New Ways of Using Formal
Models in Industry

Michael Leuschel

Overview

 Part 1: Overview of 25 years of history of B

e taken from FMICS 2020 article with Michael Butler, Philipp Korner,
Sebastian Krings, Thierry Lecomte, Luis-Fernando Mejia, Laurent Voisin
entitled “The First Twenty-Five Years of Industrial Use of the B-Method”

 Part 2: Commandments and Lessons using B and building tools for B, Z,
and other formal methods (mainly the tool ProB https://prob.hhu.de)
iInspired by Bowen, Hall, Hinchey

https://prob.hhu.de

Part 1: History

Formal Methods

e Mathematical techniques to produce correct software and
systems

e Highly recommended e.g. for SIL3/SIL4 railway
applications (CENELEC)

e Some Benefits: Problems detected earlier and correction
less costly, lower level testing (unit) not required as SW
execution errors proven impossible

B Formal Method

< Joo[B™

Specification Tool Support

Refinement

Origins of B

* Train protection system SACEM for Paris RER Line A
e put into operation in 1988, sketch of the B-Method by Jean-Raymond Abrial
» 1989 project by Alstom, RATP, SNCF to develop tools and train engineers

* Paris Metro Line 14 contract won by Matra Transport (now Siemens Transportation
Systems)

* 1995: B tools industrialised by Digilog (then Steria, now CLEARSY) leading to Atelier-B

* ready by end 1998:110 kLOC B model,
83% automatic proof, 86 kLOC Ada

o Still in version 1.0, no single issue caused by software

B Logical Foundations

Typed first-order predicate logic with equality

* Well-Definedness Conditions to stay in two-valued logic
Arithmetic over mathematical integers and implementable integers
Set theory

» Sets, Relations, Functions, Sequences related state-based formal methods:
e including higher-order functions & The, Allow, TOIL ASK
B is simpler than its predecessor Z

and provides structuring and refinement for proving and code generation

pedom(a)>—dom(a) A Vi:(i€l.(size(a)-1) = p(a(i)) < p(a(i+l)))

B Structuring

Enables decomposing a specification

Ensures that code generated for a B machine can be safely re-used

Ensures tractable proof obligations

Some key concepts:

* VARIABLES vs CONSTANTS and associated INVARIANTS and PROPERTIES
 OPERATIONS to modify variable values

» Various B machine structuring mechanisms (INCLUDES, USES, SEES, ...)

« REFINEMENT and IMPLEMENTATION machines

-

B Structuring

— w /

activation sequence = /¥ Activation d'une uence active
PRE - (seguences = sequences_actives) THEN i>
ANY secgu WHERE .
sequ € sequences - sequences actives Invariant
PEEN = = — Proof MO.mch
sequences_actives := sequences_actives U {sequ}
END

END;

activation sequence = /* Activation
VAR segu IN

segu <-- 1indexSeguencelnactive;
activeSeguence (segu)
END;

=guence non active ¥/ \\\\\\\\\\\ x///////

Refinement ‘
Proof REFINEMENT

M1 .ref

QO0.mch

Refinement REFINEMENT

Proof IMPLEMENTATION | "

S -~
/'

Q1.ref

M2.imp
I
Code
G tor A
enerator Code
l Generator B
R
Code Code
for MO for MO

)

Ox01F¥S70
Ox01F¥S80
O0x01F¥SS0
Ox01FSA0

o
e
[
=
o

= o= N

o

m

)

u'
N) o W

Wm0
() & W

&

)

i

)

~)

D o o

(o
[
*)
o

o ()
. | [l]

[
(]

()

fx|

BEIJING

CHANGCHUN
L CHENGDU
DAEGU
. : , - oy . . GANGZHOU
| e i) " . ! - HANOI
i ‘ - 2 : : HONG-KONG
' INCHEON
e b S KUNMING
75 AMSTERDAM 2 N LANZHOU
L BARCELONA FECW . co d NANJING
" Ny NEW YORK BOLOGNA - NANNING
TORONTO BUDAPEST M NINGBO
COPENHAGEN QINGDAO
LAUSANNE" Y ¢ f SEQUL
GUADALAJARA LISBON Jj ol - : L%) SHANGHAI
”'\,, MEXICO LYON S ol SHENYANG
o PANAMA MADRID : SHENZHEN
SAN JUAN MALAGA fm / ' : !{ SINGAPORE
. MILANO) SUZHOU
LONDON QV ﬂ LUSAIL ‘\ # TAICHUNG
PARIS e | RIYAD WUHAN
RENNES " BANGALORE WUXI
s LAHORE ZHENGZHOU
4 g LUCKNOW
CARACAS ALGIERS [N 1.\ |)
SANTIAGO CAIRO
SAQ PAULO

Source: ClearSy »

e B for Software:

e about 30% of CBTC systems worldwide employ the B formal method L
FM

S
e Urbalis 400, Alstom, over 100 metro lines worldwide, 25% of worldwide CBTC market Léigfjs

One citation

 “Beyond the technological challenge of using such a complex formal
method in an industrial context, it is now clear for us that building
software using B is not more expensive than using conventional
methods. Better, due to our experience in using this method, we can
assert that using B Is cheaper when considering the whole
development process (from specification to validation and sometimes
certification)”

 From: Didier Essamé, Daniel Dollé: B in Large-Scale Projects: The
Canarsie Line CBTC Experience. In: LNCS Vol. 4355, Springer.

B for System Modelling

Event-B for System Modelling

Analyse an entire system of components

Ensure that together they ensure safety (and functionality)
Talks about events rather than operations

Refinement

e used to structure reasoning, view a system at different levels of
granularity

e requires a more liberal view of refinement

First paper

on Event-B
already published
by Abrial in 1996

Session 6: Chairman, M. Frappier (Univ. de Sherbrooke, Canacda)

10h15 Eatending B without Changing i (for Developing Distributed Sysiems)

7/

Invited speaker: Jean-Raymond Abrial (Consultant independant, Paris,)

Pes bk AT O ‘ "‘Q" TR . -
I ..,‘5}{-' P '.'t} ¢ ;,:I:’.'-_-n e
T L~ »

v
-
.

HIHEE §
[+ .

- v
M A.-.:“ -

WA 1042 Y
(ALl L :

Foundations of Event-B

A inEvent-B
R Sl Sy<tem and

P el Software
@R Engineering

' 2\ " Joas-Raymand Abtial

Described in book “Modelling in Event-B” by Abrial (2010).

Better proof automation thanks to simpler substitutions (aka statements)
and proof obligations (withesses, ...)

PFraving - namsl (M2 bum - Rodin Platinrm - JUsers fmib, Rodin /worksazce .0

More expressive and flexible refinement

L TL|@mML @ V2 QM2 2 Prlz Be 3%

v

evert RemAuth refines RemAuth [‘5
”~ . -~ - J
G city L s W ML
7. simg.31 where : o M2
2 wa = authorised 9 Variablss

Some changes to expressions and predicates o o

then 4 Proof Oblizations

: ez thorised = author_sed \ 1 uw» &3} @ Inw2 'Wu
e @° INITIALISATI
end - " AddAuthyin
. k- 2 Lreate I nse
e %’ CroaeToxe

Foundations realised in the Rodin platform

& Enterigrda,

tahep aeel{takiti)Igirutharisad & ©0 o ald | limeki=)}] 3" Erwerpinn2 !
\.,’}a Enge~yqrd3,
& Restind ok
2" Remawrn /g
J' .' ; e : Jj RermaAuth /gl

- ‘ ANSA - 4 RemAurnfin

A - M 3 RemAuL /gl
‘;; P~ Sules
= SecureDB =
Y " -
» | v - -

TR : A T =)
Statistics| 2. Rodin Problems |) C

Tool Support for Event-B

* Rodin
RODIN —
* Eclipse-based IDE for POG, proof, ... OR&%:
* Atelier B

e also supports Event-B projects with POG and proof
 ProB

* Multi-Level Animation, Visualization, Model Checking

CBTC models of ClearSy

 Thales Toronto installed CBTC system for NYC Subway Line 7
« CBTC = Communication-based Train Control: automatic train control
system using a combination of classical trackside train detection (T TD)

and position reports sent by trains

 ClearSy was asked to perform a formal verification of the safety of the
system for Thales Toronto

e from November 2010 until December 2012

 ClearSy was using the Event-B along with the Atelier-B prover

http://www.tools.clearsy.com/resources/formal-proofs-for-the-nyct-line-7-modernization-project/

Summary of Results

CBTC system safety (no collision, no derailment, no overspeeding,
correct tracking,...) formally verified with B and Atelier-B

Key properties and knowledge extracted and put into the formal model

Formal model was reused for NYCT I12S [Sabatier, RSSR16], similar
analyses have since then been carried out (Octys CBTC by RATP
[Comptier et al., RSSR17],...)

Showed that a large industrial, safety-critical system could be effectively
formally analysed and proven correct using Event-B

nnnnnn
e

[SE oy ‘

Pract f

vhpser by |

i . [

----- I

e xme A atar » »
" merviizatam e Bvest B ! P vate
w :vu', ‘ [b et ‘:-":::" : WAty | ! :-2-4:\" '-l :
RRLL sertzreas i wulain

J Fasdet 5

e kg | |

‘ R | o

CLreisx) {5

ety I 1)

! /i

wrine w1 b voeaigaeag 1)

e System analysis carried out in 2018 for a large software system (CBTC
Zone Controller) by Alstom, ClearSy and University of Dlsseldorf
[Comptier et al., RSSR’19]

e Software for this component generated using classical B

* Analysis with Atelier B and ProB

 Enabled to extract key safety properties which enable future evolution
of the component

ETCS Hybrid Level 3

» Several formal methods case done of the ETCS Hybrid Level 3
(HL3) principles

B Model and system developed by Thales and University of
Dusseldorf

e |dentified over 50 issues In various versions of the HL3
specification

e Formal model was used in real-time for field demonstration In
December 2017 at ETCS National Integration Facility in Hitchin/

UK, providing evidence that the HL3 principles are consistent
and allow desired operational behaviour

20

B for Data Validation

' 1] C G
Name [} 14 Typ Dcwnu Length
Route 1 4] 3 003 Route 0ol

| N Rewrte_ve_(K1) 1.4 K ieuts v (02 bnline_D0N
4 Sa adiw O3 136 182 154 S Puute_va_128 Poule_Lx_008
5 Relay = 204 t2 8212400
5 | Rewrre_ry_n1S : 3 Reims_Te D05 Rewre_ve_ 128
7 Rday_s_ 001 53 182 15422y
4 Route tx JJL Le] Lndl e 0OL Foute v OO
3 | Renrre_ve_ 128 1:7 f Reims_Te DO5 Rearme_ve_002
10 (Sa ohi_w_CO09 i'2 1821540 S Puute_w_128 Poule_tx_2035
1. Ltndline UJ) J L Koute v OO
12 [Fneline_0O01 1 Reors _ww_raz
13 (Syrdles 002 312 32 Puute_wa_128

| 1s [333 3 23

15 |Ralis q _w_17
16 | Bulis 02 Puutz_Le 005

 What is the use of a formally proven software if some of its (non trivial)
parameters are wrong ?

 Data Validation: Automatic check of large data sets against properties
* Properties : international standards, national regulations, manufacturer
habits, customer requirements, safety assumptions made during

development, ...

 E.g. metro line static data used by the automatic pilot (software) to drive
safely

B for Data Validation

Express properties in B: works well with graph-based properties or if
software already developed with B

Initial developments

DATA VAL DATION

« OVADO for RATP, based on predicateB

* ProB for Siemens in 2008/2009 within Deploy EU project

[

.. » al.
oW L P L :
A ext, etc.

Aspects of Data Validation

 Focus on expressivity: B language extended (IF-THEN-ELSE, LET for
expressions, external functions for string manipulation, regular

expressions)

e Tool certification: Tool certified for T2 usage according to EN50128
o extensive testing and validation and/or double chain

* Full automation, scale to large data values, provide user feedback

Conformance

W manual Bl generated W imported B tool

B for Data Validation: Industrial Uses

e Line 1 Paris, the second CDGVAL line LISA at the CDG airport in Paris, Sao Paulo line 4, ALGER line 1, Barcelona line 9,
all by Siemens using RDV built-on top of ProB,

* more metro lines in Paris managed by RATP using OVADO which includes a tool developed called predicateB as first
chain (development funded by CLEARSY and been maintained and evolved by Systerel for the last 15 years) and ProB
as secondary tool chain

e Alstom for their URBALIS 400 CBTC system in 2014 using a tool based on ProB called DTVT developed by CLEARSY
for various lines, e.g., in Mexico, Toronto, Sao Paulo and Panama

e Alstom and SNCF also applied data validation for ETCS-Level 1 software in 2018 using another tool developed by
CLEARSY using ProB.

e Together with Systerel, Alstom conducted data validation of the Octys CBTC for RATP in 2017 using the OVADO tool.

* by Thales using a tool based on ProB called Rubin for checking engineering rules of their ETCS Radio Block Centre @

e Other tools based on ProB were developed by CLEARSY such as Dave for General Electric or the latest generation tool "
called Caval. -

Success
Story

Reflections

Roissy Shuttle

LEU
Projects
URBALIS 200
URBALIS 400
ProB
BZTT
Tools Atelier B see FMICS’2020 article
Projects SACEM Rodin The First Twenty-Five Years
Tools The BTool Ovado of Industrial Use of the B-Method
History () () () () (] for common success, fail factors,...
1980s 2000s 2020s
of B L J L 1990s J L J L 2010s J L
Calcutta Metro Railground
Paris Line 14 Flushing Line NY, Octys
Projects
Cairo Metro ETCS HL3
Projects
KVB Data Validation projects
SACEM UML-B
Lyon Metro CLEARSY Safety Platform
Tools
Tools B Toolset DTVT, DAVE, OLAF, RUBIN, CAVAL, ...

SafeCap

Summary: B and its Uses

* B for software development (classical B): refine specification until BO, apply code generators
e Line 14 Paris, Alstom U400, ...
 FM success story, new potential for hardware (LCHIP)

* B for system modelling (Event-B): verify critical properties,
understand why a system is correct

 CBTC Flushing Line, NYCT I12S, Octys, Hybrid Level 3, ...
» Activities have increased in last years, potential for executable models

B for data validation: express properties and B and check data (possibly using a double chain)
e DTVT, Ovado, Dave, Olaf, Caval, Rubin, ... for Line 1 Paris, Amsterdam, ...

 FM success story, widespread usage in railway industry

Part Il :
Commandments and Lessons

for a) using B and

o

Q for b) building tools for B, Z, and other formal methods

Inspiration

Jonathan P. Bowen, Michael G. Hinchey:
Ten Commandments Ten Years On: Lessons for ASM, B, Z and VSR-net. Rigorous Methods for Software
Construction and Analysis 2009: 219-233

Jonathan P. Bowen, Mike G. Hinchey:
Ten Commandments of Formal Methods... Ten Years On. Conquering Complexity 2012: 237-251

Jonathan P. Bowen, Michael G. Hinchey:
Ten Commandments of Formal Methods. Computer 28(4): 56-63 (1995)

Jonathan P. Bowen, Michael G. Hinchey:
Seven More Myths of Formal Methods. IEEE Softw. 12(4): 34-41 (1995)

Jonathan P. Bowen, Michael G. Hinchey:
Seven More Myths of Formal Methods. FME 1994: 105-117

Anthony Hall:
Seven Myths of Formal Methods. IEEE Softw. 7(5): 11-19 (1990)

Thou Shalt Animate your Models

* ensures your assumptions are consistent
(there is at least one model)

» allows to spot errors which are impossible
to avoid using invariants and difficult
to describe using temporal logic

* spots class of errors you haven’t thought
of yet

“Every formal model (proven or not)
which has not been animated contained
errors’

Christophe Metayer, Systerel

(liberal translation from French based on verbal communication)

v () earley @

&h inv2/wo

@& INITIALISATION/inv1/INV
@ INITIALISATION/inv2/INV

@& selector/grd2/wp
& selector/grd4/wp
& selector/invl/INY
@& selector/inv2/INV
(Dﬂ predictor/grd2/wD
& predictor/grd3/wp
<gﬁ predictor/invl/INV
A predictor/inv2/INV
ggﬁ completer/grd2/wD
&1 completer/grd4/wp
& completer/grd5/wD
&1 completer/invl/INY
& completer/inv2/INV
@&f final/grdl/wp

& final/grd1/GRD

tarley Parsing

Algorithm

Moc

el

but ProB found inconsistency
in the axioms (>->> instead of >->)
during animation

v) earley 1

&" invi/wo

@ INITIALISATION/inv2/INV
@ INITIALISATION/inv1/INV
@ INITIALISATION/act2/SIM

Qhﬂ selector/grdl/wD
@ selector/grd2/Wp
& selector/grd4/wp
@& selector/inv2/INV
@& selector/invl/INV
@ selector/grdl/GRD
@ selector/actl/wp
@& predictor/grd1/wo
@ predictor/grd2/wp
@ predictor/grd3/wp
@& predictor/inv2/INY
@ predictor/invl/INV
& predictor/grdl/GRD
(Bﬂ predictor/actl/wD
&1 completer/grdl/wp
& completer/grd2/wp
&1 completer/grd3/wo
completer/grd4/wD
completer/grdS/wD
completer/inv2/INV
completer/invl/INV
completer/grdl/GRD
completer/grd3/GRD
completer/actl/wD
final/grdl/wD
final/grd1/GRD

ARAARAAARA

v (Q earley 2

& inv3/wo

& inva/wp

@ INITIALISATION/inv1/INV

@ INITIALISATION/inv2/INV

@ INITIALISATION/inv3/INV

@ INITIALISATION/inv4/INV

Qﬂ selector/grdl/wD

&1 selector/qrd2/wp
selector/grd4/wD
selector/grd6/wD
selector/invl/INV
selector/inv2/INV
selector/inv3/INV
selector/inv4/INV
selector/grd5/GRD
selector/grdl/GRD
selector/actl/wD
selector/act2/wD
predictor/grdl/wD
predictor/grd2/wD
predictor/grd3/wD
predictor/grd5/wD
predictor/invl/INV
predictor/inv2/INV
predictor/inv3/INV
predictor/inv4/INV
predictor/grd4/GRD
predictor/grdl/GRD
predictor/actl/wD
predictor/act2/wD
completer/grdl/wWD
completer/grd2/wD
completer/grd3/wWD

Fully proven,

>

completer/grd4/wD
completer/grd5/wWD
completer/grd?7/wD
completer/invl/INV
completer/inv2/INV
completer/inv3/INV
completer/inva4/INV

133333 A323323232232232322223223232332100

P EY T .

v) earley 3

&h inv2/wo
&5 thm1/THM
&F thm2/ThHM

@F INITIALISATION/inv1/INY
@ INITIALISATION/inv2/INV

selector/grd5/wWD
selector/grdl/wD
selector/grd2/wD
selector/grd4/wD
selector/grd6/wD
selector/inv2/INV
selector/grd5/GRD
& selector/grdl/GRD
Qﬁﬁ selector/grd3/GRD
& selector/qrd4/GRD
& selector/qrd6/GRD
@& selector/actl/wWo
& selector/act2/Wp
<gﬁ selector/actl/SIM
@& selector/act2/SIM
(Dﬂ predictor/grd4/wD
& predictor/grdl/wp
(Dﬂ predictor/grd2/wD
& predictor/grd3/wp
Qﬁ predictor/grd5/wD
& predictor/inv2/INV
(Dﬂ predictor/grd4/GRD
& predictor/grdl/GRD
Qﬁﬁ predictor/grd5/GRD
& predictor/act1/wp
& predictor/act2/wp
& predictor/act1/SIM
@& predictor/act2/SIM

QA3JAIA™D

predictor/grdl/wD
predictor/qrd2/wD
predictor/grd3/wD
predictor/grdS/wD
predictor/grd4/wD
predictor/inv2/INV

& completer/grd8/wp
& completer/grdl/wp

Thou Shalt Visualize @

vss left = {.., “17VTS33” [|-> 140,"17VTS34” |-> 240,"17VTS34” |-> 340,..}
TTD state = {TTDl|->free, TTDZ|->occupied, TTD3|->occupied,..}
vss state = {..,V"17VTS33” |-> unknown,

“17VTs34” | -> unknown, “17VTS35” |-> occupied,..}

Env_train length = {trainl|->30, train2Z2|->30}
Env_train FP = {trainl|->250, trainZ|[->350}

registeredTrains = {trainZ?}
train reported integrity = {trainZ|->confirmed integrity}

? 17VTS34 ’ 17VTS35 %
4 17VTS34 ; 17VTS35 0 | |

Occupied
Occupied

ProB2-Ul Demo

(sl S elrainlrack.mcl /isB-Exa
Operations State View | State Visualisation | Edit » Statistics (states 6 of 50)
"a 3 i St t V » Verifications
(1 I . ate View | ©
| - . s . to inspect current v Project
< > D S @ v Name .
M and precedlng State Machines | Status | Preferences | Project
P TTD_Occupied(ttd=ttd1) v VARIABLES "1
» TTD_Occupied(ttd=ttd2) occ {ttd3} 0 v Q
» TTD Freelttd;ttdB) train_rear_end 29 " oY EXye NI
|| » TrainMoveForward _ _ » CONSTANTS » MovingParticles4 . i
Operat|ons V|ew —— Physics/MovingParticles4.mch PrOIeCt V|ew
> -
H : » WasserkocherEinfach_mch
for InteraCtlve v INVARIANT true ir Waterboiler/WasserkocherEinfach mch.eventb for mOdels
animation b [€] train_rear end & TRACK true ird > WasserKocherFalsch1_mch and preferences
Waterboiler/WasserKocherfalsch1 _mch.eventb
¥ ERUTER TS true Iy » WasserkocherFalsch2_mch
» [=] TrackElementNumber = 30 true tr Walerboiler/WasserkocherFalsch2_mch.eventb
» [=] train_length = 2 true tr » mO0_island_bridge_3cars_mch
Ani i Bridge/m0 isiand bridge 3cars mch.eventd
Y maion » [=] TRACK = 0 .. TrackElementNumber true tr g g
_) » m1_bridge_mch
Replay | Symbolic | Test Case Generation » [=] TTD_TrackElements = {ttd1~ 0 .. 10,ttd2 ... true Bridge/m1_bridge _mch.eventb
» [£] TrackElementNumber = ¥, true » Lift
@ 0O & Q Lift/Lift. meh
» [¢] TTD _TrackElements « TTDS = FINT{TRACK) true
V| Status Name » OPERATIONS (guards/preconditions)
V) v SimpleTrainTrack.prob2trace » DEFINITIONS History (state 36 of 37)
. v Interactive Console &€ & > B D E B
Replay View

for automatic Classical B @ 9 Position ranaitlan

trace replay 0 —--ro0t-~
B> train_rear_end Console (REPL) | SETUP_CONSTANTS History View
- for interactive exploration |2 INITIALISATION to inspect and
@0 e (BN VisB (Train/Track.json) P 110 Oecupectia=iel) 1 navigating current
4 TrainMoveForward animation trace
E O x © © i & € <> » D E > B 5 TrainMoveForward
6 TrainMoveForward
VisB View 7 TrainMoveForward
SVG-based visualization 8 TrainMoveForward
Of current state 9 TrainMoveForward
10 TrainMoveForward
: 1 TrainMoveForward
i + + + + + + + + + + i + + + + + + + + + + + + + + i + + + ; 12 TrainMoveForward
. 13 TrainMoveForward

= https://prob.hhu.de

Simple Train Model

Track is an interval O..TrackElementNumber

Track is divided into TTD (Trackside Train Detection) zones (e.g. implemented
using track circuits or axle counters)

Trains have positions train_rear_end(tr)..train_front_end(tr)

Some trains have an MA (Movement Authority) extending beyond their front end

L\

!

Many things not modelled: delays, position reports, uncertainty of train image,
train speed, braking curves, points, train integrity, ...

Some Points

 Animation and Visualisation help me understand models others have
written

* also help make your model better understandable to other people, even
domain experts not able to read your formal notation

Think

R

Formal mathematics is nature's
way of letting you know how
sloppy your mathematics is.

N

Animation
Visualization

Animation and
Visualization is
nature's way of letting
you know how sloppy
your formal
mathematics is.

o alternatively:

Thou Shalt Not Abandon Thy Traditional Formal
Proof Methods

Thou Shalt Use the Trinity of Methods

A The Trinity of Methods

* | tend to use proof, model checking and animation together

* Proof: solves the state explosion problem, provides key (inductive)
properties and insights

* Model checking: finds obvious problems, increases confidence that
proof is feasible, checks liveness properties

 Animation: validate scenarios (often part of the requirements), find
Inconsistencies, detect “surprising” and obvious errors quickly

Conflict of Interest

* Proof and animation have conflicting needs:

e adding an axiomatic property for proof can make finding a valid model
much harder

vs.s C Track = P(s)

e adding concrete data and constructive definitions for animation can
make proof harder and less general

f = Ax.xeTrain|front(x)..train_ma(x)

 Use refinement to create model checking and animation instances

* Annotate/isolate complex properties (@prob-ignore pragma)

“Classical”
Refinement Approach

MO

Human Check
of Abstract M1
Statespace H1

o d®

. Proof

projection : .
M2 Animation

refinement

M2 4" A M2b —
Generate a]
Statespace i — 9 Use Case T
MC% Instantation for Instantation for Replay U1

Validation Validation '\.
:>._€‘ . Temporal .n.
|mp| Property MCH1 ﬁ
. Lowest Level
Model Checking

Thou Shalt Reuse

Thou Shalt Reuse

€

ldeas,
not Models

Thou Shalt Reuse Ideas, not Models

 When modelling:

 (Good idea to reuse: key concepts, ways to decompose a system,
approach to ensure inductive proof is possible

o Usually difficult to reuse formal models for modelling

Thou Shalt Use Models as Documentation

o Static Documentation

* Executable, interactive -
Documentation (HL3) e —

»
()

o

Subject: Scenario for formal model)2 %

From: Michael Leuschel - Michael.Leuschel@uni-duesseldorf.de Signature: Signature #10 ¢

Dear Thomas N. Ginn,

Please find attached a scenario of our formal model.

Can you inspect whether the behaviour corresponds with your expectations.
You can just open the file in any browser and replay and inspect the trace.

Kind regards,
Michael

Open

TwoTrainsMA.html
106 KB

file://examples/TwoTrainsMA.html

To;

e

Becce!
Subject: Scenario for formal model
From: Michael Leuschel —= Michael.Leuschel@uni-due

Message Size: 174 KB

Dear Thomas N. Ginn,

Please find attached a scenario of our formal model.
Can you inspect whether the behaviour corresponds with
You can just open the file in any browser and replay and

Kind regards,
Michael

TwoTrainsMA.htmi
166 KB

SVG Visualisation

w
@
O
[\
N
W
N
o
g
1]
&
w
NiN
[ip
m
<
1)
=
-
-
AL
=3
<=
O
<
4]
B
Q
=
=
':L:
-y
=
=
N
N
>

Replay Trace

« Back Forward» = Run Trace (10 ms delay) = Run Trace (500 ms delay)

Variables (4/4)
Constants (3/3)

Sets (3/3)

Trace (length=32)

Nr Event
1 SETUP_CONSTANTS(TrackElementNumber=30,TRACK={0,1,2,3,4,56,7.8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 25,26 27 2...
2 INITIALISATION(occ={ttd1,1td2} train_rear_end={(tr1|->0),(tr2|->5)} train_front_end={(tr1|->2),(tr2|->6)},train_ma={})

3 TrainAcceptsFirstMA(tr2,14)

- TrainMoveForward(tr2.7)

ProB Jupyter Notebooks for Documentation

KISS PASSION Puzzle

A slightly more complicated puzzle (involving multiplication) is the KISS * KISS = PASSION problem.

In [3]: | {K,P} € 1..9 a
{I,S,A,0,N} € 0..9 a
(1000%xK+100%I+10%S+S) *
(1000xK+100xI+10%S5+S)
= 1000000xP+100000xA+10000xS+1000%xS+100%xI+10x0+N »a
card({K, I, S, P, A, 0, N}) = 7

Outi(3l: TRUE

Solution:
e P=4
e A =]
e §=3
e [=10
e K =2
. J'Vzg
e () =28

ProB Jupyter Notebooks for Documentation

Mixing Functional Programming with Constraint Programming

In B we can also define (higher-order) functions and mix those with logical predicates.

In [12]: 1 f = Ax.(x€ZIx#x) A res={x|f(x) = 100}
ut(12]: TRUE

Solution:

e res = {—10,10)
e f= ix-(x € INTEGER | x * x)

Thou Shalt Use Execute your Models

* QOracle in Test Environment (Advance)

- %
S & .
(S |
<
()]
o
-
[]
-]

 Executable Prototype for early field tests (HLS3)

Knc VL=

* Long term: maybe formal models in the loop
in the final product (Plues tool)

DO
al®

S

> Advance EU Project

first step (2014):
T using B model in real

IXL-DC

Classical- Alstom test environment

model
Manual l

IXL-DC BO

model - — —
Automatic l Manual l [Est parameters

IXL-DC Ada Ada runtime l o

code environment

Automatic l ://
IXL-DC IXL LAC FIVP

- fprofB

FIVP communication network

ATC ATS

Train command panel Cabin information panel Supervision panel Traffic command
panel

Figure 3.1, Envisioned IXL-DC code generation process and test environment architecture

http://www.advance-ict.eu Deliverable D1.3

Project for ProRaill

e Field demonstration of the ETCS Hybrid Level 3 (HL3) principles

e Demonstration by co-operation trackside (Thales, Siemens)
and onboard (Alstom, Hitachi) -

e Demonstration line: L
ETCS National Integration Facility .
(ENIF) in Hitchin/UK

 There was insufficient time to model and code a prototype

e But there was sufficient time to embed the formal model at
runtime

53

e Natural New System

Lan_g_uag_e New Feature
Specification

Formal
Model

— C— Testing_j,
‘ ~ Debugging

Y35L2 t : VvS3T + V3512 - VES13

TS

E t I I
Timwesrs [xecardst Ml Crenges
Ny Kns Valo= NES Type To re a
K COIOST TRAIN FROPAGATION TMIR =10]
SEAJON _T-AN_TIMER_A a0 -
environment

ProRail Project
Summary

e using model as demonstrator/prototype is feasible,

there were a lot of technical issues, ProB was not
one of them!

e animation/visualization can help understand and
debug a given specification

e using a formal model allowed to quickly adapt the
model as fixes for issues came along, several new
requirements were integrated

) &
e log of formal model could be replayed step-by- F.

step to analyse issues

The use of formal methods in

specification and demonstration
of ERTMS Hybrid Level 3

Prepared on behalf of the International Technical Committee
by Maarten Bartholomeus, Bas Luttik, Tim Willemse,
Dominik Hansen, Michael Leuschel and Paul Hendriks

IRSE News
November 2019

https://www.youtube.com/watch?v=FjKnugbmrP4

ProB In Action : Formal Models in Realtime

Demonstration of the ETCS Level 3 technology in the DB Netz Living Lab

Train 2 following Train 1 (Lucy)
on the same occupied track section
but on different virtual subsections

Teststrecke Annaberg - Schwarzenberg: Szenario A

Level 3 frain 1: LUCY E irain 2: TRAXX
Mode: Full Supervisi 06.09.2018 Mode: Full Supervision 06.09.2018

ProB running in real-time animating a

formal B model of the Hybrid-Level 3 principles
developed by a team from the University of Disseldorf and Thales with support from ClearSy

from modelling
to tools

Thou Shalt Choose an Appropriate Notation/
Programming Language for your ool

Prolog for type checking, rule-based theorem proving, constraint solving
Java, Tcl/Tk, ... for user interface

C for LTL model checking

The heart

of ProB Is
written In

Prolog

TLC4B.jar

ProB2-Ul »

ZMQ
> probkodkodjarx

TLA+

TLAZ2B.jar

~
~
~
~
~

~
~
~
~

C API

rd

but other Ianguages prob2_ui

are used around it:
Java
C, C++
Tcl/Tk
Haskell

LTL Pattern Parser

Value Translator

Alloy

alloy2b.jar

\
\
\

socket

ProB2-Java-API
prob2_kernel

l

Al

Rodin
Parser
AST
Sourceforge

Rules
.rule

probcliparser.jar

/

o \\‘ '
PROLOG

.mch

alloy2b

probparsers
BParser

answerparser
LTL parser

dex

S

tla2bAST

AT

sent over
socket in
ProB2

—

GITLAB

GITHUB

Hindley-Milner Type Inference

Easy to encode In
Prolog. one type
inference rule is one
Prolog clause

More powerful than
Atelier-B, ...

cf. VPT-2020 article

Fast

type([],set(_)) --> 1, [].
type(union(A,B),set(R)) --> !,type(A,set(R)), type(B,set(R)).
type(intersect(A,B),set(R)) --> !,type(A,set(R)), type(B,set(R)).
type(plus(A,B),integer) --> !,type(A,integer), type(B,integer).
type(in_set(A,B),predicate) --> !,type(A,TA), type(B,set(TA)).
type(gt(A,B),predicate) --> !,type(A,integer), type(B,integer).
type(and(A,B),predicate) --> !,type(A,predicate),type(B,predicate).
type(eq(A,B),predicate) --> !,type(A,TA),type(B,TA).
type(Nr,integer) --> {number(Nr)},!.
type([H|T],set(TH)) --> !,type(H,TH), type(T,set(TH)).
type(ID,TID) --> {identifier(ID)},\+ defined(id(ID,)),!,

add((id(ID,TID))). % creates fresh variable
type(ID,TID) --> {identifier(1ID)},defined(id(ID,TID)),!.
type(Expr,T,Env,) :-

format('Type error for ~w (expected: ~w, Env: ~w)~n',[Expr,T,Env]),fail.

defined(X,Env,Env) :- member(X,Env).
add(X,Env, [X|Env]).

identifier(ID) :- atom(ID), ID \= [].

type(Expr,Result) :- type(Expr,Result,[],Env), format('Typing env: ~w~n',[Env]).

{Z}U{x,y}=u A z>v

| ?- type(and(eq(union([z],[x,y]),u),gt(z,v)),R).
Typing env: [id(v,integer),id(u,set(integer)),id(y,integer),id(x,integer),id(z,integer)]
R = predicate ?

yes

Anecdotal Evidence:
Typechecking 8000 Line B specification

60 sec

45 sec

30 sec

|5 sec

ANTLR Parser ProB

O sec

e Translator of Alloy [Jackson] to B

 Adaptation of formal semantics of
Alloy by simply using B syntax

* Rules can be translated to Prolog
clauses

* First version was written in Kotlin
(JVM),
then switched to Prolog as error
prone and tedious to encode rules

Semantic Translation Rules: Alloy2B

E|p
E|p

Elp + q]i = E[pliuU E|[q]i

N

& ql|z

- ql|z

1P

Elpli N E|q|
E[p]i\ Eq]

translate binary e p(Binary, TBinary) :-

Binary =..

[Op)PJQ)_J])

alloy to b binary operator(Op, BOp),
translate e p(P, TP),
translate e p(Q, TQ),

TBinary

alloy to b
alloy to b
alloy to b

=.. [BOp, ,TP,TQ].

pinary o
pinary o

pinary o

perator(plus, union).
perator(intersection, intersection).

perator(minus, set subtraction).

Prolog Theorem Prover for Proving
Well-Definedness

» WD Prover [iFM’2020] to prove absence of SPec
division by zero, undefined function J

| | | | Talilal _,\ Discharged
applications, cardinality of infinite sets, ... (O \/ -]\C g >
Prover < >

POG

Not
Discharged

e Shared Hypothesis stack

Hyps

 pop via Prolog backtracking

- - Patterns for Lookups
 Only logarithmic accesses to Hypotheses Field] — ACE
A=1B A#B
A<B A>B
ACB ADB

* Efficient rule-based prover using Prolog unification

/***‘k*‘k*‘k*‘k‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k***‘k

* Copyright (c) 2007, 2014 ETH Zurich and others.
All rights reserved. This program and the accompanying materials
are made available under the terms of the Eclipse Public License x
which accompanies this distribution, and is available at

http://www.eclipse.org/legal/epl-v10.html

b S . e

Contributors:

* ETH Zurich - initial API and implementation
***/
u package org.eventb.internal.core.segprover.eventbExtensions;

import org.eventb.core.ast.Expression;

import org.eventb.core.ast.FormulaFactory;

import org.eventb.core.ast.Predicate;

import org.eventb.core.ast.SimplePredicate;

import org.eventb.core.ast.UnaryExpression;

import org.eventb.core.segprover.IProofMonitor;

import org.eventb.core.segprover.IProverSequent;

import org.eventb.core.segprover.IReasonerInput;

import org.eventb.core.segprover.IReasonerOutput;

import org.eventb.core.segprover.ProverFactory;

import org.eventb.core.segprover.ProverRule;

import org.eventb.core.segprover.SequentProver;

import org.eventb.core.segprover.IProofRule.IAntecedent;
import org.eventb.core.segprover.eventbExtensions.Lib;
import org.eventb.core.segprover.reasonerInputs.EmptyInputReasoner;

public class FiniteRan extends EmptyInputReasoner {

“The range of a function is finite if the function is finite.” blie tacie finml Sering REASONER 15 - SemsentProver. LS T+ . Eintenants

@Override
public String getReasonerID() {
return REASONER ID;

}

Che C k_f i n i t e (range (A) 4 Hyp 4 ran (PT)) : - ! 4 < > gigi\e]i?:gl?g;liiggiiiglﬁﬂgi’!gntecedents (IProverSequent seq) {
check finite (A, Hyp, PT)

Predicate goal = seqg.goal();

// goal should have the form finite(ran(r))

if (!Lib.isFinite(goal))

return null;
SimplePredicate sPred = (SimplePredicate) goal;
if (!Lib.isRan(sPred.getExpression()))

return null;

// There will be 1 antecidents

In Java. IAntecedent[] antecidents = new IAntecedent[1];
| |

UnaryExpression expression = (UnaryExpression) sPred.getExpression();
82 Ilnes Of COde Expression r = expression.getChild();
(9 Iines are copyright notice) finiinzign(u;)laFactory ff = seqg.getFormulaFactory();
Predicate newGoal = ff.makeSimplePredicate (Predicate.KFINITE, r, null);
- - antecidents[0] = ProverFactory.makeAntecedent (newGoal) ;
The Prolog code is also very flexible:
it can be used for finding proofs o
protected String getDisplayName () {
but also for re Ia in or return "finite of range of a relation";
-playing }

QOverride

checking proofs if the proof tree argument Is provided public IReasonerOutput apply (IProverSequent seq, IReasonerlnput input,

IProofMonitor pm) {

return antecidents;

}

IAntecedent[] antecidents = getAntecedents (seq);
if (antecidents == null)
return ProverFactory.reasonerFailure(this, input,
"Inference " + getReasonerID()

+ " is not applicable");

// Generate the successful reasoner output
return ProverFactory.makeProofRule (this, input, seqg.goal(),
getDisplayName (), antecidents);

https://sourceforge.net/p/rodin-b-sharp/rodincore/ci/master/tree/org.eventb.core.seqprover/src/org/eventb/internal/core/seqprover/eventbExtensions/FiniteRan. java

public class FiniteRan extends EmptyInputReasoner {
public static final String REASONER ID = SequentProver.PLUGIN

@Override
public String getReasonerID()
return REASONER ID;
check finite (range (R),Hyp,ran(PT)) :- !, }
check finite (A,Hyp, PT)

@ProverRule("FIN_REL_RAN_R")
protected IAntecedent|[] getAntecedents (IProverSequent seq) {
Predicate goal = seqg.goal();

// goal should have the form finite(ran(r))
1f (!Lib.isFinite (goal))
return null;
SimplePredicate sPred = (SimplePredicate) goal;
1f (!Lib.isRan(sPred.getExpression()))
return null;

// There will be 1 antecidents
TAntecedent[] antecidents = new IAntecedent[l1l];

UnaryExpression expression = (UnaryExpression) sPred.getEx
Expression r = expression.getChild():;

final FormulaFactory ff = seqg.getFormulaFactory()

// finite (r)

Predicate newGoal = ff.makeSimplePredicate (Predicate.KFINI
antecidents[0] = ProverFactory.makeAntecedent (newGoal) ;

Biased

Benchmarks
_ 100 sec
* Jest Atelier-B provers ML, PP and Z3 on 413
: |0 sec
POs from ProB regression tests
| sec -
 Biased, but shows that our prover is fast and 0.1 sec -
can prove POs not proven by existing provers (in 0.01 sec
default settings) e T TreR
Time
Prover [Proved Unproved Ctrl-C Min. Max. Total w/o Min.
PROB-WD 413 0 010.000 sec 0.006 sec 0.047 sec 0.047 sec
ML 190 223 0(0.260 sec 18.725 sec 152.633 sec 45.253 sec
PP 230 165 0.092 sec 49.144 sec 222.940 sec 186.600 sec
18 1017.406 sec -
73 9 14 0(0.007 sec 2.520 sec crash -

A few more commandments

e Thou Shalt Honour Text and Command-Line Interfaces:

* Jext and command-line tools are not dead yet RODIN

 Thou Shalt Think Twice before Redeveloping your Tool from Scratch
* Redeveloping a tool or even a Ul from scratch is hard and will take 7
longer than you think o

=

e Thou Shalt Obtain User Feedback and User Your Own Tool

 make it easy for users to provide feedback; use your tool yourself

Summary: Thou Shalt

1. Animate Your Models

2. Visualize Your Models

3. Reuse ldeas, not Models

4. Not Abandon Thy Traditional Formal Proof Methods

5. Use Models as Documentation

6. Execute Your Models

/. Choose an Appropriate Notation/Programming Language for Your Tool
8. Honour Text and Command-Line Interfaces

9. Think Twice before Redeveloping your Tool from Scratch

10.0Dbtain User Feedback and User Your Own Tool

Outlook: New Projects

+ IVOIRE (with Univ. Linz) IVIXIRE

 Automate Validation in a
Refinement-based Development Process

e KI-LOK
» Certifying Railway Systems with Al THALES
y—% — Fraunhofer

FFFFF

Formal Methods In Industry

 Formal methods in general and B in particular can be used to verify/validate:
* code of individual components
» systems consisting of components (algorithms, design,...)
e configurations of components

* Formal methods have become much more useful thanks to progress in proof, constraint solving
(SAT, SMT, CLP), visualization

e tools can find errors which no human could ever find
* tools can guarantee the absence of certain errors

* tools can help visualize and understand very complex systems, behaviours and interactions

Danny De Schreye

Maurice Bruynooghe

Bart Demoen
Marc Denecker
Bern Martens

Wim Vanhoof

Robert Gluck
Neil D. Jones
Jesper Jgrgensen

Torben Mogensen

Fabio Fioravanti
Alberto Pettorossi

Maurizio Proietti

Emanuele De Angelis

John Gallagher

Manual Hermenegildo

German Puebla
Josep Silva
Salvador Tamarit

German Vidal

Kostis Sagonas

and many more

Thank you
very much

Thanks to

Jens Bendisposto
Carl Friedrich Bolz
Michael Butler
Joy Clark

lvo Dobrikov

Jannik Dunkelau

Nadine Elbeshausen

Fabian Fritz

Marc Fontaine
Marc Frappier
David Gelessus
Stefan Hallerstede
Dominik Hansen
Christoph Heinzen
Michael Jastram
Philipp Korner
Sebastian Krings
Lukas Ladenberger
Li Luo

Thierry Massart
Daniel Plagge

Antonia Putz
Mireille Samia
Joshua Schmidt
David Schneider
Corinna Spermann
Sebastian Stock
Yumiko Takahashi
Edd Turner
Michelle Werth
Dennis Winter

Fabian Vu

Alstom (Fernando Mejia,...)

Pro

Nhu,

ClearSy (Thierry Lecomte,...)

Siemens

Systerel

Thales (Nader Nayeri, Georg Hemzal,...)

