 1 Paris, Amsterdam, …

• FM success story, widespread usage in railway industry

Part II :

Commandments and Lessons

I. Thou Shalt

for a) using B and

for b) building tools for B, Z, and other formal methods

II. Thou Shalt

Inspiration
• Jonathan P. Bowen, Michael G. Hinchey: 

Ten Commandments Ten Years On: Lessons for ASM, B, Z and VSR-net. Rigorous Methods for Software
Construction and Analysis 2009: 219-233

• Jonathan P. Bowen, Mike G. Hinchey: 
Ten Commandments of Formal Methods... Ten Years On. Conquering Complexity 2012: 237-251

• Jonathan P. Bowen, Michael G. Hinchey: 
Ten Commandments of Formal Methods. Computer 28(4): 56-63 (1995)

• Jonathan P. Bowen, Michael G. Hinchey: 
Seven More Myths of Formal Methods. IEEE Softw. 12(4): 34-41 (1995)

• Jonathan P. Bowen, Michael G. Hinchey: 
Seven More Myths of Formal Methods. FME 1994: 105-117

• Anthony Hall: 
Seven Myths of Formal Methods. IEEE Softw. 7(5): 11-19 (1990)

Thou Shalt Animate your Models

• ensures your assumptions are consistent 
(there is at least one model)

• allows to spot errors which are impossible 
to avoid using invariants and difficult 
to describe using temporal logic

• spots class of errors you haven’t thought 
of yet

I. Thou Shalt

 “Every formal model (proven or not)
which has not been animated contained
errors”

 Christophe Metayer, Systerel 
 (liberal translation from French based on verbal communication)

Earley Parsing
Algorithm

Model

Fully proven,
but ProB found inconsistency

in the axioms (>->> instead of >->) 
during animation

Thou Shalt Visualize 👁I. Thou Shalt

vss_left = {…,“17VTS33” |-> 140,“17VTS34” |-> 240,“17VTS34” |-> 340,…}

TTD_state = {TTD1|->free, TTD2|->occupied, TTD3|->occupied,…}

vss_state = {…,“17VTS33” |-> unknown,

 “17VTS34” |-> unknown, “17VTS35” |-> occupied,…}

…

Env_train_length = {train1|->30, train2|->30}

 Env_train_FP = {train1|->250, train2|->350}

…

registeredTrains = {train2}

train_reported_integrity = {train2|->confirmed_integrity}

ProB2-UI Demo

Project View
for models
and preferences

Console (REPL)
for interactive exploration

Operations View
for interactive
animation

State View
to inspect current
and preceding state

History View
to inspect and
navigating current
animation trace

Replay View
for automatic
trace replay

VisB View
SVG-based visualization
of current state

https://prob.hhu.de

Simple Train Model
• Track is an interval 0..TrackElementNumber

• Track is divided into TTD (Trackside Train Detection) zones (e.g. implemented
using track circuits or axle counters)

• Trains have positions train_rear_end(tr)..train_front_end(tr)

• Some trains have an MA (Movement Authority) extending beyond their front end

• Many things not modelled: delays, position reports, uncertainty of train image,
train speed, braking curves, points, train integrity, …

Some Points

• Animation and Visualisation help me understand models others have
written

• also help make your model better understandable to other people, even
domain experts not able to read your formal notation

Think

Write

Maths Formal
Maths

Formal mathematics is nature's
way of letting you know how
sloppy your mathematics is.

Animation and
Visualization is
nature's way of letting
you know how sloppy
your formal
mathematics is.

Animation
Visualization

Thou Shalt Not Abandon Thy Traditional Formal
Proof Methods

• alternatively: 
Thou Shalt Use the Trinity of Methods

Proof

Model

Checking

Animation

Visualization

I. Thou Shalt

The Trinity of Methods

• I tend to use proof, model checking and animation together

• Proof: solves the state explosion problem, provides key (inductive)
properties and insights

• Model checking: finds obvious problems, increases confidence that
proof is feasible, checks liveness properties

• Animation: validate scenarios (often part of the requirements), find
inconsistencies, detect “surprising” and obvious errors quickly

Conflict of Interest
• Proof and animation have conflicting needs:

• adding an axiomatic property for proof can make finding a valid model
much harder

• adding concrete data and constructive definitions for animation can
make proof harder and less general

• Use refinement to create model checking and animation instances

• Annotate/isolate complex properties (@prob-ignore pragma)

∀s . s ⊆ Track ⇒ P(s)

f = λx.x∈Train|front(x)..train_ma(x)

M2
refinement

M1

Impl
Lowest Level

M2_b
Instantation for

Validation

M2_a
Instantation for

Validation

M0

Use Case
Replay U1

Temporal
Property MC1

Generate
Statespace

MC2

Human Check
of Abstract

Statespace H1

projection

“Classical”
Refinement Approach

Proof

Proof

Model Checking

Animation

Thou Shalt Reuse

Thou Shalt ReuseI. Thou Shalt

💡
 Ideas,

not Models

Thou Shalt Reuse Ideas, not Models

• When modelling:

• Good idea to reuse: key concepts, ways to decompose a system,
approach to ensure inductive proof is possible

• Usually difficult to reuse formal models for modelling

I. Thou Shalt

Thou Shalt Use Models as Documentation

• Static Documentation

• Executable, interactive 
Documentation (HL3)

I. Thou Shalt

Open

file://examples/TwoTrainsMA.html

ProB Jupyter Notebooks for Documentation

ProB Jupyter Notebooks for Documentation

Thou Shalt Use Execute your Models

• Oracle in Test Environment (Advance)

• Executable Prototype for early field tests (HL3)

• Long term: maybe formal models in the loop 
in the final product (Plues tool)

I. Thou Shalt

first step (2014):

using B model in real

Alstom test environment

http://www.advance-ict.eu Deliverable D1.3

EU Project

Project for ProRail
• Field demonstration of the ETCS Hybrid Level 3 (HL3) principles

• Demonstration by co-operation trackside (Thales, Siemens)
and onboard (Alstom, Hitachi)

• Demonstration line: 
ETCS National Integration Facility 
(ENIF) in Hitchin/UK

• There was insufficient time to model and code a prototype

• But there was sufficient time to embed the formal model at
runtime

ENIF@ Hitchin

Watton at Stone

53

Natural
Language

Specification

B Formal
Model

Testing,
Debugging

Execution in
real

environment

New System

New Feature

ProRail Project

Summary

• using model as demonstrator/prototype is feasible, 
there were a lot of technical issues, ProB was not
one of them!

• animation/visualization can help understand and
debug a given specification

• using a formal model allowed to quickly adapt the
model as fixes for issues came along, several new
requirements were integrated

• log of formal model could be replayed step-by-
step to analyse issues

IRSE News
November 2019

ProB in Action : Formal Models in Realtime

ProB running in real-time animating a
formal B model of the Hybrid-Level 3 principles

developed by a team from the University of Düsseldorf and Thales with support from ClearSy

Train 2 following Train 1 (Lucy)
on the same occupied track section
but on different virtual subsections

https://www.youtube.com/watch?v=FjKnugbmrP4

from modelling

to tools

Thou Shalt Choose an Appropriate Notation/
Programming Language for your Tool

• Prolog for type checking, rule-based theorem proving, constraint solving

• Java, Tcl/Tk, … for user interface

• C for LTL model checking

• …

I. Thou Shalt

ProB2-Java-API
prob2_kernel

probparsers
BParser

answerparser
LTL parser

probcli -sf

socket

probcliparser.jarprobcliparser.jar fuzz

tla2bAST

probkodkod.jar

Z
.tex

.fuzz

B
.mch

Rules
.rule

.prob

probcliparser
.jaralloy2b.jar

Alloy

probclipars
er.jarTLA2B.jar

TLA+

cspmf CSP.pl

TLC4B.jar

SAT
solver

Z3
SMT solver

C API

Value Translator

LTSMin
prob2lts-seq
PINS Interface

Event-B

.event
b

RodinPlugin
Export

prob-rodinplugin

LTL Pattern Parser

alloy2b

Rodin
Parser
AST

Sourceforge

Alloy

TLA+

Value Translator

ProB2-UI
prob2_ui

B
.mch

Event-B

GITHUB

not yet
available in

ProB2

sent over
socket in

ProB2

GITLAB

ltl2ba ZMQ

tlatools

XTL
.P Lustre

The heart
of ProB is
written in

Prolog
PROLOG

but other languages
are used around it:

Java
C, C++
Tcl/Tk

Haskell

Hindley-Milner Type Inference
• Easy to encode in

Prolog: one type
inference rule is one
Prolog clause

• More powerful than
Atelier-B, …

• cf. VPT-2020 article

• Fast

				type([],set(_))	-->	!,	[].

				type(union(A,B),set(R))	-->	!,type(A,set(R)),	type(B,set(R)).

				type(intersect(A,B),set(R))	-->	!,type(A,set(R)),	type(B,set(R)).

				type(plus(A,B),integer)	-->	!,type(A,integer),	type(B,integer).

				type(in_set(A,B),predicate)	-->	!,type(A,TA),	type(B,set(TA)).

				type(gt(A,B),predicate)	-->	!,type(A,integer),	type(B,integer).

				type(and(A,B),predicate)	-->	!,type(A,predicate),type(B,predicate).

				type(eq(A,B),predicate)	-->	!,type(A,TA),type(B,TA).

				type(Nr,integer)	-->	{number(Nr)},!.

				type([H|T],set(TH))	-->	!,type(H,TH),	type(T,set(TH)).

				type(ID,TID)	-->	{identifier(ID)},\+	defined(id(ID,_)),!,

																						add((id(ID,TID))).	%	creates	fresh	variable

				type(ID,TID)	-->	{identifier(ID)},defined(id(ID,TID)),!.

				type(Expr,T,Env,_)	:-

																		format('Type	error	for	~w	(expected:	~w,	Env:	~w)~n',[Expr,T,Env]),fail.

				

				defined(X,Env,Env)	:-	member(X,Env).

				add(X,Env,[X|Env]).

				

				identifier(ID)	:-	atom(ID),	ID	\=	[].

				

				type(Expr,Result)	:-	type(Expr,Result,[],Env),	format('Typing	env:	~w~n',[Env]).

				|	?-	type(and(eq(union([z],[x,y]),u),gt(z,v)),R).

				Typing	env:	[id(v,integer),id(u,set(integer)),id(y,integer),id(x,integer),id(z,integer)]

				R	=	predicate	?	

				yes

Anecdotal Evidence:

Typechecking 8000 Line B specification

0 sec

15 sec

30 sec

45 sec

60 sec

ANTLR Parser ProB

Java Prolog

Semantic Translation Rules: Alloy2B
• Translator of Alloy [Jackson] to B

• Adaptation of formal semantics of
Alloy by simply using B syntax

• Rules can be translated to Prolog 
clauses

• First version was written in Kotlin
(JVM), 
then switched to Prolog as error 
prone and tedious to encode rules

translate_binary_e_p(Binary,	TBinary)	:-

				Binary	=..	[Op,P,Q,_,POS],

				alloy_to_b_binary_operator(Op,	BOp),

				translate_e_p(P,	TP),

				translate_e_p(Q,	TQ),

				translate_pos(POS,	BPOS),

				TBinary	=..	[BOp,BPOS,TP,TQ].

alloy_to_b_binary_operator(plus,	union).

alloy_to_b_binary_operator(intersection,	intersection).

alloy_to_b_binary_operator(minus,	set_subtraction).

alloy_to_b_binary_operator(implication,	implication).

alloy_to_b_binary_operator(iff,	equivalence).

…

Prolog Theorem Prover for Proving

Well-Definedness

• WD Prover [iFM’2020] to prove absence of 
division by zero, undefined function 
applications, cardinality of infinite sets, …

• Shared Hypothesis stack

• pop via Prolog backtracking

• Only logarithmic accesses to Hypotheses

• Efficient rule-based prover using Prolog unification

Hyps

Spec

WD
POG

WD
Prover

Discharged

Not
Discharged

One WD Prover

Rule

/***

 * Copyright (c) 2007, 2014 ETH Zurich and others.

 * All rights reserved. This program and the accompanying materials

 * are made available under the terms of the Eclipse Public License v1.0

 * which accompanies this distribution, and is available at

 * http://www.eclipse.org/legal/epl-v10.html

 *

 * Contributors:

 * ETH Zurich - initial API and implementation

 ***/

package org.eventb.internal.core.seqprover.eventbExtensions;

import org.eventb.core.ast.Expression;

import org.eventb.core.ast.FormulaFactory;

import org.eventb.core.ast.Predicate;

import org.eventb.core.ast.SimplePredicate;

import org.eventb.core.ast.UnaryExpression;

import org.eventb.core.seqprover.IProofMonitor;

import org.eventb.core.seqprover.IProverSequent;

import org.eventb.core.seqprover.IReasonerInput;

import org.eventb.core.seqprover.IReasonerOutput;

import org.eventb.core.seqprover.ProverFactory;

import org.eventb.core.seqprover.ProverRule;

import org.eventb.core.seqprover.SequentProver;

import org.eventb.core.seqprover.IProofRule.IAntecedent;

import org.eventb.core.seqprover.eventbExtensions.Lib;

import org.eventb.core.seqprover.reasonerInputs.EmptyInputReasoner;

public class FiniteRan extends EmptyInputReasoner {

	 public static final String REASONER_ID = SequentProver.PLUGIN_ID + ".finiteRan";

	

	 @Override

	 public String getReasonerID() {

	 	 return REASONER_ID;

	 }

	 @ProverRule("FIN_REL_RAN_R")

	 protected IAntecedent[] getAntecedents(IProverSequent seq) {

	 	 Predicate goal = seq.goal();

	 	 // goal should have the form finite(ran(r))

	 	 if (!Lib.isFinite(goal))

	 	 	 return null;

	 	 SimplePredicate sPred = (SimplePredicate) goal;

	 	 if (!Lib.isRan(sPred.getExpression()))

	 	 	 return null;

	 	

	 	 // There will be 1 antecidents

	 	 IAntecedent[] antecidents = new IAntecedent[1];

	 	

	 	 UnaryExpression expression = (UnaryExpression) sPred.getExpression();

	 	

	 	 Expression r = expression.getChild();

	 	

	 	 final FormulaFactory ff = seq.getFormulaFactory();

	 	 // finite(r)

	 	 Predicate newGoal = ff.makeSimplePredicate(Predicate.KFINITE, r, null);

	 	 antecidents[0] = ProverFactory.makeAntecedent(newGoal);

	 	 return antecidents;

	 }

	 protected String getDisplayName() {

	 	 return "finite of range of a relation";

	 }

	 @Override

	 public IReasonerOutput apply(IProverSequent seq, IReasonerInput input,

	 	 	 IProofMonitor pm) {

	 	 IAntecedent[] antecidents = getAntecedents(seq);

	 	 if (antecidents == null)

	 	 	 return ProverFactory.reasonerFailure(this, input,

	 	 	 	 	 "Inference " + getReasonerID()

	 	 	 	 	 	 	 + " is not applicable");

	 	 // Generate the successful reasoner output

	 	 return ProverFactory.makeProofRule(this, input, seq.goal(),

	 	 	 	 getDisplayName(), antecidents);

	 }

}

check_finite(range(A),Hyp,ran(PT)) :- !,

 check_finite(A,Hyp,PT)

In Java:
82 lines of code

 (9 lines are copyright notice)
The Prolog code is also very flexible:

 it can be used for finding proofs
but also for re-playing or

checking proofs if the proof tree argument is provided

https://sourceforge.net/p/rodin-b-sharp/rodincore/ci/master/tree/org.eventb.core.seqprover/src/org/eventb/internal/core/seqprover/eventbExtensions/FiniteRan.java

Prolog

Java

WD Prover Rodin

“The range of a function is finite if the function is finite.”

public class FiniteRan extends EmptyInputReasoner {

	 public static final String REASONER_ID = SequentProver.PLUGIN_ID + ".finiteRan";

	

	 @Override

	 public String getReasonerID() {

	 	 return REASONER_ID;

	 }

	 @ProverRule("FIN_REL_RAN_R")

	 protected IAntecedent[] getAntecedents(IProverSequent seq) {

	 	 Predicate goal = seq.goal();

	 	 // goal should have the form finite(ran(r))

	 	 if (!Lib.isFinite(goal))

	 	 	 return null;

	 	 SimplePredicate sPred = (SimplePredicate) goal;

	 	 if (!Lib.isRan(sPred.getExpression()))

	 	 	 return null;

	 	

	 	 // There will be 1 antecidents

	 	 IAntecedent[] antecidents = new IAntecedent[1];

	 	

	 	 UnaryExpression expression = (UnaryExpression) sPred.getExpression();

	 	

	 	 Expression r = expression.getChild();

	 	

	 	 final FormulaFactory ff = seq.getFormulaFactory();

	 	 // finite(r)

	 	 Predicate newGoal = ff.makeSimplePredicate(Predicate.KFINITE, r, null);

	 	 antecidents[0] = ProverFactory.makeAntecedent(newGoal);

	 	 return antecidents;

check_finite(range(A),Hyp,ran(PT)) :- !,

 check_finite(A,Hyp,PT)

Prolog

Java

WD Prover

Biased

Benchmarks

• Test Atelier-B provers ML, PP and Z3 on 413
POs from ProB regression tests

• Biased, but shows that our prover is fast and
can prove POs not proven by existing provers (in
default settings)

0.01 sec

0.1 sec

1 sec

10 sec

100 sec

Time
ML PP ProB-WD

WD Prover

A few more commandments
• Thou Shalt Honour Text and Command-Line Interfaces:

• Text and command-line tools are not dead yet

• Thou Shalt Think Twice before Redeveloping your Tool from Scratch

• Redeveloping a tool or even a UI from scratch is hard and will take
longer than you think

• Thou Shalt Obtain User Feedback and User Your Own Tool

• make it easy for users to provide feedback; use your tool yourself

I. Thou Shalt

Summary: Thou Shalt
1. Animate Your Models

2. Visualize Your Models

3. Reuse Ideas, not Models

4. Not Abandon Thy Traditional Formal Proof Methods

5. Use Models as Documentation

6. Execute Your Models

7. Choose an Appropriate Notation/Programming Language for Your Tool

8. Honour Text and Command-Line Interfaces

9. Think Twice before Redeveloping your Tool from Scratch

10.Obtain User Feedback and User Your Own Tool

I. Thou Shalt

II. Thou Shalt

Outlook: New Projects

• IVOIRE (with Univ. Linz)

• Automate Validation in a 
Refinement-based Development Process

• KI-LOK

• Certifying Railway Systems with AI

KI-LOK

IV IRE

Formal Methods in Industry
• Formal methods in general and B in particular can be used to verify/validate:

• code of individual components

• systems consisting of components (algorithms, design,…)

• configurations of components

• Formal methods have become much more useful thanks to progress in proof, constraint solving
(SAT, SMT, CLP), visualization

• tools can find errors which no human could ever find

• tools can guarantee the absence of certain errors

• tools can help visualize and understand very complex systems, behaviours and interactions

Jens Bendisposto

Carl Friedrich Bolz

Michael Butler

Joy Clark

Ivo Dobrikov

Jannik Dunkelau

Nadine Elbeshausen

Fabian Fritz

Marc Fontaine

Marc Frappier

David Gelessus

Stefan Hallerstede

Dominik Hansen

Christoph Heinzen

Michael Jastram

Philipp Körner

Sebastian Krings

Lukas Ladenberger

Li Luo

Thierry Massart

Daniel Plagge

Antonia Pütz

Mireille Samia

Joshua Schmidt

David Schneider

Corinna Spermann

Sebastian Stock

Yumiko Takahashi

Edd Turner

Michelle Werth

Dennis Winter

Fabian Vu

Alstom (Fernando Mejia,…)

ClearSy (Thierry Lecomte,…)

Siemens

Systerel

Thales (Nader Nayeri, Georg Hemzal,…)

Thanks to
Danny De Schreye

Maurice Bruynooghe

Bart Demoen

Marc Denecker

Bern Martens

Wim Vanhoof

Robert Glück

Neil D. Jones

Jesper Jørgensen

Torben Mogensen

Fabio Fioravanti

Alberto Pettorossi

Maurizio Proietti

Emanuele De Angelis

John Gallagher

Manual Hermenegildo

German Puebla

Josep Silva

Salvador Tamarit

German Vidal

Kostis Sagonas

and many more

Thank you
very much

