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Abstract

Reservoir Computing first emerged as an efficient mechanism for training recurrent

neural networks and later evolved into a general theoretical model for dynamical systems.

By applying only a simple training mechanism many physical systems have become ex-

ploitable unconventional computers. However, at present, many of these systems require

careful selection and tuning by hand to produce usable or optimal reservoir computers.

In this thesis we show the first steps to applying the reservoir model as a simple com-

putational layer to extract exploitable information from complex material substrates. We

argue that many physical substrates, even systems that in their natural state might not

form usable or “good” reservoirs, can be configured into working reservoirs given some

stimulation. To achieve this we apply techniques from evolution in materio whereby con-

figuration is through evolved input-output signal mappings and targeted stimuli.

In preliminary experiments the combined model and configuration method is applied

to carbon nanotube/polymer composites. The results show substrates can be configured

and trained as reservoir computers of varying quality. It is shown that applying the reser-

voir model adds greater functionality and programmability to physical substrates, without

sacrificing performance. Next, the weaknesses of the technique are addressed, with the

creation of new high input-output hardware system and an alternative multi-substrate

framework. Lastly, a substantial effort is put into characterising the quality of a sub-

strate for reservoir computing, i.e its ability to realise many reservoirs. From this, a meth-

odological framework is devised. Using the framework, radically different computing

substrates are compared and assessed, something previously not possible. As a result, a

new understanding of the relationships between substrate, tasks and properties is possible,

outlining the way for future exploration and optimisation of new computing substrates.
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Chapter 1

Introduction

Biological organisms vastly outperform classical/conventional computing paradigms

in many respects, from possessing inherent fault-tolerance to constructing highly parallel

machines. Much of this is achieved by exploiting physicality and by sharing and distrib-

uting computational effort throughout the spatial system. As such, they exploit physical

interactions through feedback with the real world, utilising features such as their own

morphology.

Many of these systems comprise relatively simple elements that emerge and coalesce

into more complex, but robust, structural layers across different scales. Such grounding

properties (and many more) have enabled these complex systems to thrive and evolve,

adapting and co-evolving in real-time with their local ecosystem.

In modern science, many attempt to mimic the computational properties and beha-

viours of biological systems on conventional machines. It is argued here that such at-

tempts can themselves be flawed. Many of these experiments attempt to imitate the per-

formance of an embodied system in a non-embodied abstraction, in a process that requires

some transformation to a symbolic representation. In essence, such transformations might

detract from many of the physical aspects that make these natural systems so powerful.

The limitations of conventional computing paradigms are well defined; and we are

rapidly approaching the limitations of current CMOS technology [115]. For technology

to move forward, many of these limitations need to be solved, whether that be using the

same classical paradigms or using alternative ones. For example, conventional computing

is based on the manipulation of bits (0 or 1s) and boolean logic requiring formal math-
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ematical definitions. However, to solve more complex tasks may require some intractable

properties that cannot be formally defined.

The conventional von Neumann computing architecture, based on the stored-program

computer concept, although expertly refined over decades, poses some fundamental ineffi-

ciencies. For example, classical computers require the transformation between high-level

languages to low-level machine code, a process that requires layers of conversion through

a compiler stack, making it computationally costly, slow, and highly susceptible to faults

and errors.

These systems typically succumb to many issues in speed, from both an inability

to deal with concurrent computations and the bottleneck created by the transfer of data

between separate memory and processing entities. Because of these architectural weak-

nesses, other intertwined issues arise, such as an increase in power consumption, system

size, and top-down design complexity.

1.1 Unconventional Computing

Unconventional computing tries to address some of the above limitations by attempt-

ing to provide alternative architectures and systems that typically exploit the underlying

physics and many-scale interactions of the real world. Many forms of unconventional

systems have been explored in recent years.

For example, quantum computing is one such system, where two-state quantum bits,

typically described by electron or photon spin/polarisation, can be exploited to perform

large numbers of parallel computations (i.e. 2no. of qubits). This is achieved through the

principles of superposition, enabling a qubit to be in both states simultaneously (see [175]

for a review).

Another example is reaction-diffusion computing [4], which performs computation

through local chemical reactions and diffusion. By using chemical processes, the sys-

tem can execute highly parallel computations, performed by the complex interactions of

propagated waves of information caused by local disturbances. The result of such com-

putations are stored, or encoded as the concentration profiles of the chemical reagents.

Physarum polycephalum (slime mould) is currently under investigation as an excitable,
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reaction-diffusion medium that could form the basis of a programmable amorphous bio-

logical computer. The Physarum chip, a result of the PhyChip project [5], is described as

consisting of networked protoplasmic tubes coated with conductive substances to create a

living non-linear system. Experiments to-date with Physarum have already demonstrated

an ability to approximate logic gates and derive combinational logic circuits [201].

Even earlier examples of unconventional systems can be found back in the mid twenti-

eth century cybernetics movement in Pask’s experiments with electrochemical assemblages

in ferrous sulphate solutions [30, 154]. Pask attempted to evolve functional dendrite-

like structures by passing current directly through immersed electrodes. To determine

the growth of these structures one would simply define which electrodes to pass current

between, with the resulting linkage conductance representing synaptic weights. In his

experiments, Pask used manual selection to “evolve” linkages sensitive to perturbations

caused by sound, or magnetic fields, to create a self-assembling “ear” that could be trained

to discriminate between different frequencies.

Interdisciplinary research into unconventional computing has shown that many diverse

dynamical systems can be exploited to perform computational tasks [3, 1, 2]. Exploiting

computation directly at the substrate-level offers potential advantages over classical com-

puting architectures, such as exploiting physical and material constraints that could offer

solutions “for free”, or at least computationally cheaper [178].

Extracting computation from these systems and physically programming them, how-

ever, can be very challenging. Sometimes this is further exacerbated by a desire for min-

imal abstraction, i.e., exploiting emergent physical phenomena directly, and wanting a

level of programmability that enables the system to perform a variety of tasks.

Hybrid digital-analogue computers have the potential to fulfil these needs, where the

digital system is trained to extract computation performed implicitly from an analogue

substrate. Mills’ Kirchhoff-Lukasiewicz Machines (KLM) [136], based on Rubel’s com-

putational model of analogue computation (the extended analogue computer [159]), are a

prime example.

For analogue computers the program and architecture may be indistinguishable or

inseparable, i.e., to program the machine requires a change in the machine architec-

ture. However, by placing additional layers within the machine’s architecture the amount
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of change required is reducible, for example, by adding a standardised reconfigurable

“middle” layer.

In Mills’ KLM device, a middle layer is implemented using Lukasiewicz logic arrays

that perform piecewise linear functions on measured values from the material. To control

the logic arrays a vector of bits referred to as the “overlay” [136] is used. This overlay,

representing the semantic “program”, is used to describe the reconfigurable layer that

exploits the implicit material function. The computational functions being utilised are

therefore a result of the material’s configuration, typically achieved through the selection

of inputs, outputs and control functions/signals.

Mills describes this as a paradigm of analogy, [137] where the computing device is not

explicitly told to perform an operation and provide a readable output, but rather trained to

exploit an implicit function that results from the material’s configuration.

1.2 Configuring Matter to Compute

Conventional, classic computers are designed to be substrate-independent, where a

symbolic “machine” is highly constrained into physical hardware.

Material/substrate-based computers are conceptual machines in which some compu-

tational process, or physical mechanism, maybe extracted from a behaviourally “rich”

dynamical system. In essence, information processing can be exploited from what the

substrate does naturally, for example, how the system reacts and dynamically adapts to

some input stimulus [178]. Informally speaking, this can be viewed as “kicking” the dy-

namical system and observing its behaviour to some given stimulus, where the method

of perturbation and observation may vary in type: electrical, mechanical, optical, etc.

From this, we speculate as to whether some exploitable process, or computation, can be

extracted and whether the system can be trained to consistently exploit this process.

Exploiting computation directly from materials offers many potential advantages over

classical systems. As a paradigm, it potentially offers vast amounts of computational

power by capitalising on the massive parallelism and natural constraints of these rich

systems.

Recently, a similar computing paradigm to Mills’ KLM – without the middle “readout”
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layer – has been applied to computational composites consisting of randomly dispersed

carbon nanotubes. These semi-conducting substrates are shown to exhibit interesting

computational properties across a variety of tasks using computer-evolved configurations

[19]. Applying evolved control signals, the unknown electrical properties of these com-

posites are perturbed and trained to produce physical solutions to computational tasks.

Training these composites is done through the evolutionary selection of input-output

mappings and evolvable control stimuli, using a technique referred to as evolution in ma-

terio (EiM) [134]. The training method searches for material configurations that display

interesting computational features related to a given task, in a vast space of configurations

that is constrained only by physical laws.

To date, research based on the evolution in materio concept has showed much prom-

ise [19], however, many of the same issues identified earlier in exploratory work has yet

to be resolved.

For example, the “analogy” programming method works well, but a middle layer

providing some level of abstraction is still missing. This lack of abstraction leads to

scaling problems in both hardware connectivity and task complexity. This limits its use-

fulness and applicability, and potentially reduces its adoption by the wider computing

community.

Another fundamental issue is the non-trivial task of analysing what is being exploited,

intrinsically, externally, and in terms of general computational and dynamical properties

of the substrate. This is closely linked with how to determine if a substrate is suitably

“rich” to solve computational tasks; and, if the substrate is suitable, what spectrum of

tasks are appropriate.

At a basic level, a generic methodology for substrate characterisation is missing. At

the moment, too much is expected from the evolution process: we cannot just give the

algorithm Lead and expect it to turn it into Gold. The minimal criteria for evolution

in materio to excel should be assessed on a substrate-by-substrate basis. Therefore, the

substrate should be characterised prior to the evolutionary process and its potential de-

termined.
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1.3 Research Hypothesis and Thesis Overview

The research hypothesis is that a computational framework called Reservoir Comput-

ing (RC) can provide solutions to many of the present issues with evolution in materio

(EiM), from providing a layer of abstraction to quantifying computational processes be-

ing exploited in the substrate. A full description of reservoir computing and how to apply

it is given in Chapter 2.

Throughout the thesis, techniques from both EiM and RC are utilised, and where each

falters the other is used to provide a solution. Reservoir Computing is not a given in the

thesis, but is itself explored, and its definition expanded.

To test the hypothesis, several unconventional computing devices (based on carbon

nanotube composites) are evolved in materio and trained in silico, creating a new hybrid

computing framework, referred to here as Reservoir Computing in materio (RCiM).

First, the new hybrid computing framework is evaluated directly on machine learning

tasks common to RC (Chapter 3). Then it is analysed in greater detail on different tasks

(Chapter 4). Next, RCiM’s combined low-level exploitation and abstraction is evaluated

and compared to direct EiM (Chapter 5).

In order to take full advantage of the RCiM approach, a new extended hardware plat-

form has been built. Details of its design, limitations and practical considerations when

in-use are outlined in Chapter 6.

In Chapter 7, some limitations of reservoir computers are addressed. Here, ways to im-

prove and extend the RC/RCiM framework are demonstrated with hierarchical reservoir

structures, providing greater potential to tackle harder tasks, and perform better across

multiple tasks.

Finally, in Chapter 8, a generic framework is defined to characterise any substrate for

RC/RCiM, filling a significant gap both in evolution in materio and reservoir computing

with physical systems. The new framework provides not only a way to judge the richness,

or “quality” of a substrate but allows us: i) to better understand the computational pro-

cesses being exploited; and ii) to determine and predict tasks appropriate for the substrate,

in some cases without being assessed on tasks directly.

The novel contributions of this thesis are new frameworks to exploit and understand
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material computation as never before. With the combination of computer-controlled evol-

ution and reservoir computing theory and abstraction leading to: greater performances

and flexibility than previous work in evolution in materio; a new evolvable architecture

to extend both the RC and RCiM framework to tackle tasks with greater complexity; and

lastly, a generic framework to measure and characterise the quality of any substrate for

reservoir computing. As a result, a significant step forward has been made in the design

and understanding of physical reservoir computers.
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Chapter 2

Context

2.1 Material Computation

Material computation is defined here as a computational process that occurs in a suf-

ficiently complex dynamical system realised in the form of a physical material substrate.

This definition relies on the idea that matter contains physical information and that

systems of collective matter can dynamically modulate and redistribute information to

change state, therefore, implied here, to perform some form of computation. A simple ex-

ample of this would be the physical process in which the state or phase of matter changes

in relation to energy, which could (loosely) in some sense be viewed as a computational

mechanism.

Stepney et al. [180] provide a more contextual definition of material computation

as: “computation directly by physical and chemical processes of a complex substrate,

with little or no abstraction to a virtual machine”. From this definition we can categorise

material computation as an analogue process that utilises physical constructs, the tan-

gible medium itself, and meta-processing to do computation. This “physicality” may be

defined and observed as the structural topology, characteristic behaviours and information

processing associated with the many-scale interactions occurring in that system.

Material computation is still in its developmental or conceptual stage, with early ex-

periments supporting, or working in tandem with, current digital technology to form hy-

brid, and potentially very powerful, machines. A configurable substrate can be used to

transfer some of the computational burden from the digital system to the material [180].
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As such, the material can endow the system with many of the properties and advantages

of analogue systems, such as speed and concurrency, in a device where memory and pro-

cessing are not separable. To achieve this, engineers attempt to exploit processes and

behavioural phenomena that naturally occur, properties that are governed directly by the

underlying physics and chemistry of the substrate.

Exploiting computation directly from materials offers many potential advantages over

classical systems where the computation performed does not depend so much on the de-

tails of the materials used. As a paradigm, substrate computing potentially offers vast

amounts of computational power by capitalising on the massive parallelism and natural

constraints of these rich systems. Such properties are suggested to have the potential

to provide solutions “for free”, or at least computationally cheaper, and provide a rich

explorable state space, aligning computation to particular trajectories [178].

Much of the current interest in material computation is to abstract a model (or models)

of computation from what the substrate does naturally. It has been proposed that the first

step to producing a potential unified theory of material computation, i.e., a theory that

better understands what computation is and how it occurs in materials, should take place in

“primitive” (un-evolved) substrates, where the general principles are in plain sight [178].

After this, material computation could emerge with some supportive reasoning to a better

understanding of computation in biological substrates.

2.1.1 The effects of criticality on complexity

It has been hypothesised that there is a critical state in which a system can exhibit

maximal computational power, and therefore where maximal complexity can be acquired,

labelled a region near (or at) the edge of chaos [103]. This concept may have a direct

relationship to material computation, whereby a material can exhibit “richness” [134],

and therefore be exploitable, by operating close to or within this region.

This edge of chaos represents the transitional border between ordered dynamics, where

perturbations to the system quickly fade and the system settles, and chaotic behaviour,

where perturbations significantly affect long-term stability and the system becomes un-

predictable. This critical landscape can be observed by looking at the system’s trajectory

in the phase space by monitoring the convergence towards or away from a steady state,
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and thus highlighting a system’s sensitivity to initial conditions. Both behaviours are

thought to be necessary to gain maximal complexity, using some ordered behaviour to

maintain memory, and some chaotic behaviour to enable processing.

Langton [103] observed the effects and advantages of systems working in this trans-

itional region, using cellular automata. At a critical point, Langton observed that a cellular

automaton could optimally perform computations, imitating complex life-like behaviour.

Earlier, Packard [152] observed another unique property: that genetic algorithms tend to

evolve populations in these critical regions, suggesting that adaptability was therefore op-

timised close to the edge of chaos. Similar conclusions are proposed and demonstrated

in neural networks, where vast computational power and capability in this region is de-

scribed through network connectivity. Bertschinger and Natschläger [15] demonstrate

these relationships in input-driven networks, by accurately determining the position of

the critical line with respect to structural parameters.

It has also been suggested that living neural networks support the “criticality hypo-

thesis”. Beggs [13] discusses this notion by looking at how the power-law distribution

of neuronal avalanche sizes (a cascade of bursts of activity) suggests operation near a

critical point. Beggs further explains that the implications of these avalanche size distri-

butions implies that information transmission, information storage, computational power

and stability could all simultaneously optimise at the edge of chaos.

2.1.2 Configuration and structure

Conventional programs and algorithms represent idealised mathematical objects, ir-

respective of their underlying hardware. In a physical system, say a biological system,

computation is embodied, and behaviour may not be completely captured by a closed

mathematical model. As such, trying to program these embodied systems requires dif-

ferent techniques. The programming and manipulation of materials requires (to some

extent) a complex understanding of the properties and interactions within that system.

We therefore require either some convoluted top-down “programming” approach in the

traditional sense, or an alternative mechanism, e.g. through training, learning or evolution.

Whichever method is applied, this “program” would alter the details of system in a con-

trolled manner, for example, using controlling fields that affect structure and dynamics.
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Structure plays a pivotal role in the complexity, behaviour and programmability of

a material. The structure may ultimately define the computation and potentially adhere

exclusively to the task. In a practical sense, a material would ideally require some form of

self-assembly, or self-organisation, to create bottom-up structures on the molecular scale.

Traditional top-down design is not only impractical where exact arrangements are not

possible, but also typically implies some form of uniformity, which may be detrimental

when large varying dynamics are wanted.

The manipulation of silicon in traditional technology represents “what we do not

want” in our exploitable substrates, i.e., a material that is given intentional limits to re-

duce the likelihood of “unwanted” interactions, a property argued here as detrimental to a

device that requires rich exploitable behaviour.

2.1.3 Analogue computers

Material computation is principally a form of analogue computation where no sym-

bolic representation is created and the physics of the continuous system affect comput-

ability. Known variations of analogue computers date back as far as the second century

BCE, where mechanical analogue computers were used for astronomical purposes [129].

Most analogue computers, then and now, are typically devoted to one task, e.g., the an-

cient Greek Antikythera mechanism used for astronomical calculations, and the Torpedo

Data Computer used for torpedo fire-control on a World War Two submarine.

General-purpose, or universal machines (although universality in computation is hotly

debated [6, 7]), are desirable in both analogue and digital domains, i.e., one machine that

can implement all others. Universal machines are useful in highlighting the limits of

domain-specific computation. For example, what is not computable on a universal ma-

chine is not computable on any other computer in that domain. The seeds of universal

analogue computers arose in the nineteenth century from Lord Kelvin’s differential ana-

lyser, which was later built by Bush to solve differential equations [24, 129].

Shannon devised a mathematical theory of Bush’s mechanical computer, which led to

a formalisation of the general purpose analogue computer (GPAC) [168]. The computer

was designed to solve initial-value problems for ordinary differential equations (ODEs).

Once the invention of the operational amplifier arrived, mechanical analogue computers
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were quickly replaced by faster and more cost-effective electronic versions. These com-

puters operated on continuous variables using a range of linear and non-linear elements

such as adders, multipliers, integrators and function generators.

Over time, electronic analogue computers became largely overshadowed by their di-

gital counterparts. After a few decades of incredible gains in digital computers and re-

duced interest, education and understanding of the advantages of analogue computation,

it diminished somewhat as a viable field to investigate. However, analogue computing

never completely disappeared; in many cases it just took on a different form. For example,

hybrid systems became popular in critical real-time applications as they still vastly out-

performed digital systems, e.g., in areas such as the US intercontinental ballistic missile

program in the 1950s [129].

In the 1990s another general-purpose mathematical model was proposed by Rubel,

known as the Extended Analogue Computer (EAC) [159]. Rubel’s conceptual computer

(the EAC) tackles the limitations of Shannon’s GPAC by extending it beyond ODE prob-

lems, allowing it to compute differential algebraic functions of any finite number of real

variables (not just time). Principally, an EAC integrates a GPAC and a partial differential

equation (PDE) solver. Mills went on to create a practical EAC, despite Rubel’s reser-

vations on its electronic tangibility, and named it the Kirchhoff-Lukasiewicz Machine

(KLM) [128]. Using a form of multi-valued logic, known as Luckasiewicz logic, Mills

could overcome the perceived difficulties by approximating GPACs and therefore solve

ODEs in the KLM system (see [136]).

KLMs are composed of three computational components: i) the partial differential

equation solver, implemented as conductive sheets; ii) the reconfigurable Lukasiewicz

logic arrays (LLA), representing piecewise linear function generators; and iii) wire junc-

tions that perform addition and subtraction using Kirchhoff’s current laws [136]. The

machine is configured, or “programmed” in some sense similar to a digital computer

where a vector of bits (the overlay) reconfigures all components.

Configuration of a KLM is typically a manual process, although the use of genetic

algorithms (GAs) to create overlays is briefly mentioned in [136, 137]. In earlier work,

Mills’ research students evolved overlays that produced “encouraging” results. Later,

Harding successfully evolved configurations to symbolic equations, “bridging the se-

12



CHAPTER 2. CONTEXT

mantic gap between symbolic mathematical functions and the EAC architecture” [137].

This feat was achieved by evolving a function of the voltage at a location (x,y) on the

conductive foam sheet.

2.2 Evolution in materio

Evolution in materio (EiM) is a term coined by Miller & Downing [134] to refer to

the means by which a physical system, a complex material, could be manipulated by

computer controlled evolution (CCE) to perform useful computation.

The idea of using unconstrained artificial evolution as a search method in physical

media is deeply rooted in the field of Evolvable Hardware (EH) [68, 71]. Most evolved

configurations in EH lead to digital products or components later embedded into phys-

ical artefacts. Examples include: evolving simulated models and optimisation programs;

designing a physical system that can be manufactured after evolution, like antennas [116],

robots [111, 160] or chemical systems made of oil droplets [70].

Natural evolution is a fully embodied (intrinsic) process where physical systems die,

reproduce/self-replicate, co-evolve with the environment and other organisms, becoming

many physical instantiations and tweaked copies of the thing being evolved. Artificial

evolution represents varying layers of embodiment. Eiben et al [53] propose three forms,

with most evolvable systems coming under the first two: digital and physical instantiations

as a product of evolution in simulation. The third is fully embodied evolution, where

evolution is occurring within the product being created.

Miller argues that evolution in materio sits between full embodiment and the realised

evolved EH solutions described above [135]. In this form, physical artefacts are con-

figured (or conceptually created) during the process and assessed/controlled by simulated

Darwinian evolution. This can also be seen in some EH systems, but, typically such sys-

tems are limited to constrained silicon hardware, e.g., electronic circuits evolved on Field

Programmable Gate Arrays (FPGAs) [79].

EiM relies on a hybrid analogue/digital architecture where the evolutionary process

(run on a digital computer) controls the writing/reading of physical signals to/from an

analogue material. The directed search tries to exploit the dynamics of the material by
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evaluating the performance of individual test configurations. Physical realisations are

therefore embodied in the search process but evaluated externally. A system that oper-

ates in this manner is theoretically very powerful, allowing the manipulation of physical

properties which are hitherto unknown.

An early example of EiM can be found in Thompson’s work with FPGAs [187].

Thompson evolved a frequency discriminator by allowing evolution to reconfigure cir-

cuit elements on the FPGA. He discovered that evolution had exploited subtle electrical

variations in the underlying material to form a solution. This was made evident when

evolved configurations no longer solved the problem when moved around the FPGA and

when areas not directly connected were nevertheless found to contribute to the overall

operation. Thompson’s seminal work led to an explosion of interest in intrinsic evolu-

tion [71, 135].

An advantage – but which should also be viewed with caution – of the EiM methodo-

logy is that the training process does not require a full understanding of the computational

mechanisms that it exploits, treating the material as an encapsulated black-box. These

systems are also open systems, where energy can be lost to and gained from the envir-

onment. Therefore, some exploited mechanisms may be non-trivial to analyse, requiring

analysis at a holistic level across multiple scales, e.g. substrate-level, system-level, and

environmental.

The training procedure widely used in EiM takes the form of evolving a set of sig-

nals and their connection locations on an electrode array interfacing the computational

material. Evolution is not the only possible training procedure: there are many ways to

manipulate and interact with a physical system. Other training algorithms linked to EiM

include particle swarm optimisation [198] and global and local search [69]. The general

aim of all of these is to find, or optimise, an input-output mapping that carries out a desired

computational mapping. The rationale is that physical systems contain enormous com-

plexity, and that evolution may exhibit the most efficient method to discover and exploit

these physical properties.
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Figure 2.1: Configurable Analogue Processor (CAP): material is reconfigured to solve

some computational task through applied input signals [134]

2.2.1 Computation in Liquid Crystal

Miller & Downing [134] discuss several interesting materials that could possess the

desired characteristics needed for both computation and evolution. These include: liquid

crystal, conducting and electro-active polymers, voltage controlled colloids, nanoparticle

suspensions, and irradiated or damaged semiconductors [134]. To exploit these mater-

ials, a configurable analogue processor (CAP) (see Fig. 2.1) was proposed to alter the

material’s function through configuration parameters (discrete signals).

Harding & Miller [73] adopted liquid crystal as a material and constructed a bespoke

platform around it to test the concept, and solve multiple computational problems. Liquid

Crystal (LC) has a number of advantages for readily applying EiM. LC contains several

key features including: has wide availability, is addressable using digital voltages, exhibits

emergent behaviour, has a unique mesomorphic structure between ordered and disordered,

and can relax to an initial base state.

Harding & Miller’s platform houses a liquid crystal display (LCD) and an array of

dynamically selectable input/output connections to both the LCD and external measure-

ment devices. Over the course of their investigations, the LC system was applied to three

separate tasks: tone discrimination [73], creating logic gates [75], and a real-time robot

controller [74].

They demonstrated liquid crystal as an efficient evolvable material where relatively

small numbers of generations could produce effective solutions. They also found that a
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Figure 2.2: Micro-electrode array used in the NASCENCE project to contain, stimulate

and record activity in a carbon nanotube-based substrate. Computer controlled evolution

is used to select active electrodes and mode (i.e. record or stimulate)

rich substrate of liquid crystal supplied many more exploitable properties compared to

conventional silicon hardware such as Thompson’s FPGA. This increased the diversity of

solutions, thus increasing its evolvability.

This embryonic work demonstrated the advantages of emergent design by configur-

ing intractable characteristic properties with no knowledge of their existence. But, the

experiments also raised other fundamental questions on applying the evolution in ma-

terio technique, for example, the length of time needed to “program” materials, what is

actually doing the computation, and how reproducible are solutions when environmental

conditions change. Many of these questions and more are discussed in [135].

2.2.2 NASCENCE project: Carbon nanotube substrates

As part of the European FP7-ICT research project NASCENCE1 (NAnoSCale En-

gineering for Novel Computation using Evolution) further materials were considered,

along with a new bespoke hardware platform [18]. The hardware platform, known as

the Mecobo board [122], forms another hybrid hardware architecture to integrate digital

computers with experimental materials. The system interfaces with materials placed on

micro-electrode arrays (MEA) (Fig. 2.2) using a similar premise to Harding & Miller’s

liquid crystal system, the CAP.

1NASCENCE homepage: nascence.no
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The primary substrate used in the NASCENCE project consisted of Single-Walled

Carbon Nanotubes (SWCNT) mixed with either a polymer or liquid crystal. The poly-

mer/LC mixtures disperse the nanotubes into random static networks, forming varying

connection topologies and conductive pathways, possibly forming something akin to a

random electrical circuit. Carbon nanotubes are used as they can exhibit either metallic or

semi-conducting behaviour and contain other unique properties (e.g. ballistic conduction,

thermal conductivity, self-assembly via van der Waals forces), whilst the mixing material

is believed to create isolating regions, forming an insulator between elements and creating

network structure.

Another substrate consisting of randomly-dispersed gold nanoparticles was also in-

vestigated, showing very promising non-linear characteristics, but required cryogenic

temperatures of less than a few Kelvin to function [17].

Many investigations within the project demonstrated the capabilities of SWCNT/

polymer mixtures, in particular poly-methyl-methacrylate (PMMA) and poly-butyl-meth-

acrylate (PBMA), as a potentially rich, evolvable and computationally generic substrate.

Computational tasks addressed include: solving classification and optimisation problems

such as frequency classification [139]; classifying various data instances [35, 141]; solv-

ing small numbers of cities instances of the travelling salesman problem (TSP) [34]; and

applied to the (NP-hard) bin packing problem [140]. These early results demonstrate the

potential of the methodology, but, in some respects it still lacks competitive results and

still exhibits some of the issues raised in Harding & Miller’s work with LC [135].

PBMA composites show greater stability than PMMA composites. The electrical per-

colation threshold of PBMA is claimed to occur around a SWCNT concentration of 1%

(w.r.t. polymer weight), forming a useful mixture of short and long-conductive pathways.

Adding further nanotubes to the mixture is claimed to provide a negligible computational

advantage as a suitable network appears to already exist. However, higher concentrations

do demonstrate more non-linear current–voltage (I–V) behaviour in comparison. At less

than 1%, the nanotube networks become fairly sparse, and are claimed to have reduced

computational performance (and potentially more linear properties) [130]. The PMMA

polymer was investigated towards the beginning of the NASCENCE project (see [100])

and is reported to have a percolation threshold between 0.17 and 0.70% in the literat-
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ure [130]. However, a direct comparison is difficult to make between the two polymers as

they come under different polymer groups, i.e. contain different chain lengths.

More recent investigations into SWCNT/liquid crystal mixtures have shown prom-

ise [131, 198], for example, the non-linear I–V behaviour appears to be more prominent.

It has also been demonstrated that conductivity and orientation can be changed by an in-

plane electric field. But LC has been shown to experience a longer configuration time,

in terms of LC molecule and SWCNT alignment, due to LC molecules being smaller

than SWCNT ribbons, and associated relaxation times. Other issues include: long-term

stability and reconfigurability, and the exact role of the liquid crystal in nanotube align-

ment [199].

2.2.3 Summary

In general, evolution in materio is still in its infancy. New engineering technologies,

adaptations in the search method (or fitness criteria), changes in hardware (number of

electrodes, different pitch sizes, etc.) and new materials could all have a significant effect

on the field. The key components to the success of current EiM substrates lay in improve-

ments to the fabrication of materials and the interfacing system used for stimulation and

observation.

So far, early work has highlighted only one of many means of “programming” a ma-

terial via evolution (i.e., through discrete voltage inputs). Other controlling fields and

mechanisms (magnetic, thermal, optical, etc.), or even a combination, could be utilised to

manipulate and configure different materials, further increasing the distinction between

configuration and input signals. Many potential systems that possess such controlling

mechanisms have emerged recently (see section 2.3.8), but none have yet adopted the

evolution in materio concept.

2.3 Reservoir Computing

Reservoir Computing is the unification of three individually conceived methods for

creating and training artificial recurrent neural networks (RNN): Echo State Networks

(ESN) [86], Liquid State Machines (LSM) [127] and the Backpropagation-Decorrelation
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(BPDC) on-line learning rule [176].

A typical RNN model consists of a system of three layers: an input layer, a hidden

layer (the core network), and an output layer (see Fig. 2.3). The hidden layer contains

processing elements (neurons) that are interconnected through weighted synapses (con-

nection weights). The input and output layers are connected to the hidden layer, again

through weighted synapses. Variations on the types of connectivity, e.g. feedback from

the output to hidden layer or input layer to output layer, depends on the task and method.

When driven by an input, neurons activate, propagating information through the net-

work to other neurons through varying connection strengths. The presence of recurrent

connections can produce self-sustained activations, preserving a dynamic memory in the

network’s internal state.

Networks such as this have been shown to be theoretically very powerful and can be

both Turing equivalent [97] and good universal approximators of dynamical systems [60].

However, making the most of RNNs comes at a price, as they suffer from many training

difficulties, such as the computational expense of updating large networks, bifurcation

points, and sometimes falling into inescapable local optima when using gradient-descent.

Reservoir Computing offers an alternative training technique. It reduces the compu-

tational cost and removes the problem of degenerative gradient information that leads to

poor convergence in RNNs. But, the reservoir computing framework also goes beyond

traditional neural networks. Its training simplicity, black-box nature, and exploitation of

widespread dynamical characteristics allow it to encompass many more dynamical sys-

tems than just RNNs.

There are many “flavours” of reservoir, originating from two separate research fields

of machine learning and computational neuroscience. The first focusses on training dy-

namical systems for temporal learning tasks using artificial recurrent neural networks.

The second aims at realistically modelling the computational properties of neural micro-

circuits. A brief summary of the two main branches of RC are given below. For more

types and variations see [119].
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Figure 2.3: Example three-layer recurrent neural network.

2.3.1 Echo State Network

The Echo State Network (ESN) is a discrete-time neural network constructed from a

sparse, random collection of analogue neurons. The typical neuron model employed uses

the sum of its weighted inputs, applied to a sigmoid function (generally a hyperbolic-

tangent), to give the neuron state x(n) at time n. The state activations x(n) of these neurons

are termed as echo states [86], i.e. echoes of the input history. To propagate and hold this

history the network requires the echo state property, or more generally speaking, a fading

memory. The property itself is provided by the characteristic dynamics of the system.

An example ESN is given in Fig. 2.4. This consists of a random, static recurrent

network of neurons. The input u(n) is fed to the reservoir network W via the input layer

weight matrix W in. An extra input Wbias (labelled “1” in the figure) is provided to bias the

activation functions.

Each node/neuron in the hidden layer network (the reservoir) possesses a one-to-one

weighted connection to all nodes via the internal weight matrix W ; only a few weights

are non-zero, making the network sparse. When driven by the input, input states, network

states and echoes of each are captured in the reservoir network and observed as states

x(n).

The output layer represented by the weight matrix W out is trained using the reservoir

states x(n) and target signal ytarget(n) to minimise the error E between y(n) and ytarget(n).

For ESNs, different scaling parameters, and in particular the spectral radius ρ(.),

influence the characteristic dynamics of the system. These parameters fundamentally
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Figure 2.4: Echo State Network taken from [117]

alter and control the amount of memory and non-linearity present in the system. The ρ(.)

parameter is used to scale the weight matrix W so that the largest absolute eigenvalue

generally satisfies ρ(W ) < 1. Within this region the echo state property is said to be

assured. However, this is not always necessary [119].

A variant of the ESN model is the leaky-integrator neuron model, using a neuron that

possesses some form of memory of previous activations. These neurons contain a leaking

rate, or decay parameter α , which can control the speed of the reservoirs update dynamics.

The state update equation for leaky-integrator neurons is expressed as:

x(n) = (1−α)x(n−1)+α f (Winu(n)+Wx(n−1)), (2.1)

where f is the function of the neuron, typically a tanh sigmoid function.

As Jaeger [86] describes, each leaky-integrator neuron acts like a digital low-pass

filter enabling a discrete network to approximate the dynamics of a continuous network

(variations and uses can be seen in [86, 117, 119]). Dynamical systems have a natural

time-scale; understanding the time-scale on which the input is changing compared to the

time-scale of the system dynamics can be difficult. The leaky parameter α helps control

and mediate any differences in input time-scales.

2.3.2 Liquid State Machine

The Liquid State Machine (LSM) model arose as a method for defining the com-

putational properties and power of neural microcircuits, “an alternative to Turing and
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attractor-based models in dynamical systems” [126]. The LSM model represents a com-

petitive model for describing computations in biological networks of neurons. The LSM

attempts to model cortical micro-columns in the neocortex, structured in cortical layers

of randomly created spiking neurons based on a spatial embedding.

Networks based on LSM use continuous streams of data (spike trains) to achieve real-

time computations. Maass [126] argues that classical models cannot handle real-time

data streams based on spike trains. Unlike ESNs, LSMs are generally more adaptive sys-

tems, supporting additional advanced readout features such as parallel perceptrons [127],

although, in many cases, a linear readout is preferred.

Investigations using Liquid State Machines has highlighted the potential for more

abstract applications, for example, pattern recognition using a physical medium (water)

[55], and imitating LSMs in E. Coli [94].

2.3.3 Neuroscience

The conjecture that a simple linear classifier can extract complex computation from

distributed neuronal activity is clearly pertinent to physical processes that occur within

the brain. The brain encompasses a mass of highly complex architectures with specialised

regions undergoing different tasks. Ultimately, one might perhaps ask: is RC a suitable

metaphor for brain-like computing, or is it just another way of utilising neural networks

and making them more trainable? Furthermore, if we think about regions of the brain

acting as reservoirs from an evolutionary standpoint, how do these specialised parts evolve

if they are not simply learned?

It has been shown that regions such as the primary visual and auditory cortex can

operate in a similar fashion to a reservoir when an additional readout is applied. Nikolić

et al [148] use the primary visual cortex of a cat to test whether a simple linear classier

can extract information related to visual stimuli. Under anaesthesia, probes are placed into

multiple architectural levels within the cortex to simultaneously record different neuronal

activity. The visual stimuli used come in the form of different alphabetical letters to

induce spike train activity.

It was discovered that: the system’s memory for the past stimulation is not neces-

sarily erased by the presentation of a new stimulus, but it is instead possible to extract
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information about multiple stimuli simultaneously. This implies that multiple sources of

information, including that of previous states (i.e. memory) are superimposed upon the

network. This reportedly allows XOR classification on the input through linear classifier

extraction, directly showing that this region by itself is performing non-linear computa-

tion.

Klampfl et al. [98] show similar behaviour within the primary auditory cortex in re-

sponse to tone sequences. Similar mechanisms have also been identified as a possible

process used by mammalian brains in speech recognition [50].

2.3.4 Reservoirs and kernels

A reservoir can be interpreted as possessing kernel-like properties. A kernel acts as

a pre-processor, embedding input data into a vector space known as a feature space. It

is understood in many statistical machine learning methods that combining this feature

space with a simple linear discriminant algorithm can enable the learning of complex

non-linear functions.

In kernel methods this is achieved by projecting the input space u(n) into a high-

dimensional (possibly infinite-dimensional) feature space x(n) without paying the price of

its explicit computation, referred to as the kernel trick [162]. A kernel can therefore be ex-

pressed as the expansion function x(u(n)). However, there are two significant differences

between reservoirs and kernels: reservoirs do explicitly compute the input transforma-

tion, i.e. do not possess the kernel trick; and kernels are typically ill-equipped to handle

temporal signals. To tackle temporal tasks the learned function x(.) requires some form of

memory of previous inputs. Reservoirs solve this by utilising the network’s recurrent to-

pology, which creates memory by retaining previous state activations. The final expansion

function of the reservoir can therefore be represented as x(n) = x(x(n−1),u(n)).

Reservoirs use this pre-processing technique to map temporal features of the input into

a spatially defined feature map (the network). The desired features can then be extracted,

or combined, in a linear fashion to create the output y(n):

y(n) =W outx[u(n)] (2.2)

where W out ∈ RNy×Nx , and Ny,Nx are the number of output nodes and internal nodes
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respectively.

This enables reservoirs to tackle many temporal and dynamic real-world tasks not

possible using simple non-temporal kernels. Eqn. (2.2) also implies the system contains a

clear separation between the reservoir and the linear readout, separating the training pro-

cedure from the hidden layer, i.e. only W out is trained. As such, the kernel representation

offers a much faster and better converging mechanism compared to other RNN models,

as it does not suffer from vanishing gradients. This representation also classes reservoirs

as powerful adaptive filters. For more information on kernels see [170].

2.3.5 Reservoirs and criticality

To design an optimal reservoir one should find a good trade-off between: (i) the trans-

formation of the input that optimally boosts the linear classifiers capability, later referred

to as the “quality” of the kernel; and (ii) a sufficiently-long (fading) memory based on

the input history. These two properties often conflict: to obtain a useful memory requires

ordered behaviour and a rich transformation requires dynamic behaviour. Legenstein &

Maass [105] have shown that optimal reservoirs tend to experience the best trade-offs at

a critical point near the “edge of chaos”.

Dynamic networks are said to exhibit emergent criticality and self-organising prop-

erties [181]. These systems are characterised by motion in the phase space described as

trajectories or state transitions. A trajectory may converge towards (i.e., be attracted to)

a stable or unstable steady state; an attractor. Attractors vary from point – a point in

the state space that attracts trajectories into its basin – to strange and chaotic – attracting

trajectories, but inside diverge exponentially. These systems are very robust, small per-

turbations in the trajectory will tend to converge towards the same attractor. But, both

external inputs and parameter changes in the system can drastically alter the shape of

the phase space. Such changes may perturb a trajectory, moving or “clamping” the sys-

tem between different attractor basins. As a result, clamping may even create, remove

or change existing attractors and thus alter the initial phase space created by the natural

dynamics of the system [179]. The overall dynamics of the system can therefore, to some

extent, be controlled.

Early measurements of dynamics in reservoir-like systems can be found in [15] where,
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using a similar technique to Derrida & Pomeau [49], dynamic behaviour is measured us-

ing the Hamming distances between two output states. By observing a growth in the

distance between states it can be determined that chaotic behaviour is present; a decrease

in distance would indicate more ordered behaviour. This concept is similar to comput-

ing the characteristic Lyapunov exponent for a dynamical system, with both measures

analysing the sensitivity to differences in initial conditions.

Bertschinger & Natschläger [15] highlight two fundamental properties required for

these networks: a fading memory and a “network mediated” separation. A fading memory

is indicative of an ordered phase (memory) with some dynamics (fading). The same prop-

erty is found in both Liquid State Machines and Echo State Networks, referred to as the

“echo state property” in the latter. This allows the readout function to use information

from recent inputs and derive functions of those inputs from the network state. Network

mediated separation is deemed fundamentally important for input time-series networks,

with similarities to the separation property in LSMs (see [127]). The property requires

(ideally a large) diversity in network states that is the result of differences in inputs alone,

allowing characteristic features to be identified in the input, and that any changes in state

should not directly be a result of chaotic dynamics which could produce the same phe-

nomena. As such, this property enables a readout function to respond effectively to any

variation in the inputs.

Legenstein & Maass [106] propose two critical elements that characterise the com-

putational capabilities of a complex dynamical system (cortical neural microcircuits in

this case). These new measures, or properties, are proposed because Lyapunov expo-

nents are only useful for analysing a system’s dynamics, and are not necessarily helpful

in predicting good parameter regions that create high computational performance. These

two measures are the kernel-quality and the generalisation-capability. The kernel-quality

refers to the linear separation property found in kernels (section 2.3.4). An empirical

measure of this property is achieved by examining the complexity of functions that can be

carried out on the inputs that boost the classification power of a subsequent linear layer.

The generalisation-capability quantifies a system’s capability to generalise any learned

behaviour to a new input.

Boedecker et al. [16] extend these ideas to ESNs, and create a general framework

25



CHAPTER 2. CONTEXT

for direct and localised measurements for each neuron. Boedecker et al. give measure-

ments indicating the memory of each neuron and the transfer of information between

each neuron. This work highlights some interesting and relevant points for all systems:

a network does not necessarily need to be at the edge of chaos to do computation, the

measured region where a system is at the edge of chaos is not universal for all tasks, and

a critical state may maximise computational capabilities, but, such criticality may also be

unnecessary or detrimental to certain tasks.

2.3.6 Training reservoirs

The two methods for training the reservoir outputs, i.e. linear readouts, are: “off-line”

batch-mode training, using simple linear or ridge regression techniques (done once all

reservoir states are collected into matrix X for training length T ), and “on-line” train-

ing, often gradient descent-based, Recursive Least Squares algorithm (a useful extensive

investigation of RLS-type training is shown in [101]).

Off-line training

Reservoirs are traditionally trained in a supervised manner where the temporal input

u(n) and coupled target output ytarget(n) are provided. Given a desired output the system

can learn input-output behaviour by minimising the error (Eqn. (2.3)) between system

output and desired output:

E(y,ytarget) =

√
1
T

∑
T
t=1(y(n)− ytarget(n))2

σ2(ytarget(n))
(2.3)

To evaluate if the learned behaviour generalises accordingly, new input data is tested and

the error between the two are again compared.

The general update state equations for reservoir systems are defined in Eqns. (2.4) and

(2.5) for, discrete time n = 1, . . . ,T , internal state x(n) and output y(n):

x(n) = f
(

W inu(n)+Wx(n−1)+W f by(n−1)+W bias
)

(2.4)

y(n) = f out (W out [x(n);u(n)]
)

(2.5)

The function f is commonly represented by a sigmoid, typically a hyperbolic tangent.

In echo state networks this represents a basic tanh neuron, but varies depending on the
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application. In other networks, f can be designed to form linear nodes, threshold logic

gates or spiking neurons. In regards to the output y(n), f out may also be a non-linear

function (sigmoid) but tends to be the identity in most cases.

Reservoir computers are conceptually viewed as recurrent networks incorporating the

three-layered topology of Nx hidden nodes (neurons), Nu inputs and Ny outputs. The

weight matrices – input weights W in ∈RNu×Nx , reservoir/hidden layer weights W ∈RNx×Nx

and feedback weights (from the output to the reservoir, if needed) W f b ∈ RNx×Ny – de-

scribe the network and are all drawn randomly from a uniform distribution at creation and

remain static. The output weight matrix W out ∈ RNy×(Nx+Nu) is the only thing to change

and includes weights for the inputs as they act as additional states; hence the concatena-

tion of [x(n);u(n)].

Typically, the W matrix forms a sparse network by setting many of the weights to zero,

the other W in and W f b matrices can either be dense or sparse. Additional scaling para-

meters might also be applied to the matrices to govern properties such as non-linearity,

stability and global dynamics.

The bias W bias can be used to counteract training issues and large weights by adding

noise, acting as a regularisation parameter, or to push the tanh neuron to a particular state,

creating a smoothing effect.

Applying feedback W f b can be useful, or detrimental, to certain tasks. Some tasks

might not be learnt to a reasonable degree without feedback, or, certain systems may

require dynamics beyond what is supplied by the driven input to construct a suitable

output. Adding feedback comes with its own risks: feedback will ultimately change

the stability of the system and requires adaptations in the training procedure. It is often

advised to use feedback only when necessary. For more information see [117].

The off-line technique is completed in one training cycle T after the system has com-

puted all states for the given inputs. It provides a very fast training mechanism as it es-

sentially computes a linear model given by the known output Y , collected reservoir states

X and desired output Y target :

Y =W outX (2.6)

The collected state matrix X ∈ RNxxT is created when the input u(n) is run through

the reservoir states x(n). To avoid initial transients created by an initial zero state x(0),
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a section at the beginning of the training sequence is discarded in the state matrix X .

Essentially, the system goes through a “warming-up” process where states bounce around

rather than returning to the equilibrium output, i.e. the system is too chaotic to retrieve

any useful information about the input.

Given Eqn. (2.6), we can find the optimal weights that minimise the error between

y(n) and ytarget(n) by solving the overdetermined system:

Y target =W outX (2.7)

Equation (2.7) can be solved for W out using linear regression. The simplest method is

to use Ordinary Least-Squares (Eqn. (2.8)), but typically this method succumbs to stability

issues when inverting (XXT ).

W out = Y targetXT (XXT )−1 (2.8)

Lukoševičius [117] recommends using either ridge regression (regression with Tik-

honov regularisation β ) (Eqn. (2.9)) or the Moore-Penrose pseudo-inverse (Eqn. (2.10)).

Ridge regression is a stable and effective solution and is generally advised. Adding a reg-

ularisation parameter counteracts the problems of producing very large output weights,

which often indicates very sensitive and unstable solutions. Ridge regression with Tik-

honov regularisation is given as:

W out = Y targetXT (XXT +β I)−1 (2.9)

where I is the identity matrix and β the regularisation parameter.

Setting β = 0 gives the same method for solving linear regression in Eqn. (2.8). It is

therefore recommended to use a logarithmic scale for selecting β where it never reaches

zero [119].

The pseudo-inverse is applied in some cases typically because of it is straightforward

to implement in certain programming environments (e.g. MATLAB). However this comes

at a price. The pseudo-inverse method is computationally expensive for large matrices

of X and typically overdetermined. However, in most cases the network is made up of

relatively small matrices and over-fitting depends on the difficulty of the task. The pseudo-

inverse training equation is given as:

W out = Y targetX+ (2.10)
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where X+ represents the pseudo-inverse function on X .

On-line training

Some tasks require an on-line training method that adapts with time, minimising the

error at each time step. This implicitly turns W out into an adaptive linear combiner. The

Recursive Least Squares (RLS) algorithm (Eqn. (2.11)) is more commonly applied as it

overcomes the severely impaired convergence performance of the Least Means Square

(LMS) algorithm [88].

E(y,ytarget ,n) =
1

Ny

Ny

∑
i=1

n

∑
j=1

λ
n− j(yi( j)− ytarget

i ( j))2 (2.11)

Using RLS comes at a cost: the number of weights is quadratic rather than linear, and

it can still be numerically unstable in some cases. Other powerful on-line methods may

be useful to a practitioner, particularly in the presence of feedback connections, such as

Backpropagation-Decorrelation (BPDC) [176].

The RLS training procedure is described here, derived from [44]. First, set the error

forgetting parameter λ close to but less than one; the forgetting parameter controls the

contribution of previous samples. Next, initialise the autocorrelation matrix ρ(0) = I/δ ,

with δ being a small constant and I the identity matrix. At each time step compute the

output weights using the following steps:

Step 1: Calculate the reservoir state x(n) and output signal y(n) for input u(n).

Step 2: Calculate the error between target output ytarget(n) and system output given pre-

vious output weights:

e(n) = ytarget(n)−W out(n−1)x(n) (2.12)

Step 3: Update the gain vector K(n):

K(n) =
ρ(n−1)x(n)

λ + xT (n)ρ(n−1)x(n)
(2.13)

Step 4: Update the autocorrelation matrix ρ(n):

ρ(n) =
1
λ

(
ρ(n−1)−K(n)xT (n)ρ(n−1)

)
(2.14)
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Step 5: Assign new output weights W out(n) using (2.12) and (2.13):

W out(n) =W out(n−1)+K(n)e(n) (2.15)

For more readout training methods including feedback training (such as FORCE train-

ing), supervised, unsupervised, reinforcement learning, etc., consult the review [119] and

practical aid [117].

2.3.7 Adaptation and pre-training

Adaptive reservoirs, ones that change weights or configuration, are inspired by natural

adaptation in biological neurons. These adaptive processes are the result of persistent

changes in a neuron’s electrical properties, governed by unsupervised local adaptation

rules often referred to as Intrinsic Plasticity (IP). These rules represent a homeostatic

mechanism in which neurons self-modify their intrinsic activity (i.e. excitability). Using

such learning rules has been shown to increase robustness and performance when pre-

training reservoirs [164, 177]. For an overview of past trends including both local and

global adaptation schemes, see [118, 119].

In classical RC, reservoirs are generated randomly, hence the performance of each

reservoir varies on creation. Reservoir computing boasts its training performance on the

separation between the reservoir and readout. The readout training, at its core, is quite

inexpensive, allowing other forms of reservoir pre-training, i.e. generating reservoirs

deterministically for each task. Even a crude search such as selecting a reservoir which

produces the smallest error from a pool of randomly-created reservoirs highlights the

advantages of pre-training.

Evolutionary algorithms are one potential search strategy for pre-training. Investig-

ations using evolutionary optimisation are well documented. Many strategies have been

attempted, including evolving topologies (i.e. network size), weight matrices (such as

W in,W,W f b), global parameters (e.g. spectral radius), connection density, adapting slopes

of the activation function f (.) and even training W out when no target signal is available.

Other interesting methods include EvoLino, evolving hidden connections to gradient-

based long-short term memory (LSTM) RNNs [161], and using Neuro-Evolution of Aug-

mented Topologies (NEAT) as a meta-search algorithm for evolving ESNs [31]. All have
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shown great potential, highlighting the performance increases and optimisations reser-

voir pre-training can create for specific tasks. However, evolution is not the only suitable

heuristic, others are still (as of 2018) under investigation for pre-training.

2.3.8 Reservoir Computing with Unconventional Substrates

Any high-dimensional dynamical system with an observable state x(n) that is a result

of input u(n) could form the basis of a reservoir according to [119]. This implies that

any material that can exhibit sufficient dynamics and a fading memory could, at least

theoretically, be adopted as a reservoir.

In recent years, this redefinition has marked a mass shift in the reservoir computing

community, leading to a “zoo” of possible reservoir computing substrates. With each

system the structure and methodology of the RC paradigm is exploited, separating the

physical system into two constituent parts: the “reservoir” (the dynamical system) and

the interface mechanism (the input and readout).

A novel example of this migration, and an excellent analogy of the reservoir comput-

ing paradigm in general, was first demonstrated with the LSM model, where the “liquid”

(reservoir) was physically instantiated by a bucket of water [55]. In that experiment, by

applying an external stimulus one could identify dynamic states encoded in the ripples

on the surface of the water. Then, using these states as the basis of a trained system the

authors could exploit the resulting wave interactions to solve logic gate and classification

problems.

A decade later, a variety of new physical reservoir computers were proposed. For ex-

ample, based on optoelectronics (using delayed feedback) [10, 104], memristive devices [102,

21, 29], and non-CMOS devices [99].

Two systems that demonstrate this trend towards unconventional substrates are silicon-

based photonic chips (based on nanophotonic crystal cavities) [58, 192], and Atomic

Switch Networks (ASNs) [171, 183, 184].

The photonics chip primarily exploits the propagation of light through silicon. Inside

these chips are photonic crystals that remove the propagation of certain frequencies of

light, known as the band gap. Adding a line defect to a crystal produces a photonic crystal

waveguide, effectively a process by which light is forced between the defect. Cavities
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are then created along the line defect to create an optical “resonator” which traps light,

increasing the power inside the resonator. These resonators then form an optical reservoir

which can be trained and manipulated using different types of readouts. For example,

[192] creates a linear system, and the non-linearity is added at the readout through the

inherent non-linearity of the measuring equipment. Methods such as this propose an

interesting optical option for hardware-based reservoir computing.

The atomic switch network approach focuses on the electrical and chemical properties

of a material. These networks attempt to mimic the vast complexity, emergent dynam-

ics, and connectivity of the brain. Highly-interconnected networks are constructed by

bottom-up self-assembly of silver nanowires. Through a triggered electro-chemical re-

action, coated copper seed nucleation sites spawn large quantities of silver nanowires of

various lengths, from nano- to millimetre scale. Large random networks are formed, cre-

ating crossbar-like junctions between nanowires, and when exposed to gaseous sulphur

create Ag|Ag2S|Ag nanoscale metal-insulator-metal (MIM) junctions. Applying external

activation (a bias voltage) to these junctions creates a temporary resistance drop, leading

to functional memristive junctions called Atomic Switches. Applying this construction

and functionalisation process the ASN method offers some unique properties, such as

scalability and practicality in creating highly-complex nanoscale substrates.

The emergent behaviour and dynamics of ASNs are observed through fluctuations

in network conductivity, a result of spontaneous switching between discrete metastable

resistance states, where locally excited regions cause cascading changes in resistance

throughout the system. As such, the non-linear responses to resistive switching are re-

ported to result in higher harmonic generation (HHG), also suggested as a useful measure

for quantitatively evaluating reservoir dynamics [171].

Many more physical substrates and reservoir computers exploiting physical inter-

actions exist and have emerged since. These include light-stimulated nanoparticle net-

works [197]; memcapacitive [190]; quantum [151, 59]; spintronic [189]; carbon nanotube-

based [40, 186]; soft robots [144]; tensegrity structures [28]; magnetic [155]; and other

memristor-based reservoirs [51]. A recent detailed review of physical reservoir com-

puters, categorised into groups, is given in [185].
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Exploiting the Reservoir model

Optimal reservoirs w.r.t. Kernel “quality”, dynamics (edge 
of chaos?), memory capacity, generalisation property 

All possible configurations All possible Reservoirs

sub-optimal 
reservoirs

Functional 
configurations

Figure 2.5: Applying the reservoir model we argue that any material, and subsequent

configuration, can represent reservoirs of varying quality. Pre-training through configura-

tion is therefore used to find and discover functional/useful reservoirs within all possible

material states. We also argue that there is a region that optimal reservoirs exist where

convenient informational measures (“metrics”) perform best.

2.3.9 Summary

A key advantage to using the reservoir computing paradigm is that there is no re-

quirement to control individual elements within the system, instead, the training process

focusses on extracting observable macroscopic properties. This makes it applicable to

many complex structures where the exact arrangement or manipulation of internal ele-

ments is either too time-consuming, too delicate/complex to implement, or impossible

to achieve. However, to determine whether a substrate is computationally exploitable

depends upon both underlying physical characteristics and the observable phase space.

In some cases, a physical substrate is computationally useful only when configured or

perturbed, as hypothesised and shown in evolution in materio (section 2.2). Therefore, to

form a useful reservoir that provides a high-dimensional expansion of the input(s) may re-

quire the tuning of physical parameters. This itself implies that a single substrate typically

realises a variety of reservoir computers through different physical configurations.

In Fig. 2.5, a conceptualisation of all possible configurations and their reservoir equi-

valence (in terms of reservoir “quality”) is given. Using this view, we argue that through

physical perturbation and computer controlled evolution some physical substrates can
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produce reservoir configurations that ideally fit specific tasks. And perhaps, some may be

able to realise a wide selection of reservoirs across the quality spectrum, leading to more

generic/universal physical computing substrates.

To interpret a physical substrate as a reservoir, we define that the observed reservoir

states x(n) form a combination of the substrate’s implicit function and its discrete obser-

vation:

x(n) = Ω(E (Winu(t),ucon f ig(t))) (2.16)

where Ω(n) is the observation of the substrate’s macroscopic behaviour and E (t) the con-

tinuous microscopic substrate function when driven by the input u(t) and the input weight

matrix Win. The variable ucon f ig(t) represents the substrate’s configuration, whether that

be through external control signals, an input-output mapping, or other method of config-

uration.

This formalisation of the reservoir states characterises each contributing part of the

entire system, including the observation and configuration method, that as a whole rep-

resents a physical reservoir computer.

In the next chapter, this formalisation is applied to a uniquely interesting and hard

to model physical substrate consisting of carbon nanotubes – similar to those used in

the NASCENCE project. The objective is to explore the configuration/reservoir space

utilising computer-controlled evolution to solve benchmark tasks.
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Evolving Reservoir Computers

3.1 Carbon Nanotube Reservoir Computing

Reservoir Computing is presented as a useful general theoretical model for many

dynamical systems. Here, the first steps to applying the reservoir model as a simple

computational layer to evolvable hardware is shown. It is argued that many physical sub-

strates can be represented and configured into working reservoirs given some pre-training

through evolutionary selected input-output mappings and targeted input stimuli.

This chapter investigates the use of computer controlled evolution (CCE) to configure

single-walled carbon nanotube and polymer composites for reservoir computing. Through

evolution, a form of pre-training is performed on the dynamical system – which might not

necessarily be a natural reservoir candidate – into a functional and optimisable reservoir

computing system. This is demonstrated on two temporal reservoir computing tasks: the

Nonlinear Auto Regressive Moving Average task (NARMA) and the wave generator task,

each requiring different internal characteristics.

3.1.1 Carbon nanotube-polymer composite

The materials under investigation were fabricated within the NASCENCE consortium

[18]. The earlier NASCENCE project aim was to investigate candidate materials and tech-

niques for configuring materials for computation. It was concluded that carbon nanotube

and polymer composites exhibited interesting information processing capabilities tunable
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Figure 3.1: Substrates under test. Top left, SWCNT/PBMA mixture with a concentration

of 1% SWCNT by weight. Top right, SWCNT/PBMA 0.53%. Bottom left, gold resistor

array. Bottom right, SWCNT/PMMA 0.1%

through evolution.

In this experiment three carbon nanotube-based test subjects with varying composi-

tions are evaluated (see Fig. 3.1). In addition, two system “settings” (short-circuit and

open-circuit) and a resistive network are evaluated. The intention is to determine how

much the system as a whole is being evolved and to demonstrate the computational cap-

ability using only resistivity.

Test subjects one and two are single-wall Carbon Nanotube (SWCNT)/ polymer mix-

tures with SWCNT concentrations of 0.53% and 1% (by weight) mixed with poly-butyl-

methacrylate (PBMA) dissolved in Anisole. Test subject three is a 0.1% SWCNT mixture

with poly-methyl methacrylate (PMMA).

The application process of each entails approximately 20ml of the mixtures being

deposited onto glass slides with etch-patterned electrodes. Heat is then applied (∼ 100◦C

for 1hr) to evaporate the anisole and dry the solution in place. To maintain structural

integrity, the heating equipment is switched off and the material is left to cool slowly. In

the final result, a thick film is left covering the electrodes.

The electrodes are patterned onto glass through photo-lithography. Each glass slide

has 12 chromium/gold-contact (40 to 50 µm contact diameter and 100 to 150 µm contact

spacing) micro-electrodes arranged in either a circle or square array.

The random formations and settling of SWCNTs within the samples fluctuate con-

siderably. Conductivity of each material is determined by SWCNT density and electrode

contact. The heterogeneous behaviour of the material results from the dielectric proper-
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ties of the polymer and the shifting electronic properties of networks formed from both

semi-conducting and metallic SWCNTs.

The electronic properties of the dispersed nanotubes are approximately one-third metal-

lic nanotubes and two-thirds semiconducting nanotubes. The relative size of the nan-

otubes (100nm to 1000nm length and diameter between 0.8nm and 1.2nm) is significantly

less than the gap between the electrodes (between 100 to 150 µm), suggesting that the nan-

otubes form conductive pathways between the electrodes. The polymer mixed with the

nanotubes acts both as a dielectric and as a suspension for the nanotube network. More

information on these disordered materials can be found in [132].

Test subject four is a reference material: a gold resistor array patterned onto a glass

slide with multiple connection points using etch-back photo-lithography. The resistor

array is arguably simpler and more stable with known internal resistance values. This

test subject is used to determine whether the technique can be applied to linear mediums

and what, if any, are the advantages of SWCNT-based materials over simple resistive

networks.

The open and short circuit settings are applied to verify the significance the material

has on the evolvability of the system, that is, to pinpoint what is doing the computation.

In the open-circuit no material is connected; the system is simply left to find a solution

through system noise, or from unknown characteristics within the system. The conductive

sheet (copper tape) is used as a short-circuit connection to assess if the material has any

advantageous properties beyond conductivity.

3.2 Hardware Setup

The interface, recording and stimulation equipment used in this experiment forms a

hybrid digital/analogue hardware loop using off-the-shelf Data Acquisition (DAQ) Cards.

Computer controlled evolution (CCE) is performed in the digital space on a connected

desktop PC using a MATLAB interface. In the analogue/physical space, the material is

stimulated using a National Instruments Data Acquisition Card (NI PCI-6723) supplying

analogue output signals, which can be routed to any of the electrodes interfacing the

material via an Analog Devices (AD75019) 16×16 analogue cross-point switch. An NI
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Evolution on PC

Voltage 
in/out

Signal 
routing

Material

Figure 3.2: Hardware Interface. PC stimulates material via routing matrix.

DAQ card (NI PCI-6225) is used to record analogue inputs from the electrode array via

the cross-point switch in the same manner.

The cross-point switch designates which electrodes and DAQ card channels are cur-

rently in use and what role each electrode performs. When the evolved configuration is

registered on the cross-point switch, bidirectional communication is established between

both DAQ cards and the electrodes. An overview of the system is presented in Fig. 3.2.

3.3 Training and Evolution

Within the earlier NASCENCE project multiple control signals were investigated,

such as complex signals like evolved square waves [123, 147]. However for this experi-

ment, control signals are restricted to static voltages to avoid any possible interference, or

artefacts, that evolution may create in respect to temporal tasks.

The electrical configuration of the substrate is exclusively carried out through the

placement and adjustment of static control voltages. The aim is thus to configure the

internal characteristics of the substrate by perturbing the natural dynamics, conductivity

and signal processing abilities, for example, by creating local or global biases through

targeted control voltages.
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3.3.1 Evolutionary Algorithm and Representation

The encoding of the configuration is represented by a 21-gene genotype. Every gene

is open to mutation and subdivided into: electrode assignment (genes 1–12), redundant

genes (genes 13–16), values of static input voltages (genes 17–20) and input scaling on

u(n) (gene 21). Genes 1–16 are integer values, all other genes are floating point numbers

with a precision of 4 decimal places. Genes 17–20 range between [−5V,5V] and gene

21’s range is either [0V,2V] for the NARMA task (already pre-scaled by factor of 10) or

[0V,5V] for the wave generator task.

The genome design allows evolution to decide both the number of readouts and the

number of static input voltages the substrate is subjected to. At genotype creation, and

under the mutation operator, a maximum of 10 possible readouts (referred to as measur-

able reservoir states, ROn in Fig. 3.3) are possible. This is due to the input signal u(n) and

ground (GND) always being required. A maximum of 4 static control voltages can also be

applied simultaneously. This feature (implemented by redundant genes) allows evolution

to converge towards any assignment, such as 6 readouts and 4 configuration voltages, or,

8 readouts and 2 configuration voltages (Fig. 3.3), as long as the required phenotype size

of 12 is always adhered to.

The input scaling gene scaling u(n), effectively an input gain parameter, is added as

the material may require varying input-data intensities under different electrical config-

urations. The gene is initialised at the maximum value for the given task, then left to

evolve.

The physical instantiation of the genotype – the phenotype – is implemented via the

cross-point switch. The interfacing equipment is set so that all accessible inputs and

outputs are connected to the switch. The switch then directs which DAQ channels com-

municate to the electrode array through the values in genes 1–12, realised in hardware by

a 256-bit digital input (SIN) to the switch.

3.3.2 Training cycle

The implemented genetic algorithm applies an elitist 1+λ evolutionary strategy. Gen-

eral parameters of the algorithm are: a population of 5 (λ = 4), 150 generations, 10 repeat
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Figure 3.3: Physical reservoir representation using electrodes. Each assigned readout

electrode (ROn) forms the reservoir state. The configuration voltages (Vn) location and

value are decided by evolution. The W out matrix is calculated and applied in the digital

domain.
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Figure 3.4: Reservoir work flow through time: combined evolution and regression train-

ing procedure. Generational loop highlights the switch assignment process and train-

ing/validation process. The final evaluation process of the found solution is expanded.
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Algorithm 1 Material Training algorithm
1: Initialise population

2: Calculate fitness/cost of population

3: for each generation gen to max gen do

4: Determine fittest individual from previous generation

5: Designate fittest as parent

6: Create Offspring through mutation

7: for each offspring i to λ do

8: Reset cross-point switch . Ground material

9: Load genotype into switch

10: Run on training set

11: Train using Ridge Regression . Store weights

12: Run on validation set

13: Reapply saved weights

14: Assign fitness/cost to offspring . Store fitness/cost

15: Reapply best configuration and saved weights on test set

16: Calculate final NRMSE value

runs. In the elitist 1+λ strategy the λ , referred to as the offspring, are mutations-only of

the previous generation’s fittest individual. In this setting, only one individual’s genes

persist between generations. In the rare case that a child has the same fitness as the par-

ent, the child is selected to pass on its genes. This allows evolution to neutrally sweep the

search space if no immediate fitness change is present.

Within the evolutionary loop, fitness is measured as the performance of the configur-

ation on an unseen validation set. In the first stage of the fitness calculation, the material

is stimulated with training data and the materials states (electrode outputs) are collected

and used to train the readout. Both configuration and trained readout are then tested on

the separate validation set and the error is given as the fitness/cost.

The full procedure is shown in Fig. 3.4 and given in pseudo-code in Algorithm 1.

First, a random initialisation of the material is performed. Next, the evolutionary run

commences, cycling through the generational loop. This loop comprises: a physical re-

setting (grounding) of the material; the application of a new switch assignment (material
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“configuration”) for every individual; and the readout training process performed on the

electrode outputs. As previously stated, the fitness of every new individual is calculated

on the validation set using the Normalised Route Mean Squared Error (NRMSE) between

trained outputs and a target signal. The final result, calculated on the best individual found

in the evolutionary run, is the NRMSE calculated on another unseen set the test set.

3.4 Benchmark Tasks

3.4.1 NARMA task

The NARMA task originates from work on training recurrent networks [11]. It evalu-

ates a reservoir’s ability to model an n-th order highly non-linear dynamical system where

the system state depends on the driving input as well as its own history. The challenging

aspect of the NARMA task is that it contains both non-linearity and long-term dependen-

cies created by the n-th order time-lag.

An n-th ordered NARMA experiment is carried out by constructing the output y(n)

given by eq.(3.1) when supplied with u(n) from a uniform distribution of interval [0, 0.5].

For 5-th and 10-th order systems the following parameters are set: α = 0.3, β = 0.05,

δ = 10 and γ = 0.1.

y(n+1) = αy(n)+βy(n)

(
δ

∑
i=0

y(n− i)

)
+1.5u(n−δ )u(n)+ γ (3.1)

The NARMA-10 task is a widely accepted benchmark applied to many different reser-

voir architectures. This makes it an ideal comparison task; however, the task is rarely

attempted with reservoir sizes as small as 12 nodes, which is the maximum number of

electrodes available here. Therefore, an exact comparison is challenging when comparing

to the literature, particularly on reservoirs quoting upwards of a few hundred reservoir

nodes.

The NARMA-5 task is presented as its considered a simpler task to the 10th-ordered,

because it requires less memory. This was chosen to determine what level of task com-

plexity the material (under its current limitations) can comfortably operate within.
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3.4.2 Wave generator task

The wave generator task requires the transformation of an input waveform (a peri-

odic signal) to create new waveforms using temporal features such as phase shifts, delays

and harmonic generation. The task is based on Fourier analysis, where different com-

plex waveforms can be expressed as a series of sinusoidal waveforms. The task was first

presented as a benchmark for neuromoprhic Atomic Switch Networks using reservoir

computing [171]. The task requires the reservoir to output four separate waveforms sim-

ultaneously, given a single input sine wave. Each trained output waveform, a sawtooth,

square, cosine and sine wave double the original frequency requires different harmonic

and phase properties. For example, the square wave requires only odd harmonics, the

sawtooth requires both even and odd harmonics, the cosine requires a 90 degrees phase

shift, and the double frequency sine wave requires only the first harmonic.

The general performance of Atomic Switch Networks on this task are reported in [171,

183] with input frequencies around 10Hz. The most recent results show task performances

using a 64 electrode set-up in [47].

In the following experiments an input frequency of 1 kHz is selected, rather than 10

Hz, as evidence suggests SWCNT/polymer materials tend to produce more interesting

dynamics at higher frequencies [146].

3.5 Results

3.5.1 Control Substrates

The first notable result shows that the materials-under-test, when evolved and con-

figured, outperform both the conductive sheet and the open system. This implies the

material has a significant impact on the overall computing system.

The performances of each test material are shown in Fig. 3.5 for the NARMA-5 task

and Fig. 3.6 for the NARMA-10 task. For the NARMA-5 task the resistor network pro-

duces very similar results but with smaller variance. This variance however increases

when moving to the harder NARMA-10 task. In some cases, and for NARMA-5 in par-

ticular, the SWCNT materials outperform the resistor array but overall appear to have no
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Figure 3.5: NARMA-5 plot of train and test error of 10 runs across all materials (lower

error is better fitness).
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Figure 3.6: NARMA-10 plot of train and test error of 10 runs across each material.
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significant difference between them. This suggests at this stage, and on these tasks, the

materials possess little more than resistivity, with little or no memory present. And as a

result, they perform equally poorly on the two tasks.

3.5.2 Nanotube Density and Stability

Three nanotube concentrations are examined in this experiment. According to the

results in Fig. 3.5 and Fig. 3.6 nanotube concentration appears to have a minimal effect

on performance for the NARMA tasks.

As seen on the NARMA-5 task, the 0.1% has more variance in its test error, suggesting

configurations are potentially less stable than the other two. For example, output weights

appear to be severely effected by noisy output states, causing over-fitting in the training

error and poor performance on unseen data.

For the NARMA-10 task, the variance in general almost halves. It is hypothesised

here that the general poor performance of all configurations explain this result. If training

struggles to isolate enough distinct and interesting output signals little improvement or

loss in performance will be present.

Stability of configurations is a common problem with this material and setup. In many

cases, reapplying the same configuration can result in different output errors. This is re-

ferred to here as solution drift. To try minimise drift, steps such as the grounding/resetting

of the material occur frequently. However, aspects of the material’s physics, such as ran-

dom charge pathways, variable hopping and temperature-effected potential barriers [132]

are problematic features that are always present. A simple solution to improve accuracy

and remove drift is to collect multiple readings and average them, or disregard configura-

tions with large drift enforcing a selection pressure towards more stable configurations.

3.5.3 Memory Capacity

The required memory capacity (MC) of each task correlates to an input lag on the two

NARMA tasks. After every evolutionary run, each material is reconfigured with the fittest

individual and memory capacity measured (using the measure given in section 8.3.3).

The memory capacity of each configuration, for each task, is shown in Fig. 3.7. The
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Figure 3.7: Memory Capacity of all test subjects post-evolutionary configuration, across

10 runs.

measured MC changes only minimally and not significantly, despite the difficulty of the

tasks. This could be attributed to a number of possible factors. For example, the material

cannot increase its MC given the small number of readouts available. However, MC

should not be limited by the number of readouts as the internal structure and dynamics

do not possess the same limitations. An alternative conjecture is that the method that

evaluates the material’s memory capacity is too susceptible to noise and is therefore why

very low values are produced. Ultimately, the simplest explanation is that the materials

simply do not possess the right characteristics to retain a significant memory at the current

input-output time-scales, e.g., the material’s time-scale is much faster than the recording

equipment.

The open system has a very small MC but the conductive sheet appears on average

to possess a consistently larger MC. This puzzling result (later explained in Chapter 6)

makes it somewhat challenging to determine what significant behavioural differences are

at play between the test subjects and the conductive sheet when observing memory capa-

city alone.

3.5.4 Harmonic Generation

Results of the wave generator task are shown in Table. 3.1. As with the NARMA

tasks, similar trends are present; the conductive sheet and open system perform poorly

but the resistor array produces similar performance ranges. The PBMA (0.53%) material
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Material Sawtooth Cosine Square Sine (2t)

Avg(Std)/Best Avg(Std)/Best Avg(Std)/Best Avg(Std)/Best

0.1% 0.487(0.11)/0.347 0.079(0.06)/0.019 0.293(0.04)/0.245 0.767(0.36)/0.242

0.53% 4.358(6.85)/0.325 2.915(5.60)/0.004 2.074(2.89)/0.289 8.986(20.1)/0.255

1% 0.569(0.24)/0.373 0.069(0.08)/0.022 0.308(0.10)/0.213 0.881(0.69)/0.326

Resistor 0.499(0.11)/0.365 0.038(0.03)/0.005 0.382(0.06)/0.261 0.705(0.36)/0.195

Cond. sheet 3.262(8.65)/0.460 1.025(1.98)/0.20 3.619(10.1)/0.353 0.895(0.47)/0.609

Open sys. 0.750(0.05)/0.697 0.121(0.02)/0.102 0.669(0.08)/0.579 1.000(0.00)/0.999

Table 3.1: Wave Generator results for an input 1 kHz sine wave. Test Error is given for

10 runs.

produces the best task performances averaged across all waveforms. However, across the

10 runs more poor solutions are found compared to the other materials – again suggesting

a possible configuration stability issue.

To visualise how well the substrates perform the task, trained outputs of the configured

PBMA (0.53%) material are displayed in Fig. 3.8 relative to target outputs. Visually, we

can see the performance difference across the waveforms, and in particular, the increased

difficulty experienced on the sawtooth task.

3.5.5 Comparison to other Substrates

An exact comparison cannot be made, however an estimation of how well the sys-

tem performs on the NARMA tasks, despite restrictions, can be made when compared

to other reservoir systems. For an optoelectronic reservoir [153] consisting of a 50-node

psuedo-network and trained on the NARMA-10 task an NRMSE ≈ 0.41 can be reached,

and various sized simulated-reservoirs fluctuate between an NRMSE of 0.4 and 0.9 in

[196]. The best performances found here are NRMSE’s ≈ 0.72. This is not considered

competitive, however the physical restrictions and how many trainable states are available

suggest the materials perform modestly in comparison.

On the wave generator task, the materials appear to be very competitive. In Table. 3.2,

the best configuration found with the PBMA (0.53%) material shows lower task errors
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Figure 3.8: Trained reservoir output (PBMA 0.53%) plotted against the desired output

for each waveform. All waveforms are trained and outputted simultaneously.

Material Sawtooth Cosine Square Sine (2t)

ASN 0.1071 0.0028 0.0451 0.0910

PBMA (0.53%) 0.0352 0.0001 0.0830 0.0325

Table 3.2: Best wave generator results compared to best Atomic Switch Network [183].

Test Error (Mean Squared Error) given for best configuration on best material (PBMA

0.53%).
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Figure 3.9: Power Spectral Density of readout states on the wave generator task for the

PBMA 0.53% material. The main plot shows an increase in harmonic behaviour when

the material is “configured”. The subplot shows the unmodified material given an input 1

kHz sine-wave.

than the Atomic Switch Network.

3.6 Summary

This first investigation shows that small configurable (analogue) devices can be trained

as reservoirs to tackle difficult system modelling and temporal tasks. However, the res-

ults leave room for improvement. The NARMA-10 task results are modest in comparison

to optoelectronic reservoirs that use much larger reservoirs (50-nodes and more) and a

ingenious reservoir encoding: representation through a pseudo network using pre/post-

processing and a long delay line, overcoming the memory problem. For the wave gen-

erator task, the configured materials are competitive with or outperform Atomic Switch

Networks in [171]. When compared to control subjects (open system and conductive

sheet), the carbon nanotube-polymer composites are shown to be computational interest-

ing and central to the computing system.

Despite modest performances, the experiments do show that some materials possess

exploitable electrical properties that may not naturally occur without targeted stimulation.
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Fig. 3.9 highlights this, showing increased harmonic behaviour that occurs only under

configuration: the sub-plot shows only the first three harmonics occur when unconfigured,

versus eight or more harmonics when configured.

The biggest limitation in the presented work is the size of the electrode array. The 6

to 10 input electrodes (and hence reservoir nodes in the model) is small in comparison to

typical numbers of nodes in simulated and hardware-based reservoirs (often hundreds).

With larger electrode arrays there is potential to increase performance, as the training

procedure has an increased number of internal states and spatial diversity to exploit.

In the next chapter, further analysis of the framework is conducted focusing on aspects

such as how computer-controlled evolution compares to random search and how consist-

ent the solutions are over time. Additional investigations are also conducted to improve

performance of the substrate by refining the input encoding.
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Chapter 4

Analysis of the Reservoir Computing in

materio

In this chapter, a more detailed analysis of the reservoir computing in materio frame-

work is given. So far, carbon nanotube-polymer composites appear somewhat compatible

with the reservoir computing framework when configured through evolution. However,

mixed performances have provided little information about whether the current approach

is optimal. In the following experiments, four key features are assessed, or implemented:

• The performance of the search algorithm is evaluated compared to random search.

• The input mechanism is adapted to align with the weighted, multiple location input

mapping traditionally used in reservoir computing.

• A filter for the observed states is introduced to match the natural time-scales of the

material to the time-scales of the task.

• The configuration drift and performance reproducibility is assessed.

At this stage, the first two control subjects (open and short-circuit system settings)

are removed from future experiments. This leaves the three carbon nanotube composites

(0.1%, 0.53%, 1% w.r.t SWCNT density) and resistor network.

Results for the above intend to determine whether the observation and configuration

methods are suitable, and if they can be tuned further to improve task performance.
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4.1 Comparisons to Random Search

To configure a substrate into a working reservoir a variety of parameters exist, such

as the placement of task input-outputs and the placement of control signals and their

voltage value. In the previous chapter, the values and choices of these parameters were

evolved using an evolutionary algorithm. However, the computational advantage of using

evolutionary search over random search has not yet been established. The assumption that

computer-controlled evolution is more efficient than random search at creating reservoirs

in materio is at this stage unproven.

Configuration through random search is documented only once in the evolution in

materio literature, with Harding’s evolvable Liquid Crystal Display [72]. In that work,

Harding concluded that using random search alone was not sufficient to create the de-

sired non-linear functions for that particular hardware platform. This assumption carried

forward to other platforms within the NASCENCE project with few, if any, comparisons

made to random search again. However, conducting a separate investigation into random

search for any new computational machine is essential as fundamental differences will be

present in hardware, representation, encoding and training methods.

For the first experiment, random configurations are simply compared to evolved con-

figurations. To make a fair comparison, the number of random configurations are equal

to the number of evaluations in the genetic algorithm, thus the same number of reservoirs

are created and assessed.

4.2 Input Mechanisms

The standard input mechanism applied in the evolution in materio technique is to

assign each input to a single electrode. In the second experiment, the one-for-one input

mechanism (Fig. 4.1a) is compared to a one-to-many input mechanism (Fig. 4.1b) where

the task input is supplied to multiple electrodes on the material, each being multiplied

by some weight. This technique is more typical of the traditional reservoir computing

method, where each input source is connected to the network via an input weight matrix

Win. No experimental data or intuition on this type of input mechanism is discussed in the
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Figure 4.1: Example input mechanisms; a) configuration through static voltages, and b)

using multiple weighted inputs to various locations on the array. For the input-weighting

scheme, each input ui(n) is multiplied by a weight stored in the genotype.

evolution in materio literature. The hypothesis here is that adding multiple signal sources

could promote more complex interactions, activating regions where the material may be

electrically weakened, or isolated from the input.

The input weights, i.e. signal gains, are chosen through evolution and are bounded

between [−5V, 5V]. If input-weighting is used, the control signals are not in use. This is

due to current hardware limitations on the size of the electrode array (12 electrodes). In

total, evolution is restricted to 5 weighted inputs at any one time on the electrode array.

In an ideal scenario, using both a weighted input mechanism and controls signals may be

desirable, but not realistic on the current size of array.
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4.3 Time-scaling

The ability to adjust the temporal response of the reservoir with respect to both the

input and desired output can be advantageous. A simple example is to adjust the internal

time-scale of the reservoir to the sampling rate at which the data was collected [91].

Time-warping invariant ESNs (TWIESN) do this when sampling from continuous data to

discrete data overcoming common time-warping problems within recognition tasks [121].

Multiple time-scaling methods have been investigated for reservoir computing, including

input and output re-sampling and time-scaling at precise points within the state collection,

e.g. before and after any non-linearity is introduced [163].

For a physical reservoir system, the reservoir substrate will function on a natural time-

scale which may or may not be adaptable. Developing a method to match the substrate

and task time-scales could offer additional improvements in performance.

In the third experiment, an external Leak Rate parameter derived from Leaky Integ-

rator Echo State Networks (LI-ESN) [91, 163] is applied and adjusted to control the

time-scale mismatch. To fit the practicalities of the system, leaky integration has to be

performed after the observation function. Effectively, this turns the leak rate parameter

α into a simple adjustable digital low-pass filter, producing a smoothing effect which

controls the speed of the reservoir’s dynamics. The filtered reservoir state is represented

as:

x̃(n) = (1−α)x(n−1)+αΩ(E (u(t),ucon f ig(t))) (4.1)

y(n) =Wout x̃(n) (4.2)

The parameter α has a range between [0,1]; it neither retains, nor leaks beyond the

original boundaries of x(n). Low values of the leak parameter a induce slower dynamics

coming from the driving input and when time-scaling is not used, i.e. α = 1, Eqn. (4.1)

reduces to Eqn. (2.16). The final output of the filtered system is given in Eqn. (4.2).
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Gene No. 1 2 3 4 · · · 12 13 · · · 16 17 · · · 20 21 22

Info. 12 8 13 4 · · · 10 7 · · · 14 2.435 · · · −2.945 5 1

Figure 4.2: Example Genotype. Any gene within the first 16 genes, ≥13 represents a

configuration or weighted input. Genes 17 to 20 represent the static voltage input or input

signal gain depending on the input mechanism in use.

4.4 Training Process and Encoding

The genotype representing the electrical configuration is extended to 22 genes in the

following experiments. The first 12 genes hold the functional role of each electrode on the

array, i.e. whether an electrode is an input, output, or an additional control signal/weighted

input. An additional 4 inactive genes are added to allow evolution to dynamically select

the size of the reservoir, i.e. the number of material states in use. The next 4 genes

represent the floating-point values for each control signal, or, the weight value if the input-

weighting mechanism is used. The final two genes in the genotype hold the floating-point

value for the time-scaling parameter (α) and the weight value for the one input that is

always required. An example genotype is given in Fig. 4.2.

The previous (1 + 4) evolutionary strategy (ES) is applied again. This is compared to

random search, where each configuration is a random initiation of the genotype selected

from a uniform distribution of the minimum and maximum values possible for each gene.

For both search methods, a maximum of 750 fitness evaluations are conducted per

run, for 10 runs. The limited number of generations and runs was decided upon as each

set of 10 runs typically takes 5 hours to complete for each material. What was leaned

from the previous experiments is that 150 generations is, in general, more than adequate

to find good solutions, and 10 runs provide some meaningful statistics.

The overall training process for the three experiments breaks down into four key

stages:

1. Reservoir Creation: The material configuration is loaded onto the cross-point

switch, establishing communication between the DAQ cards and the material. The

material is then stimulated and the output response is trained.
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2. Reservoir Selection: The validation set error of each individual is compared. The

fittest reservoir is selected and compared to the global best solution. If the error

is below the global, the new reservoir becomes the parent and passes its genotype

onto the next generation.

3. Create a New Population: A new population is created from the parent reservoir

using a random mutation. The applied mutation operator depends on a mutation

probability assigned to: a one-for-one swap between active genes (20%), replace

an active gene with an inactive gene (20%), or, adjust the value of the control sig-

nal/input weight/time-scaling parameter α (60%) using Gaussian noise (bounded

by the min/max voltage range).

4. Final Reservoir Assessment: Once evolution is completed, the global best con-

figuration and trained readout Wout is reloaded and reapplied. The material is then

evaluated on the test set, giving the final reported NRMSE. The last stage tests the

reservoirs generalisation to new data and its configuration stability, i.e. its repeat-

ability and consistency of behaviour to the same configuration and stimulus.

4.4.1 Benchmark: Santa Fe Time-Series Prediction

A new time-series prediction benchmark is introduced here that requires different

computational features from the previous two benchmarks. The task is to predict the

next value of the Santa Fe time-series Competition Data (dataset A)1. The dataset holds

original source data recorded from a Far-Infrared laser (FIR) in a chaotic state.

In the training process the first 5000 values of the dataset are used. This is sub-divided

into three sets: 2500 values for the reservoir weight training process (training set), 1250

for the evaluation of each trained reservoir (validation set), and 1250 values to re-evaluate

the final evolved reservoir (test set). The first 50 values of each sub-set are discarded as

an initial washout period.

To demonstrate the reservoirs role a simple evaluation of task complexity was con-

ducted. When comparing the original input and output of the test set, i.e. E(u(n),ytarget),

1Dataset available at [200] and directly through MATLAB’s Neural Network Toolbox Sample Data

Sets: http://uk.mathworks.com/help/nnet/gs/neural-network-toolbox-sample-data-sets.html
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Material Evo Min. Rnd Min. Evo Avg. (Std) Rnd Avg. (Std)

0.1% 0.416 0.522 0.443 (.011) 0.651 (.106)

0.53% 0.440 0.519 0.454 (.011) 0.656 (.111)

1% 0.242 0.439 0.306 (.056) 0.489 (.042)

Resistor 0.498 0.582 0.536 (.023) 0.756 (.082)

Table 4.1: The minimum, mean and standard deviation of the test error (NRMSE) for

both search methods across 10 runs.

a Normalised Root Mean Squared Error (NRMSE) = 0.9771 was achieved. Using the lin-

ear model (y =Woutu(n)) trained on the target ytarget , an NRMSE = 0.9241 was achieved.

These results imply a significant level of additional processing is required by the reservoir

to reduce the NRMSE.

4.5 Results

4.5.1 Random Search

For all materials tested, computer-controlled evolution outperforms random search

(see Table 4.1). This confirms that, on average, reservoirs with better performances can be

found through evolutionary search. This experiment also shows that the SWCNT/PBMA

1% material tends to outperform the other materials using both random and evolutionary

search. On average, even with random search, it still outperforms the best evolved resistor

configuration. This result is significant when compared to the results found in the previous

chapter, where the performance gap between the configured resistor and the configured

materials was smaller than anticipated. The results also suggest improved reservoir per-

formance may coincide with a SWCNT density around the percolation threshold of 1%,

as stated in [130].
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Figure 4.3: Errors using controls, input-weighting and time-scaling: (A) control signals

with no time-scaling; (B) control signals and time-scaling; (C) input-weighting with no

time-scaling; (D) input-weighting and time-scaling.

4.5.2 Input-Weighting and Time-Scaling

The results given in Fig. 4.3 of the input-weight mechanism and time-scaling feature

are mixed. When only applying the input-weighting mechanism, error on average falls

compared to control signals and no time-scaling. When combining both input-weighting

and time-scaling the best runs improve significantly, but the same improvement is not con-

sistent across all runs. Despite only 150 generations being performed, the best case found

has an average improvement of 15% and the worse case an improvement of 3%. The most

notable performance increase is seen in the SWCNT/PBMA 1% material which already

far outperforms the others. This implies both input-weighting and time-scaling can re-

fine and tune both poor and good performance material reservoirs. However, applying

time-scaling by itself does not, on average, always offer an improvement in performance.

This suggests some interesting relationship between time-scaling and the input-weighting

mechanism exists, that at this point still requires further investigation.

Example evolutionary runs from all materials using both input-weighting and time-

scaling are shown in Fig. 4.4. The biggest and most consistent error drops occur with

the 1% material. The resistor network on the other hand struggles to reach the same
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Figure 4.4: Evolutionary runs of each material with both time-scaling and input-scaling

applied. Variation in error, both here and in Table 4.1, suggests the search space complex

and dependent on nanotube density.

performances of the carbon nanotube substrates, in stark contrast to the previous results

on other benchmarks.

4.5.3 Repeatable Performance

A problem with the current system is solution drift and consistent performance with

regards to a configuration. In this section, a brief investigation is conducted to measure

the materials’ change in performance over time.

The material is a passive medium with static structure, therefore reproducing the same

behaviour without large fluctuations in performance is plausible. Small fluctuations in

performance will however always persist as the carbon nanotube composites respond to

voltage stimuli in a non-deterministic manner, for example, just the presence of environ-

mental noise makes the system non-deterministic.

To evaluate the repeatability of performance, three separate sets of re-evaluations are

carried out on the best performing reservoir with the best material (SWNCT/PBMA 1%).

Each evaluation set consists of 100 reassignments of the configuration, task input and the

trained readout after a time period of: i) an hour, ii) one day and iii) one week.

After an hour, the material is assumed to relax back to a natural state. However, the
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Figure 4.5: A graph of the percentage change in error from the original evolved test set

NRMSE of 0.195 over different time periods. This is shown for the best reservoir found

with the SWCNT/PBMA 1% material using both time-scaling and input-weighting.

environment may have altered, such as room temperature and cross-talk from any elec-

trical equipment close-by. The same is assumed for the one day interval, but in addition,

slower structural changes may occur that have longer time-scales. Further “drift” bey-

ond this point is likely to trail-off. In a real-world application, the material may also be

reconfigured or evolved to another task, then reassigned to the previous task. To meas-

ure these effects, the material was evolved several times over a week to solve a different

computational task.

Fig. 4.5 shows the percentage change, defined as

% change =
new error− initial error

abs(initial error)
×100 (4.3)

between the first evolved error (NRMSE = 0.195) and after each time-period. The results

show, on average, an error change of ∼ 4% after an hour, amounting to a difference in

NRMSE by ∼ 0.0078, which would be considered very small. After a day, the average

error increases to ∼ 11%, with the smallest change roughly 2% more than after an hour.

After a week and several reassignments, average error change settles at 10.6% from the

initial NRMSE of 0.195 to 0.2157.

What can be concluded is that solution/configuration drift and performance degrada-

tion is an almost certainty, however, it is considered marginal to the overall performance.
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Reservoir Type NMSE NRMSE Res. Nodes

Echo State Network (evolved) 0.009 0.098 50

Echo State Network [158] 0.018 0.134 50

Optoelec. (numerical) [145] 0.02 0.141 200

Optoelec. (numerical) [78, 20] 0.022 0.148 200

Mackey-Glass Oscillator [9] 0.023 0.151 50

In materio Reservoir 0.038 0.195 7

ESN (evolved and sampled) 0.042 0.205 7 (50)

Echo State Network (evolved) 0.055 0.235 7

Optoelec. (experimental) [78, 20] 0.106 0.326 200

Optoelectronic [104, 9] 0.123 0.35 400

Table 4.2: Comparison table of other reservoir computing systems, with our system high-

lighted.

Despite being reconfigured and evolved to different tasks, the material still retains similar

structural and computational properties to which it was first evolved for.

4.5.4 Reservoir Comparison

The proposed system, in the context of other reservoir systems, shows very com-

petitive results. Table 4.2 shows a comparison between the in materio reservoir, simu-

lated/numerical reservoirs and hardware reservoir computers.

Three evolved (simulated) echo state networks (ESNs) are also provided. Each evolved

network uses the same evolutionary process and number of evaluations as the material.

Two variations of these ESNs are also given; two networks where every node is used (i.e.

7 or 50 neurons), and a 50 node ESN with 7 nodes randomly sampled to form the train-

able states. This last network provides a brief insight into what effect sub-sampling states

from a much larger network has on training and thus performance.

Table 4.2 shows that the SWCNT/PBMA 1% reservoir outperforms experimental

optoelectronic reservoirs found in the literature on this task, with a significant reduc-

tion in the number of states used. The in materio reservoir also outperforms the evolved
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7 node ESN and the sampled 50 node ESN.

The relationship in performance between the sampled and non-sampled networks

could provide further insight into how the reservoir might scale with more electrodes,

e.g. if the same relationship exists, a 50 node/electrode SWCNT/PBMA 1% reservoir

could potentially produce an NRMSE < 0.098.

4.5.5 Potential Limitations

In contrast to the output technique used in evolution in materio, the reservoir derives

its output from the cumulative behaviours of multiple electrodes. The readout layer se-

lectively chooses and separates interesting output signal patterns.

An output mapping that exploits multiple electrodes could have several advantages:

(i) form a layer of abstraction that extends the material’s programmability; (ii) provide

a more robust/fault tolerant output; (iii) represent an output mechanism that can scale

with hardware and task complexity; (iv) offer the opportunity to use multiple observation

methods to define the task output, i.e. an output could combine electrical, thermal, optical

and many more types of observation.

A possible disadvantage to the reservoir implementation however is a desire for more

observable states, and therefore a more fine-grained observation mechanism to fully ex-

tract the materials computational complexity. With this in mind, the limitations of the 12

electrode system become a great hindrance, not only with regards to performance but also

by restricting how the system can be configured.

Another growing problem is the conventional reservoir model, despite its advantages

and suitability, possesses limitations: reservoirs deal poorly with simultaneous multiple

time-scales [119]. Adding a time-scaling parameter cannot overcome this fundamental

problem. A number of suggestions and demonstrations as to how this can be solved are

discussed in [89, 203], such as creating hierarchical and modular reservoir systems (see

Chapter 7).

Implementing an extendible structure in hardware is an intriguing concept for sev-

eral reasons: not only can it solve issues with time-scaling but it could result in a larger

reservoir system with vast reservoir/material diversity. This diversity could come from

multiple materials exhibiting different reservoir properties. In some sense, a system like
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this could complete the vision of Miller’s high-performance analogue computer made up

of evolved materials that form functional primitives [135].

4.6 Summary

The experimental results in this chapter show evolved configurations across all four

test substrates consistently produce reservoirs with greater performance than randomly

configured reservoirs. Configuring a material without evolution can be inefficient with

this system, much like Harding’s liquid crystal system.

The results also show that applying both input-weighting and time-scaling simultan-

eously can provide additional tuning to the task, improving performance further. For one

material (SWCNT/PBMA 1%), the evolved reservoir outperforms – for this task – all

other hardware-based reservoir computers found in the literature. The same material also

outperforms a simple evolved simulated echo state network of the same size.

The performance of the material is demonstrated to be consistent both after long time-

periods and after reconfiguration to other tasks. Little is reported about performance

degradation with time in the evolution in materio literature. This brief analysis therefore

gives some insight into what to expect when implemented in a real-world application.

In the next chapter, we directly compare the evolution in materio method – with its

direct encoding – against the framework. To compare the two, we focus on a non-temporal

benchmark task and apply both methods to the same identical materials.
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Chapter 5

Exploiting Low-level Evolution and

High-level Abstraction

In this chapter, a detailed comparison is made between the direct evolution in materio

approach and the reservoir computing in materio abstraction approach.

It can be argued that a direct programming approach is more likely to outperform

the highly-programmable reservoir abstraction approach. In support of this argument,

Conrad [36] states that: “a computing system cannot at the same time have high program-

mability, high computational efficiency, and high evolutionary adaptability”. This can be

paraphrased as an increase in programmability and evolvability often results in some loss

in performance, forming a basic trade-off problem. In the following experiments, this

argument is tested.

Results that disagree with the argument would suggest extra programmability given

by the reservoir representation and readout function can provide new levels of exploit-

ation, scalability and complexity to the evolution in materio concept without a loss in

performance.

In order to compare the two techniques another benchmark task is introduced. At

this point all tasks have been temporal because the reservoir computing paradigm takes

advantage of such properties. However, reservoirs can also be assigned to non-temporal

tasks, if adjusted appropriately, i.e. by reducing or removing the impact of previous states.

Almost all tasks applied in evolution in materio are non-temporal, set by the output en-

coding; typically using a buffer with digital voltage thresholds [141, 143]. The few tasks
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that appear temporal have involved the evolution of robot controllers [74, 138]. However,

the chosen encodings quantise the problem into a non-temporal classification task – turn-

ing a motor on or off when a set frequency is detected – requiring no information from

previous time-steps. Therefore, to make a fair comparison, a non-temporal task has been

chosen as the benchmark for this chapter.

In addition to the chapter’s main investigation, another comparison is made with

evolved in silico (simulated) reservoirs, providing further detail on the effects of sub-

sampling the reservoir state space. So far, only a brief demonstration has been presented

on the effect sub-sampling a large state space has on performance, e.g. Table. 4.2. Sub-

sampling is potentially a significant problem with the current setup due to the limited

number of observable states from the material.

At the end of the chapter, the internal parameters of the evolved simulated reservoirs

are analysed. The intention here is to try determine what possible dynamical traits are

present in configured materials, based on similar performance simulated networks. Up

to this point, little information has leaked through about general characteristics of the

material and its configurations. This was due to previous experiments being focussed on

evaluation through specific tasks. However, learning any general characteristics without

any systematic task-independent methodology is non-trivial, if not impossible.

5.1 Training

In the following experiment the same (1+ 4) ES is used for 150 generations, with

20 independent runs. Gaussian mutation operators are added, manipulating the search to

act similar to a hill-climber algorithm. This is chosen to reduce the retention effect of

degenerative fitness jumps previously experienced by rapidly changing the configuration

parameters, most notably found when flipping inputs to outputs and vice versa. However,

applying Gaussian adaptation to the (1+λ ) ES could push training towards local optima.

Therefore, to train these materials requires some level of comprise, as the material may not

be truly “reset”, i.e. the material may retain charge from previous inputs and evaluations,

or, the material may have permanently changed its phase space – a significant problem if

the underlying material structure is non-stationary.
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The task for this chapter is to classify binary classes rather than a time-series output.

A threshold mechanism is introduced to translate the trained outputs into binary classes.

To evaluate the accuracy of the binary classifier, and to conduct a fair comparison with

the previous EiM results, the fitness calculation in [141] was implemented:

fitness =
T P×T N

(T P+FP)(T N +FN)
(5.1)

where TP is the number of true positives, TN is true negatives, FP is false positives, and

FN is false negatives.

To select a threshold, a simple optimisation loop is applied (post-state collection). The

best threshold found is attached and stored with the configuration and reimplemented at

the testing phase.

5.1.1 Benchmark: Fishers’ Iris Classification

The Iris dataset1 (also known as Fisher’s Iris dataset) is a well-known multivariate

classification problem, and has been used to benchmark the classical evolution in materio

technique numerous times [35, 141, 142]. The objective is to classify three species of the

Iris plant given four attributes of petal and sepal length and width.

The task difficulty arises from two classes being linearly inseparable from each other.

Although a popular benchmark, it tends to reflect little about how much computation the

system can perform as the task is relatively simple, e.g. with a linear system a rough

accuracy of 76% is possible.

The Iris dataset contains 150 instances, with 50 instances of each class/species. The

only pre-processing of the dataset was to evenly divide it into training and testing sets of

75 randomised instances, containing 25 instances of each class.

Each predicted class of the reservoir is represented as a separate reservoir output with

a binary value, and each attribute is represented by a floating-point input voltage.

The input-output mapping of the task inputs u(n), outputs/classes y(n) and observed

reservoir states x(n) are given in Fig. 5.1. Four inputs (u1:4(n)) are required for the Iris

task, with each input multiplied by the input weight matrix Win and applied to a evolved

1Dataset provided on the UCI Machine learning repository at: https://archive.ics.uci.edu/ml/
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Figure 5.1: Example input-output mapping for Iris task.
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Figure 5.2: Evolved accuracies of each material for the Iris task; training accuracy (blue,

left) and test accuracy (red, right).

location (green). To form the 3 output classes y1:3(n), the reservoir states (e.g. x1:7(n))

are multiplied by the output matrix Wout .

5.2 Results

5.2.1 Direct vs. Abstraction

Fig. 5.2 shows the evolved accuracies of each material using the reservoir computing

approach. Each material shows training accuracy (blue, left) and test accuracy (red, right)

across 20 evolutionary runs. The 0.71%(1) and 0.71%(2) entries refer to two different

samples of the same concentration.

The results show the control material (resistor array) has statistically lower accuracies
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System : Material Training Std Test Std

EiM [141] : PMMA 0.71% 84.7 — 77.1 —

RCiM : PMMA 0.71% (1) 96.96 0.92 88.15 10.01

RCiM : PMMA 0.71% (2) 94.9 3.92 87.91 7.85

EiM [142] : PBMA 1% 93.33 — 87.87 —

RCiM : PBMA 1% 97.14 1.61 91.90 5.48

CGP [141] 97.7 — 93.6 —

Table 5.1: RCiM compared to EiM. Average (mean) accuracies (in percentages) are

shown for training and test data. For RCiM, standard deviation (std) is provided.

than the lower density materials, suggesting material properties beyond resistivity are

being exploited.

As the distributions are non-normal, the non-parametric Wilcoxon rank sum test (equi-

valent to Mann-Whitney U-test) is used to test the null hypothesis H0 = the medians of

the samples are the same. A value p < 0.05 indicates statistically significant rejection of

H0 at the 95% confidence level. The non-parametric Vargha-Delaney effect size A [193]

is also given (only for p < 0.05 in Table 5.2 and Table 5.3). A > 0.71 symbolises a large

effect size and therefore the significance is of substantial importance and not simply an

effect of the sample size.

The rejection of H0 with a large effect size in Table 5.2 shows that the materials

provide a significant contribution to the solution, and that the solution is not dominated

by contributions from rest of the system, or from resistivity alone.

Fig. 5.2 shows performance varies with respect to carbon nanotube density, with dens-

ities of 0.71% and above producing the highest accuracies. However, Table 5.2 shows no

statistically significant difference between the higher concentration materials (0.71% and

1%), demonstrating similar medians and distributions with p-values > 0.05. This sug-

gests once a network of nanotubes is established – effectively determined by nanotube

density – an increase in computational performance is minimal. The same hypothesis is

discussed in [130].

Table 5.1 shows the comparison between EiM, RCiM and an in silico evolutionary
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Test materials p U effect size A

0.1% / Resistor 0.002 0.78

0.53% / Resistor 0.0001 0.85

1% / 0.71% (1) 0.086 —

1% / 0.71% (2) 0.051 —

Table 5.2: Wilcoxon/Mann-Whitney (U) and Vargha-Delaney A effect sizes, between dif-

ferent density materials and the control.

optimisation technique called Cartesian Genetic Programming (CGP) [141, 142]. The

reported EiM accuracies in Table 5.1 come from two different hardware configurations:

[141] uses Mecobo 3.0, a digital stimulation and measurement board; [142] uses Mecobo

3.5, an analogue stimulation and measurement board.

The accuracies quoted are assumed to be mean values, across 10 runs for [142] and 20

runs for [141]. Standard deviation was not provided for the EiM method and is therefore

omitted from Table 5.1. In the comparison experiments, 20 runs are reported with standard

deviations.

As shown in Table 5.1, the RCiM method outperforms the EiM technique across both

Mecobo platforms. The mean accuracies of both Mecobo platforms fall outside the 95%

confidence levels of the RCiM experiments, suggesting the increase in performance is

significant. The performances of physical reservoirs also compare favourably to the in

silico evolutionary programming technique (CGP). The CGP mean accuracy, although

higher than the RCiM accuracy, falls within the 95% confidence level of the PBMA 1%

material; that is, it is not statistically significantly higher.

5.3 Reservoirs in materio vs. in silico

For this experiment, three evolvable in silico reservoirs (similar to the ESNs used in

Chapter 4) are used. The performance of the best material (1% PBMA) is compared

to three evolved simulated reservoirs, shown in Fig. 5.3, with training accuracy (blue,

left) and test accuracy (red, right) given across 20 evolutionary runs. In this experiment,
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Figure 5.3: Experimental results of three simulated reservoirs and the 1% PBMA material;

training accuracy (blue, left) and test accuracy (red, right).

Test materials p U effect size A

1% / 7-node ESN 0.51 —

1% / 7-node (sampled) ESN 0.74 —

1% / 50-node ESN 0.0481 0.684

Table 5.3: Wilcoxon/Mann-Whitney (U) and Vargha-Delaney A effect sizes, between

PBMA 1% material and simulated reservoirs.

two reservoir sizes are compared; a network with 7 internal nodes and two networks

containing 50 internal nodes. The 50-node reservoirs are split into different readout types;

one where all nodes are accessible to the readout layer and another where the readout

can only access 7 randomly chosen nodes. A hypothesis is that when extracting states

from the material, only a small subset of the materials state space is sampled – in our

case, through roughly 7 electrodes. It is therefore imperative to observe how this affects

simulated reservoirs.

The similarity in accuracies found in Fig. 5.3 suggests the material forms a train-

able reservoir within a similar performance range of the 7-node and the 50-node sampled

reservoirs. As shown in Table 5.3, there is no statistically significant difference in per-

formance when comparing the material to the sampled and 7-node simulated reservoirs.

However the 50-node network, with all states in use, is statistically significant for the

Mann-Whitney test (i.e. different medians).
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Upon further examination of Fig. 5.3, the material appears to be exploiting the benefits

of a smaller readout combined with a larger hidden network for this task, much like the

sampled network. This is seen with the 50-node network where overfitting is present,

but reduced in the 50-node network where only 7 neuron states are sampled to form

the output. This sampling effect, in the context of the number of electrodes available,

is an interesting and possibly advantageous, or limiting factor, that needs to be further

understood.

5.3.1 Interpreting Reservoir Characteristics

In the previous section, three evolved simulated reservoirs are compared. The gen-

eral parameters and structure for these networks are: a sparse reservoir connectivity of

10%; uniformly distributed weights between [−1, 1] for input and reservoir weights; tanh

neurons; no feedback weights; and a readout trained using ridge regression.

Each reservoir has three key parameters that are selected through evolution; the spec-

tral radius scaling, input scaling and leak rate. Each parameter is adjusted to tune the

dynamical behaviour and memory of the reservoir. In echo state networks, the spectral

radius determines how fast the influence of the input degrades and the stability of the

reservoirs activations. The Input scaling parameter is used to tune the non-linearity of

the reservoir and tune the proportional effect the current input has compared to previous

activations. The final parameter, leak rate, is used to match the speed of the reservoir’s

dynamics to the task input and/or output, essentially applying additional filtering to the

activation of each node [117].

Fig. 5.4 shows the relationship between parameters and task performance for each

evolved network. Each plot displays 20 evolved ESNs with network sizes of; 7 nodes

(a & b), 50 nodes (c & d), and 50 nodes with only 7 nodes being used to train/form the

output (e & f). The colour map shows the Iris test accuracy of each evolved parameter set.

By visualising the evolved parameters and their relative performance, we can determ-

ine the desired dynamics for a given task and suggest what dynamics need to be exploited

within the material. From the graphs, each network (independent of size) typically pos-

sesses the following for the Iris task:
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(b) 7 node network - Spectral Radius vs. Leak
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(c) 50 node network - Spectral Radius vs. Input
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(d) 50 node network - Spectral Radius vs. Leak
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(e) 7 node (sampled) network - Spectral Radius
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Figure 5.4: Parameters and Iris performances of three evolved Echo State Network sizes.
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• Low spectral radius; i.e. does not require a long memory (output depends upon

current input) and the reservoir is stable.

• Input scaling around 1; neurons sometimes saturate and become non-linear (see 50-

node, Fig. 5.4c). However, there is more variation in dynamics in the 7-node and

sampled networks.

• Large variation in leak rates (or close to 1); suggesting the parameter does not

significantly effect performance – as expected with other parameters that reduce

the reservoirs memory capacity. See Fig. 5.4b, 5.4d and 5.4f.

These evolved dynamics align closely with the known unperturbed electrical proper-

ties of our materials; both semi-stable with modest non-linear I-V characteristics. This

might suggest why the in materio reservoirs perform similarly to in silico reservoirs, even

after relatively few iterations (typically <50 generations).

Discovering task-specific parameters for simulated reservoirs – prior to physical im-

plementation – can reduce experiment times. It can also inform the experimenter as to

what tasks are reasonable to attempt. With future experiments using new materials, e.g.

using materials with dynamic structure, these desirable dynamic traits could “seed” ex-

periments with known configurations that produce such dynamics.

5.3.2 Identifying Substrate Patterns

Mapping the dynamical relationships between different architectural reservoir sys-

tems can be enlightening. However, identifying exactly what mechanisms, structure, etc.,

in the material are being exploited by evolution to produce these dynamical properties is

challenging. As discussed in [39], analysing and modelling the nanotube structures and

electrical pathways being utilised is difficult. In Fig. 5.5, a simple visualisation is intro-

duced highlighting areas of interesting activity frequently exploited by evolution. The

figure displays the electrode arrangement for each material, showing what frequency an

electrode is selected as an input (circle size) and what average voltage value is supplied

(circle colour) across different evolutionary runs.

The simple visualisation correlates visual carbon nanotube groupings with areas of

possible interest. It also highlights regions where there might be weak connectivity
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(a) 0.53% PMMA (b) 0.71% PMMA(1)

(c) 0.71% PMMA(2) (d) 1% PBMA

Figure 5.5: Visualisation of common evolved electrode patterns.

between electrodes. For example, in Fig. 5.5a, the low frequency at which an electrode

is chosen as a stimulus source (shown in circle size) may indicate local isolation in that

region of the network/material. This quick visualisation is a useful tool in identifying ma-

terials with limited connectivity or homogeneity, as dispersion of the carbon nanotubes is

largely stochastic.

5.3.3 Breaking Temporal Dependencies

The material’s ability to suppress (or not exhibit) any recurrent dependencies, as seen

by the time-independent nature of the task, may suggest certain configurations act more

akin to non-temporal kernels or Extreme Learning Machines (ELM) [84], rather than typ-

ical temporal reservoirs. To attempt time-independent tasks with simulated reservoirs,

74



CHAPTER 5. EXPLOITING LOW-LEVEL EVOLUTION AND HIGH-LEVEL
ABSTRACTION

reducing the spectral radius and increasing the input scaling parameter minimises any

dependencies. Other techniques however have been proposed to “break” the recurrent de-

pendency on previous states and inputs altogether [54]. The interesting point here is that

different configurations – on the same materials – have been shown to exploit temporal

features on time-dependent tasks and also to vary considerably across different configura-

tions [40, 41]. This suggests tuning of the echo state property is possible through configur-

ation, rather than the material behaving entirely as a non-temporal reservoir/kernel/ELM

– this was later proven when characterising the material in Chapter 8.

5.4 Summary

The results presented in this chapter show that by adding the programmable reservoir

layer, reservoir computing in materio can significantly outperform the original evolution

in materio implementation. This suggests the RC framework offers improved perform-

ance, even across non-temporal tasks, when combined with the evolution in materio tech-

nique.

This increase in performance, however, might be attributed to the new measurement

and stimulation technique. For example, performance might increase as a result of: (i)

stimulating the material with variations of the input causes interesting interactions not

present in the EiM technique; (ii) a conductive network might not be present across all

electrodes and instead several networks may exist across the array, therefore additional

inputs-outputs grant access to each of these networks; (iii) combining the outputs and

weighting their importance allows training to exploit the whole material rather than ex-

ploiting a single area around a particular electrode (relating closely to (ii)). Each of these

hypothesised explanations still requires further exploration.

At the end of the chapter it was shown (in simulation) that sampling only a few reser-

voir states, thus having fewer trainable states, can affect performance. We also character-

ised the dynamical behaviours of both physical and simulated reservoirs through global

parameters. From this, it was explained why smaller simulated networks perform simil-

arly to the carbon nanotubes, i.e. due to matching non-linearity and memory requirements,

and fewer observable states.
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In the next chapter, a new hardware platform is outlined. The platform attempts to

address limitations discussed in previous chapters by adding more inputs and outputs

(electrodes), greater flexibility, and measurement strategies with greater precision.
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Chapter 6

An Extended Hardware Platform

6.1 Input-Output Complexity Problem

The most common form of evolution in materio uses a micro-electrode to interface

with the substrate. This puts a hard limitation on the number of inputs and outputs avail-

able. However, the direct encoding of the computational task, e.g. a task with five inputs

requires five electrodes, adds another limitation to the system as well. This leads to a

fundamental limit on the complexity of tasks that can be performed, and explains why

much of the work to-date has been bound to simple tasks.

For such problems, the reservoir computing framework has some desirable features.

The framework itself adds layers of abstraction to compensate for limitations in hardware.

For example, the reservoir readout layer creates virtual task outputs that combine activity

from across the substrate, reusing and combining electrode outputs, instead of assigning

individual task outputs to one spatial location. In comparison, EiM assumes activity at

one electrode is sufficient to fulfil the task.

Despite advantages, the framework does not fully resolve the scaling and task com-

plexity problem either. New obstacles also emerge. For example, how to connect to and

encode the task inputs for individual electrodes; is an input weight matrix sufficient? is a

greater complexification of the input needed? how can a large input space, say an image,

be encoded into few electrodes?

Another dilemma is discussed in Chapter 5, where it was shown that sub-sampling of

the reservoir states can significantly affect performance. If we postulate that the number
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Figure 6.1: Hardware Reservoir System. Micro-electrode housing, routing switch board

and CNT/polymer deposited onto PCB electrode array.

of unique local states are vast in a physical substrate but we can only observe a select few,

the number of electrodes available still becomes a pertinent issue.

To improve our understanding of the scaling problem requires observations at different

scales. So far, experiments have been largely limited to a maximum of 16-electrodes. For

this reason (and others stated in section 4.5.5) a new hardware platform is presented.

6.2 Extended Hardware Platform

The design process for the new extended hardware platform consisted of two itera-

tions. In the first iteration, several anomalies emerged, resulting in very good but ques-

tionable task performances. These were then analysed and compensated for in the second

iteration.

Overall, the basic design features of both iterations are as follows. A total of 64
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electrodes are available to use, with a maximum of 32 inputs that can be used in parallel.

These design limits were imposed by the analogue output (AO) National Instruments Data

Acquisition (DAQ) Card, accepting only 32 analogue outputs.

To extend the hardware system to 64 electrodes required the design of: a new routing

system (previously a single 16×16 cross-point switch), a new micro-electrode design, a

housing for the substrate, and the fabrication and depositing of carbon nanotube compos-

ites. The final outcome of each is shown in Fig. 6.11.

6.2.1 Signal Routing

Due to the limited number of analogue outputs, routing a voltage signal from the AO

DAQ card to any of the 64 electrodes requires some intermediate switches. For this pur-

pose, an additional routing switch-board was designed. In an ideal scenario, the number

of analogue outputs and inputs would be equal, removing this intermediate step.

Details of the routing switch-board, auxiliary equipment and the DAQ cards are as fol-

lows. Two National Instruments DAQ cards perform measurements and output analogue

voltages; a PCI-6225 (16-Bit, 250 KS/s, with 80 analogue inputs), and PCI-6723 (13-Bit,

800KS/s, with 32 analogue outputs). Both cards communicate to a desktop PC through

a session-based interface in MATLAB. The PCI-6723 supplies 8 digital I/O lines to the

custom routing board to program on-board switches and synchronise the cards.

In the first design iteration, an array of eight 16× 16 analogue cross-point switches

were used to connect the 32 output channels on the PCI-6723 to the substrates input-

electrodes. In the second iteration this was reduced to four switches, thanks to a better

routing strategy.

In the second iteration, the 32 channels were divided among four switches (A, B, C,

D), with channels 1–16 feeding into A and B, and channels 17–32 into C and D. Switches

A and B cover the first 16 channels that map to the first 32 electrodes, and C and D cover

the next 16 channels mapping to the last 32 electrodes. This maps the 32 output channels

to all 64 possible electrodes. As a minimum requirement to stimulate the substrate, one

output DAQ channel/input-electrode is always required, which is forced in software.

1The co-design of the routing board, micro-electrodes and housing was carried out with Pete Turner

from the Electronic Engineering department.
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(a) Iteration 1

(b) Iteration 2

Figure 6.2: Pictures of both routing boards.

Beyond the cross-point switches, independently selectable single-pole, double-throw

(SPDT) switches are tethered to each electrode to allow the computer to dynamically

map each electrode to an input, or output. These were added to simplify the program-

ming step, to reduce crosstalk and reduce the number of crosspoint switches required.

In previous chapters using the smaller system, both inputs and outputs fed through the

crosspoint switches increasing the likelihood of crosstalk and unnecessarily complicating

the configuration process. To control the SPDT switches, 8-bit shift registers were used,

programmed directly by the digital I/O lines of the PCI-6723 card.

The final boards of both iterations are shown in Fig. 6.2. Early ideas and the full

designs of each board are also given in the appendices, see Appendix A.1.

80



CHAPTER 6. AN EXTENDED HARDWARE PLATFORM

(a) NASCENCE project (unused) 32-electrode design

Mask #2.2 - CR/Au layer
8x8 Grid - 50um contacts, 250um spacing
35um wire (min)
Design - Matt Dale
Date 29/03/16

(b) 64-electrode design

Figure 6.3: Micro-electrode array designs. a) example from NASCENCE project. b) new

64-electrode design.

6.2.2 Micro-electrode Arrays

In previous chapters, the number of electrodes available were small, typically 12 to

16 electrodes. The micro-electrode arrays used were designed and fabricated by Durham

University members of the NASCENCE project. The fabrication process of those micro-

electrode arrays used etch-back photolithography, placing chromium/gold-contact elec-

trodes (40 to 50 µm contact diameter and 100 to 150 µm contact spacing) on glass slides,

either arranged in a circle or grid array.

The initial plan for the new hardware platform was to design and fabricate similar

micro-electrode arrays on glass slides; see Fig. 6.3 and 64-electrode designs/masks in

Appendix A.3. However, accessing suitable equipment and expertise to complete the

plans proved difficult.

Instead, a new fabrication process was investigated where the micro-electrode array

would be etched onto a specially designed printed circuit board (PCB). In the process,

the electrodes and pads are deposited onto a FR-4 PCB using a chemical process that
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places Nickel and then a layer of Gold. A photo-imageable solder mask is then applied

to cover all excess electrode surfaces, exposing only the designated contact points. After

fabrication, basic tests were conducted measuring the effect of moisture absorption. This

effect was considered negligible, and the designs were kept.

The new PCB electrode designs make fabrication of the MEAs simple, quick and cost-

effective in comparison to the previous glass photo-lithography technique. However, due

to manufacturing constraints, the electrode array requires larger contact sizes of 100µm

and spacings of 600µm between contacts compared to previous designs. According to

Massey [132], closer spaced electrodes will exhibit larger currents and resistance will

generally scale approximately with electrode separation. How the current contact sizes

and spacings affect the new set-up still requires further investigation.

6.2.3 Fabrication Process of Nanotube Composites

The composites used with the new hardware platform comprise of single-walled car-

bon nanotubes (CHASM ADVANDCED MATERIALS, Sigma Aldrich) created using

catalytic chemical vapor deposition (CVD). The nanotubes have an average diameter of

0.78 nm and a median length of 1µm. The sorted nanotubes comprise≥ 95% carbon basis

(≥ 99% as carbon nanotubes) with approximately 95% semiconducting, and approxim-

ately 41% of those tubes being (6,5) chirality.

The mixing materials are poly-butly methacrylate (PBMA) (Sigma Aldrich, Mw ≈

337,000, powder) and Methoxybenzene/Anisole (Sigma Aldrich, analytical reagent grade).

These are added, entrapping the nanotubes and help to form solid network structures.

The process is simple with no top-down design involved, allowing the nanotube net-

works to randomly form conducting pathways and insulating polymer regions. This res-

ults in a non-uniform dispersion and some nanotube bundling as a result of weak short-

range electrostatic attractive forces.

The mixing and depositing details of the composites are as follows. The mixtures

contain: 5g Anisole, 1g PBMA, and 50mg carbon nanotubes in dried powder form, res-

ulting in ≈1% (w.r.t. weight) nanotube mixture. The solution is left to dissolve for 24

hours, converting the powdered PBMA into a viscous liquid. Once dissolved, the solu-

tion is placed in an ultra sonic bath for 20 minutes at full power to aid dispersion of the
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Figure 6.4: Housing for PCB; connecting substrate to routing board to PC.

nanotubes. Then approximately 30µl of the mixture is dispensed onto a pre-heated PCB

and left to dry on a hotplate for 30 minutes at 85◦C. To reduce stress in the cooling stage,

the hotplate is turned off and the PCB is left to cool naturally for two hours.

Each deposited material is unique, however properties like conductivity tend to be

consistent when using the same percentage of carbon nanotubes. Materials from the NAS-

CENCE project with similar compositions were shown to produce non-linear behaviour

seen in the current (I) versus voltage (V) measurements, depending on mixture ratios and

film thickness [199]. Examples of I–V curves for different nanotube mixtures are given

in Appendix A.4.

6.2.4 Substrate Housing

To make interfacing with the substrate as simple as possible two PCB edge connectors

were used. These 32-contact connectors (EDAC 345-064-520-202) are standardised and

can be purchased off-the-shelf. The PCB micro-electrode array itself was designed to fit

the 2.54mm pitch between contacts, giving the platform its plug-and-play simplicity.

Each edge connector is placed on a prototype PCB board. These separate boards are

then connected via a ribbon cable, then connected to a d-type 64-pin shielded cable that

communicates with the routing board. A picture of the housing is given in Fig. 6.4.
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6.3 Measurements and Stability

Considering previous work on solution stability (see section 4.5.3), the assumption

that the materials are always within some stability bound when configured appears inac-

curate. Despite many configurations being stable, it was frequently seen that for some

input-output mappings large deviations were present when repeatedly applying the same

inputs. Therefore, the precision of the measuring system appeared to be low. The cause

of this is referred to here as solution or configuration drift. Such configurations are con-

sidered detrimental, unstable, reduce repeatability, complexify the evolutionary search

and reduce confidence in measured performances.

To measure drift with the new system, multiple evaluations are carried out every time

the substrate is stimulated. Drift is measured separately for each electrode as the differ-

ence (e.g. Root Mean Square Error (RMSE)) between evaluations i.

The resulting states of each evaluation are xi =RNu×Nelec , where Nu = number of input

samples and Nelec = number of electrodes. All states are collected and stored in the matrix

X for the drift calculation, as follows:

X = RNeval×Nu×Nelec =
[
x1, x2, . . . ,xN

]
(6.1)

The drift for each electrode is calculated as the median error across all combinatorial

pairs
(N

i

)
. This value is then stored. In the next phase, using the drift values a decision

is made whether to manipulate the final training states, or not. First, the collected states

are averaged to give X ′, the median of Neval evaluations, X ′ = median(X) = RNu×Nelec .

Then, X ′ is processed to remove high drift electrodes, setting electrode states (X ′[:, i]) to

zero when electrode variance is high (above some user-defined threshold), or when an

electrode is assigned as an input location.

As part of the training process, zero weights are assigned to unwanted electrodes;

tricking the training process into seeing no observable output. This results in unwanted

noisy electrodes being ignored for future evaluations, such as test and validation data. The

whole drift measurement is therefore only carried out at the training stage, and inherently

compensated for in other evaluations via output weights.

The above process removes unstable outputs, however it does not help prevent un-
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stable solutions occurring during the search process. Actively reducing these deviations

though evolutionary selection, or output smoothing, can result in improved performance.

In preliminary experiments, where drift information was provided, this was shown to be

true. However, evolutionary selection in many cases was also seen to prioritise stable

solutions without providing information about drift.

Sources of drift and noise can be both internal and external. An example of two poten-

tial sources are: i) after each evaluation the material is “reset” by grounding all electrodes,

however, some charge may remain between evaluations in localised sub-networks; ii) the

material may physically change, e.g. nanotubes can move, “burn-out”, or conductivity

may degrade over-time, thereby changing the material’s phase space, naturally resulting

in non-static solutions and performance drift over-time.

In general, any practitioner of physical reservoir computing with non-deterministic

substrates should be aware of, and take appropriate measures to compensate for, effects

such as solution/configuration drift. Furthermore, in terms of any future applications,

any drift and change in performance with time should be reduced or compensated for,

especially if the system is designed to be a robust alternative computing solution.

6.4 Genetic Representation

For the platform, a new genetic representation was designed to take into account hard-

ware limitations, and make use of extended capabilities not possible in the previous hard-

ware system, for example, having both evolvable input weights and control voltages avail-

able at the same time (see Chapter 4).

The genetic representation of each reservoir, i.e. encoding the configuration of the

substrate, is stored in the GCon f ig×GInputs matrix G, where rows GCon f ig define different

configuration types and columns GInputs are equal to the total number of available inputs.

An example configuration G is shown in Fig. 6.1. Here, GCon f ig = 6 and individual genes

Gi, j can be flipped to active or non-active depending on other coupled genes.

In the example, genes G(1, j) represent the electrode under manipulation. These range

from 1 to 64 and cannot be duplicated. The restriction of GInputs = 32 implies no more

than 32 inputs can be active. In fact, the matrix G is only used to define inputs as any
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Gene 1 2 3 4 · · · · · · 30 31 32

Electrode 22 13 4 44 · · · · · · 64 52 1

Input(Yes=1) 0 1 0 0 · · · · · · 1 0 0

Weight(1)/Control(0) 0 1 1 0 · · · · · · 1 1 0

Weight (V) 3.12 1.23 −0.12 4.12 · · · · · · 2.36 1.78 0

Control (V) 0.15 −0.24 2.31 0 · · · · · · −3.21 4.9 0

Leak rate 0.56 0 0 0 · · · · · · 0 0 0

Table 6.1: Encoding G for Reservoir and Substrate Configuration.

electrode not defined in G is automatically an output by default.

The genes G(2,:) determine whether the electrodes G(1,:) are inputs. If G(2, j) = 1, elec-

trode G(1, j) becomes an active input. What type of input the electrode becomes depends

on row G(3,:). If G(3, j) = 1, the electrode is assigned as a weighted task input. Otherwise,

it is set as a control input, i.e. static voltage. This gene is only active when G(2, j) = 1,

otherwise it is redundant.

Depending on whether electrode G(1, j) is an active input, and a weighted task input or

control, determines whether the next two rows (G(4, j) and G(5, j)) are active. If G(3, j) = 1,

the weight/gain value G(4, j) is applied to the task input in the digital domain. Or, if

G(3, j) = 0 the value in G(5, j) is used as the voltage value for the static control signal.

The last row G(6,:), holds leak rate values. At the moment, a single global leak rate is

applied, however individual leak rates for each electrode are possible.

In future work, the input weight matrix Win, different control types (not only static

voltages), and even output weights Wout could be added to the genetic representation.

An advantage of the current encoding G is that it is considerably smaller than other en-

codings (e.g. a digital echo state network), requiring significantly less storage. This very

basic advantage can be easily overlooked. However, this fundamental feature allows vast

numbers of configurations/abstract reservoirs to be stored and updated in conventional

memory, simply implemented via the turn of a switch.
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(a) 16-LED (b) 16-LED in housing

(c) 64-LED (d) 64-LED in housing

Figure 6.5: Two LED designs printed on PCBs.

6.5 Isolating the Substrate

As part of the testing phase of the hardware, small PCBs with light emitting diodes

(LEDs) were designed and built to visually test the routing board (see Fig. 6.5 and Ap-

pendix A.5). Out of curiosity, these LED arrays were also evolved on previous reservoir

computing tasks, the results of which were surprising.

Beforehand, it was assumed the LED arrays would perform poorly as limited, or no

network connectivity between LEDs is present. Therefore, sufficient memory and net-

work dynamics would not be available to solve such tasks. However, unexpected results

were produced: For the NARMA-10 task, there was∼ 30% increase in performance, from

an NRMSE≈ 0.71 (in Chapter 3) to an NRMSE≈ 0.51. Remarkably, this echoed similar

performances to other, much larger physical reservoirs such as the 100-node optoelec-

tronic reservoir (NRMSE ≈ 0.5) in [153]. For the wave generator problem in Chapter 3,

an 92% increase in performance was achieved. And finally, for the Santa Fe laser pre-

diction task a 25% increase was evolved. These striking performance gains suggested

properties such as memory were being exploited from somewhere else in the hardware.
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Figure 6.6: Multiplexed analogue-to-digital converter (ADC) from National Instruments

documentation on “ghosting”.

When further analysing the connectivity between the DAQ cards and the routing board

(using voltage probes), it was discovered that a major contributing factor to the memory

phenomenon occurred during the measurement process, in the analogue input DAQ card.

The DAQ card transforms each analogue input-channel into a digital signal sequen-

tially through a multiplexed analogue-to-digital (ADC) converter. This multiplexed pro-

cess requires the dissipation of a capacitor between the ADC and the multiplexor (see

Fig. 6.6). If charge remaining in the capacitor is not released between samples, inform-

ation from previous samples can persist and reflect across channels. This is known as

“ghosting”. Solutions to removing ghosting can be found on the National Instruments

web pages2.

To remove ghosting, voltage buffers/followers were added to the next iteration of the

routing board. The analogue voltage buffers chosen were implemented using op-amps

(TL047) configured to unity gain.

Applying buffers removes measurement errors when any configuration forms an im-

pedance on an output electrode greater than the input impedance of the measurement

device. Effectively, this sets floating electrodes to 0V. In some rare cases, this can result

in no usable output signals from the substrate.

As highlighted in this section, it is critical not to overlook that the whole interface will

2National Instruments web page on eliminating ghosting: https://knowledge.ni.com/

KnowledgeArticleDetails?id=kA00Z0000019KzzSAE , Accessed: 22/08/2018
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Figure 6.7: Multi-substrate Housing.

in some way affect the perceived computation. In other words, the reservoir is not only

the substrate but the interfacing equipment too.

It is imperative with any physical reservoir system to make sure the substrate being

exploited is sufficiently isolated from the rest of the system. In equation 2.16, this is

represented by the Ω function, as the observation process itself may perform some com-

putation.

In general, this phenomena unique to physical substrates may be viewed as a trade-off

problem. If the substrate is fixed permanently to the measuring equipment, the proportion

of computation performed by the interface may be considered less crucial. However, if

the substrate is to be trained on one device and then applied on another, the substrate

under-test should be the main, if not the only, contributor.

6.6 Multi-Substrate Housing

During the hardware upgrade, a number of minor decisions were made to allow ex-

pansion into multi-substrate computing. Although not fully exploited yet, basic steps have

been made to test the concept. The first step has been to fabricate a housing for multiple

substrates.

The multi-array housing allows parallel substrate evolution; evolving multiple in-

dependent substrates at the same time. This basic prototype PCB housing is shown in

Fig. 6.7, where four 16-electrode connectors are combined and connected to the routing

board in the same fashion as the 64-electrode housing.

In a few brief experiments, the same genetic representation G has been used; multi-
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chromosome representations, however, might be a better solution. The states from each

substrate were used to train one reservoir that is effectively made from smaller independ-

ent reservoirs, e.g. equivalent to an ensemble of reservoirs. So far, early results have been

encouraging, however, more work is required.

In future work, such a reservoir may be formed from substrates with very different

characteristics, leading to a wider dynamical range than a single reservoir can possess.

This work could also entail different methods to interconnect each substrate. However,

at this stage, the benefits of multi-reservoir/multi-substrate computers are still speculative

and require further investigation both in software and hardware.

6.7 Summary

In this chapter a new hardware platform with 64 electrodes is outlined. This re-

quired new materials, micro-electrode arrays, genetic representations, and measurement

strategies to be created.

During the design process, a significant problem was identified. Evolution was found

to be exploiting the measurement system as well as the material, leading to unusually high

performances. The phenomenon highlighted a general cause for concern when defining

the boundaries of any physical computing system, i.e. is the computation isolated to the

substrate or is the observation equipment contributing, if the latter, what is an acceptable

amount.

In the final section, it was shown how the platform can be extended to measure multi-

substrate reservoir systems, providing new avenues for future work.

In the next chapter, the concept of multi-reservoir systems is explored. A new evolvable

architecture is proposed allowing evolution to design hierarchical structures for specific

tasks.
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Hierarchical and Modular Reservoir

Computers

7.1 Limitations of Reservoirs

All reservoirs take advantage of a fixed and typically random topology, often requiring

a careful selection of global parameters to control reservoir activity in order to exhibit

desirable dynamical properties. ESNs are an exemplar of this tuning problem.

In general, ESNs consist of random fixed recurrently connected analogue neurons.

They are powerful and efficient systems often featuring state-of-the-art performance across

many domains, with applications in small embedded systems, sensors and robot control-

lers [8, 172]. However, as with any reservoir computing system, it has limitations and

caveats. Good reservoir parameter selection and weight initiation are essential to produce

high performing ESNs.

Reservoirs and ESNs also possess another fundamental limitation; an inability to

model multiple time scales and levels of abstraction. This is because a single reservoir

can only represent information at a single scale due to its network coupling and dynamics

[120].

In the literature, techniques have been proposed to solve both the reservoir parameter

selection and the multi-scale problem using varying degrees of complexity. For example,

reservoir optimisation is a popular research area using techniques such as particle swarm

optimisation [12, 167], Bayesian optimisation [204], gradient-based information [205],
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and evolutionary algorithms [31, 56, 93, 133, 156]. To solve the multi-scale problem, dif-

ferent architectures and constraints have been proposed, varying from highly structured

hierarchies to clustering approaches that transition between heterogeneous and homogen-

eous structures. These include the dynamical feature discoverer (DFD) model, ensembles

of ESNs, decoupled hierarchies of ESNs, “deep” multi-layered structures, and hierarch-

ical clustering [61, 89, 92, 166, 203].

The general problem of finding optimal parameters for any reservoir system can be

challenging, and as model complexity increases so does the difficulty in selecting suit-

able parameters. In the literature there are a few examples combining optimisation and

modularity [124, 125, 156, 207] in an attempt to reduce the difficulty in designing topolo-

gies, internal weights and parameters. However, evolving hierarchical structure, network

connectivity and global reservoir parameters together – essentially all parameters at the

same time – has not yet been attempted. This may have been unappealing in the past as

the genetic representation can explode in complexity and significantly increase the search

space. However, if implemented well, it could potentially add much more evolvabilty,

leading to greater single-task and multi-task performances.

In this chapter a new evolvable architecture is proposed and investigated called the

Reservoir-of-Reservoirs architecture. Its primary design is to expand the capability of

hardware-based reservoir systems, enabling the future possibility of multi-substrate reser-

voir systems.

Hardware-based reservoirs feature the same limitations as virtual reservoirs, as well

as some extra substrate specific limitations. For example, reservoir size and internal para-

meter tuning may be restricted. The restriction on reservoir size, e.g. the number of

physical inputs and outputs available, can severely impact the task potential of such sys-

tems. Therefore, combining many smaller reservoirs and evolving hierarchies could lead

to more complex networks that would otherwise be too problematic to realise in hard-

ware. This idea has been briefly discussed [39, 41] for small unconventional substrates,

and demonstrated physically with hierarchical compositions of memristive networks [22].
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7.2 Hierarchical Reservoir Computers

Hierarchical learning systems provide intermediate levels to extract and specialise on

features, feeding from one layer into another, creating new abstract features from sub-

sequent ones. In terms of recurrent learning systems, this layering separation allows mul-

tiple independent temporal and spatial scales to be learned [89].

Hierarchies are essential in biological neural networks and have become popular with

deep learning systems. The neocortex is a prime example exploiting structural hierarchy

featuring six layers and billions of neurons communicating through different layered

channels with specialised connectivity [149]. Each layer contains different neuronal

shapes, sizes and densities, with different organisational structure; this heterogeneity is

often undervalued in artificial neural networks.

In the reservoir computing literature, different hierarchies of ESNs have been pro-

posed, exploiting the ESN structure and training separation that offers simple hierarchical

organisation and a fast training mechanism. Some of those proposed include: decoupled

echo state networks (DESN) [203], scale-free highly clustered ESNs (SHESN) [48], hier-

archically clustered ESNs (HESN) [92], and Deep ESNs [61, 62, 124, 125].

7.2.1 Reservoir of Reservoirs

The Reservoir-of-Reservoirs (RoR) architecture, recently proposed in [38], comprises

a reservoir containing smaller reservoir networks. The architecture utilises the classic

ESN training segmentation of three layers (input, hidden and readout layer) where only

the final readout layer is trained. The hidden layer, referred to as the master reservoir,

connects every sub-reservoir network of neurons to each other, as shown in Fig. 7.1.

Two versions of this architecture are proposed: RoR (Fig. 7.1a) and RoR-IA (Fig. 7.1b).

The first receives the task input at only one sub-reservoir, and the latter features inputs to

all sub-reservoirs.

The difference between the two is a restriction in information flow, i.e., the effect

input data at time t has on the current sub-reservoir state. This also implies that some

sub-reservoir states rely heavily on residual information, i.e. a sub-reservoir that does not

receive the input directly receives a transformed version of the original input data. This
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Figure 7.1: Reservoir-of-Reservoirs (RoR) architecture: a) only one sub-reservoir is sup-

plied with the input u, b) all sub-reservoirs have access to the input u. Each sub-reservoir

has independent parameters, such as biases bi and leak rate αi. All states xi are used for

readout training.

can potentially lead to multi-scale projection and abstraction if tuned correctly, but could

also lead to degenerative information, e.g. destructive transformations or randomisation

of the data, that could persist in the system.

The RoR architecture is described, like classic ESNs, by a series of weight matrices.

Each sub-reservoir consists of an independent input matrix W r
in ∈ RI×Nr and an internal

matrix W r ∈ RNr×Nr where Nr is total number of nodes in sub-reservoir r. Every sub-

reservoir has local network parameters, such as input scaling a(W r) and scaling of W r

that can be manipulated be evolution.

To form the master reservoir each sub-reservoir connects to every other sub-reservoir

via the sparse inter-reservoir matrix W̄ of matrices, see Eqn. (7.1). This weight matrix rep-

resents internal weights of each sub-reservoir (Wr =Wi j, when i and j are equal to r) and

the connections between each sub-reservoir. The weights connecting each sub-reservoir

are set to feed directly to neurons/nodes within other sub-reservoirs (Wi j ∈ RWi×W j), by-

passing the task input layer of each sub-reservoir.
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W̄ =


W1,1 W1,2 . . . W1,r

W2,1 W2,2 . . . W2,r
...

... . . . ...

Wr,1 Wr,2 . . . Wr,r

 (7.1)

The state update at time t for each sub-reservoir xi(t)∈ i= 1, . . . ,r is defined in Eqn. (7.2).

Separate leak rate filters are added to the output of each sub-reservoir, as shown by the

red (LR) boxes in Fig. 7.1, which can be adjusted using individual leak rate parameters

αi. The weighted effect previous states of other sub-reservoirs have on sub-reservoir r is

defined in Eqn. (7.3).

xi(t) = (1−αi)xi(t−1)+αi f
(
u(t)W i

in +Si(t)
)

(7.2)

Si(t) =
r

∑
j=1

W̄i jxi(t−1) (7.3)

Applying the classic ESN approach, the activation states of all neurons in the network

are collected to perform training, resulting in the prediction y(t) defined as:

y(t) =Wout [1 u(t) x1(t) x2(t) . . .xr(t)]T (7.4)

At creation, every sub-reservoir’s internal matrix is initiated as a sparse network with

10% connectivity. In the literature, the sparseness of Wr is typically considered more

beneficial to update speed rather than performance [117]. Every other weight matrix

connecting sub-reservoir i and j is initiated as a sparse network with 1% connectivity. The

matrices Wi j and Wji in W̄ are identical, representing one set of bidirectional weights. An

additional reservoir parameter φ(Wi j) determining the scaling of each Wi j is also set.

Despite each matrix being initialised as sparse, weight mutation is free to adapt con-

nectivity over time. Mutation can also create or break recurrent loops between sub-

reservoirs, increase homogeneity and remove or add hierarchy. Crucially, the necessity to

utilise hierarchy, recurrence or homogeneity depends on the task being evolved for.

7.3 Comparison Architectures

To evaluate the RoR architecture, three additional architectures are implemented based

on examples from the literature. The first is an ensemble of n independent ESNs shown in

95



CHAPTER 7. HIERARCHICAL AND MODULAR RESERVOIR COMPUTERS

(a) Ensemble

LR 

LR 

LR 

b1

b2

bn

𝑥𝑛

𝑥2

𝑥1

Input (u)

(b) DeepESN

LR 

LR 

LR 

b
Input (u)

𝑥𝑛

𝑥2

𝑥1

(c) DeepESN-IA

Figure 7.2: Hierarchical architectures: a) Ensemble of independent sub-reservoirs, b)

Pipeline of sub-reservoirs with input u only at first sub-reservoir, c) Pipeline with input u

supplied to every sub-reservoir. All have independent bias terms bi and use neuron states

xn (after leak filter) for readout training.

Fig. 7.2a, inspired by [166]. The architecture divides the task among multiple networks

and the combined reservoir states produce the desired output. For every network in the

ensemble there are again independent reservoir parameters, such as the bias term (bi all

being the same) and leak rates αi. The state update equation for the ensemble is given by:

xi(t) = (1−αi)xi(t−1)+αi f
(
[bi u(t)]W in

i +Wiixi(t−1)
)

(7.5)

The next two architectures are based on a multi-layered pipeline ESN, referred to

here as DeepESN, inspired by [62]. There are two variations of the DeepESN, as shown

in Fig. 7.2b and Fig. 7.2c. For the standard DeepESN the input enters only the first

layer, whereas for the DeepESN-IA the input is provided to all layers. The state update

equations for the DeepESN and DeepESN-IA are given in Eqns. (7.6), (7.7) and (7.8).

For the DeepESN, the input matrix is set as W in
i ∈ RI×Ni , if i = 1, and W in

i ∈ RNi−1×Ni , if

i 6= 1.

x̂i(t) =

 f
(
[bi u(t)]W in

i +Wiixi(t−1)
)

if i = 1

f
(
[bi xi−1(t)]W in

i +Wiixi(t−1)
)

if i 6= 1
(7.6)
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x̂i(t) =

 f
(
[bi u(t)]W in

i +Wiixi(t−1)
)

if i = 1

f
(
[u(t) xi−1(t)]W in

i +Wiixi(t−1)
)

if i 6= 1
(7.7)

xi(t) = (1−αi)xi(t−1)+αix̂i(t) (7.8)

7.4 Optimisation: Microbial GA

Manually selecting reservoir parameters can be a cumbersome task. Difficulty and ef-

fort increase with hierarchical architectures as the number of parameters and interactions

between units increase. However, the reservoir structure lends itself well to evolutionary

optimisation as all reservoir layers and parameters are adaptable. Examples of evolution-

ary methods applied to ESNs include: evolving input scaling, spectral radius scaling and

leak rate parameters, network sizes, and topologies with repeating patterns and geometric

regularities [31, 56, 133, 156]. Evolutionary optimisation can also be used to apply ESNs

to unsupervised problems when no teacher input-output data is available, as demonstrated

in [93].

To optimise the proposed architectures a steady-state genetic algorithm (GA) called

the Microbial GA (M-GA) [76] is used. The steady-state algorithm allows individuals to

survive across many generations, provides elitism for free, and offers a simple mechanism

for selection, recombination and mutation. It also has the advantage of being well suited

to distributed and asynchronous applications which can be useful for accelerating the

evolutionary process [76].

An example of the microbial GA implementation is provided in Algorithm 2. At

initialisation, the genetic information of the population, i.e. all reservoir weights matrices

and parameters, are stored in memory. The population is then evaluated and given a fitness

value which is stored. Fitness is defined here as the system’s test set error; each individual

therefore undergoes training, validation and testing during this process. At the validation

stage, regularisation parameters are found to improve network generalisation to new data.

In the test stage, the final trained network is then evaluated on new unseen data from the

test set.
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Algorithm 2 Microbial GA (M-GA)
1: Initialise population P

2: popFit = Evaluate(P) . popFit & P are stored

3: while !maxgens do

4: Assign Indv1 and Indv2 randomly from P

5: if popFit(Indv1) ≤ popFit(Indv2) then

6: winner =Indv1, loser =Indv2

7: else

8: winner =Indv2, loser =Indv1

9: P(loser) = Infect(P(loser), P(winner), recRate)

10: P(loser) = Mutate(P(loser), mutRate) . Update P

11: popFit(loser) = Evaluate(P(loser)) . Update popFit

12: print(min(popFit))

At every generation tournament selection occurs, where two individuals are randomly

selected and their fitnesses are compared. The individual with the lower error is marked

as the winner and the other the loser. The loser’s genetic information is copied to create

a new individual (the child) for further manipulation. At the infection stage one-way

recombination is applied and controlled by recRate, replacing a proportion of the child’s

genetic information with information from the winner. The child’s new genes are subject

to mutation based on the mutation rate mutRate. Evaluation of the child is performed

and the child then replaces the loser in the stored population. This loop repeats until the

maximum number of generations are reached. The M-GA parameters used are given in

Table 7.1. In total, 2000 fitness evaluations (population + generations) occur for each run

and for every architecture to provide a fair comparison.

7.4.1 Mutation and Recombination

During the search process a variety of parameters are under manipulation. These fall

into two categories: global sub-reservoir parameters, or local/inter-reservoir weights. The

first consists of parameters for input scaling, internal matrix Wr scaling, and leak rate.
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Parameter Value

Generations 1985

Population size 15

Total Evaluations (per run) 2000

Runs 10

Mutation rate 0.3

Recomb./crossover rate 0.4

Deme size 14

Table 7.1: Hyperparameters for Microbial GA.

The second includes input weights, sub-reservoir weights and weights connecting sub-

reservoirs. Two operators are defined to mutate each of these categories. For local sub-

reservoir parameter mutation, the probability of mutating any sub-reservoir parameter

is 1/3. If mutation occurs, new values for the leak rate are bound between [0 1], for

the internal weight scaling [0 2], and for input scaling [−1 1]. For weight mutations

(on the non-RoR architectures), there is a 0.25 probability for: adding a new internal

weight (value between [−0.5 0.5]) at a random location, randomly adding an input weight

(between [−1 1]), randomly removing an internal weight, and randomly removing an

input weight. For the RoR architectures, these probabilities change as weight mutation

can also occur in any connecting sub-reservoir matrix Wi j within the inter-reservoir matrix

W̄ . The probabilities change to 0.5 of mutating any weights in each sub-reservoir, or

within the inter-reservoir matrix.

As there are many evolvable parameters in each system, a limit on the number of

mutations is imposed to reduce large destructive jumps in the search space. A maximum

of m weight mutations can occur on any sub-reservoir, set as m≈ 1% of the total weight

parameters. The mutation rate mutRate is therefore used to determine what percentage

of m is mutated. The mutRate also determines whether local sub-reservoir parameter

mutation occurs for each sub-reservoir at each generation.

The infection/recombination phase is similar across all architectures. However, when

evolving a single network, infection completely replaces the loser with the winner. To

99



CHAPTER 7. HIERARCHICAL AND MODULAR RESERVOIR COMPUTERS

reduce the frequency of this large change infection occurs only at generations determined

by recRate. For example, if recRate = 0.5, infection will only occur at a generation 50%

of the time. For the other architectures, infection can replace any sub-reservoir within the

child with any from the winner. For the RoR architectures, this requires that the inter-

reservoir matrix W̄ also be updated.

In the full framework, additional categories and operators are also available: neuron

mutation (add/remove neurons and associated weights) and sub-reservoir block mutation

(add/replace/remove a sub-reservoir and its connections). However, these are ignored

here as these mutation operators typically require additional fine tuning.

7.5 Benchmarks

The benchmark tasks used to assess the architectures are the Non-linear Auto-Regressive

Moving Average (NARMA) tasks. The same task is outlined in Chapter 3.

The output y(t) for the different n-th ordered systems applied here are constructed

from (7.9), using input u(t) generated from a uniform distribution of [0, 0.5]. Three

n-th order systems are applied, each increasing in complexity. The parameters for the

n-th ordered systems are: for the 10-th order α = 0.3,β = 0.05,δ = 0.1, and γ = 1; for

the 20-th order α = 0.3,β = 0.05,δ = 0.01, and γ = tanh(); for the 30-th order system

α = 0.2,β = 0.004,δ = 0.001, and γ = 1.

y(t +1) = γ(αy(t)+βy(t)

(
n−1

∑
i=0

y(t− i)

)
+1.5u(t−9)u(t)+δ ) (7.9)

For every n-th ordered system a total of 8000 samples were used, split into 2000 train-

ing, 3000 validation and 3000 samples for testing, with a 100 sample washout period to

remove the effects of initial zero states. Each dataset was subjected to mean normalisation

and offset by −0.5. For each system, training was performed using ridge regression with

Tikhonov regularisation with the regularisation parameter selected using validation data.
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7.6 Results

7.6.1 Neuroevolution – A Single ESN

The experimental results in Table 7.2 demonstrate that the microbial GA can con-

sistently find LI-ESNs that significantly outperform randomly generated ESNs. In fact,

on average, evolved LI-ESNs produce errors below the lowest error of the best random

reservoirs. To calculate averages, 10 runs were used with a maximum of 2000 fitness eval-

uations per run. For the LI-ESN (Rand.), this consisted of 2000 random initialisations per

run, and for the LI-ESN (M-GA) 2000 fitness evaluations per run. The minimum errors

shown are those from all runs.

As shown in Table 7.2, the LI-ESNs (M-GA) outperforms other state-of-the-art optim-

isation techniques in the literature. For example on the NARMA-10 task with 200-nodes,

the LI-ESN (M-GA) significantly outperforms larger reservoirs such as the 300-node evol-

utionary pre-trained cycle reservoir with regular jumps (CRJ-E), and on average almost

matches the 400-node Bayesian-optimised ESN (ESN-OSI).

The LI-ESN (M-GA) evolved at 400-nodes, significantly outperforms all of the other

reservoir models and optimisation techniques demonstrating what appears to be the best

reported performance for this task and network size.

7.6.2 Neuroevolution – Hierarchical ESNs

Results for the NARMA-10 and NARMA-30 tasks on all six evolved architectures

under-test are shown in Figures 7.3a, 7.3b and Table 7.3. In this experiment, three net-

work sizes (100-node, 200-node and 400-node) are tested to evaluate sub-reservoir size

and number of sub-reservoirs in use. At 100-nodes, all multi-reservoir architectures are

subdivided into two sub-reservoirs of 50-nodes each. At 200-nodes, each sub-reservoir

increases to 100-nodes. At 400-nodes, four sub-reservoirs are created with 100-nodes

each.

Although the number of neurons in each model is the same, a clear discrepancy in the

number of possible connection weights arises. For example, for the 100-node LI-ESN

(M-GA) a total of 10,000 (100× 100) neuron weights exist, whereas for the 100-node
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Reservoir Type Units NARMA-10 NARMA-20 NARMA-30

Mean (σ ) Min. Mean (σ ) Min. Mean (σ ) Min.

LI-ESN (Rand.) 200 0.3625(0.3128) 0.0105 0.5588(0.1981) 0.0920 0.6272(1.5507) 0.1529

LI-ESN (M-GA) 200 0.0066(8.9E-4) 0.0053 0.0677(0.0048) 0.0603 0.1455(0.0047) 0.1396

RCDESIGN [57] 174(16.72) 0.0084 - - - - -

ESN [158] 200 0.0425 (0.0166) - 0.167 (0.0164) - - -

DLRB [158] 200 0.0402 (0.0110) - 0.160 (0.0153) - - -

CRJ-E [206] 200 0.0200 - - - - -

CRJ-E [206] 300 0.0216 - - - - -

LI-ESN (M-GA) 400 0.0026(2.5E-4) 0.0021 - - 0.0940(0.0125) 0.0761

ESN-OSI [204] 400 0.0064 - - - - -

GESN [156] 600 0.0051(5e-5) - - - - -

Table 7.2: NARMA performance of LI-ESN(M-GA) compared to random LI-ESNs and

other reservoir techniques. Standard deviation σ and minimum errors only provided when

given in the literature.

RoR there is only 7,500 neuron-to-neuron weights (3× (50× 50)), 5000 for both sub-

reservoirs and 2500 for the inter-reservoir connectivity. This means an RoR of this size

features a 25% connection deficit in comparison to a fully connected, single network of

“equivalent” neuron size. This continues to increase up to a 37.5% connection deficit for

the 400-node RoR, and 75% deficit for the 400-node ensemble architecture.

The total number of neuron-to-neuron weights (excluding input and output weights) of

an RoR system can be calculated as n2
r
(1

2ns(ns−1)+ns
)
, where ns is the number of sub-

reservoirs and nr the number sub-reservoir nodes. Therefore, in order to roughly match

the 200-node LI-ESN neuron-to-neuron weights using 2 layers would require 115-nodes

in each sub-reservoir, i.e. an increase in nodes is needed in each sub-layer, meaning node

compensation is always required when dividing a equivalent sized network into layers.

For both tasks, and all network sizes, the non-hierarchical LI-ESN (M-GA) appears

to outperform all other architectures. This is not surprising given the connection defi-

cit between the models. However on the NARMA-10 task, despite the deficit increasing

with node size, the RoR-IA architecture and LI-ESN (M-GA) show no significant differ-

ence when using the non-parametric Wilcoxon rank-sum test. However, for the harder

NARMA-30 task, the deficit and its effect on performance becomes apparent with the
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Task Units Architecture

LI-ESN (M-GA) RoR-IA DeepESN-IA DeepESN RoR Ensemble

NARMA-10 100 0.0191(0.0045) 0.0230(0.0046) 0.0268(0.0047) 0.0240(0.0044) 0.0334(0.0057) 0.0298(0.0032)

200 0.0066(0.0009) 0.0071(0.0011) 0.0078(0.0017) 0.0086(0.0013) 0.0108(0.0021) 0.0086(0.0013)

400 0.0026(0.0003) 0.0027(0.0002) 0.0032(0.0005) 0.0035(0.0006) 0.0046(0.0006) 0.0036(0.0005)

NARMA-30 100 0.1592(0.0180) 0.1604(0.0043) 0.1581(0.0032) 0.1609(0.0094) 0.1641(0.0102) 0.1697(0.0093)

200 0.1455(0.0047) 0.1509(0.0037) 0.1509(0.0029) 0.1512(0.0027) 0.1517(0.0035) 0.1525(0.0023)

400 0.0940(0.0125) 0.1178(0.0118) 0.1393(0.0135) 0.1489(0.0044) 0.1504(0.0034) 0.1507(0.0035)

Table 7.3: Results of evolved architectures for the NARMA-10 and NARMA-30 tasks.

Mean NMSE and standard deviation are given for multiple architecture sizes, with the

lowest highlighted. The LI-ESN outperforms others in most cases, with RoR-IA featuring

the next lowest errors.

LI-ESN (M-GA) outperforming all others.

To demonstrate the weight deficit effect on performance, an additional experiment is

conducted. The RoR-IA is evolved again using the 2-layer, 115-node neuron-to-neuron

weight equivalent. The new weight matching network significantly outperforms the LI-

ESN (M-GA) on the NARMA-10 task with a mean NMSE = 0.0053 and minimum NMSE

= 0.0041. However, it is debatable whether this comparison is fair, as the weight matching

RoR-IA has more neurons and thus more states to utilise.

The results of all evolved architectures show clear improvements in performance com-

pared to others in the literature. For example, on the NARMA-30 task all architectures

with 100-nodes show a mean error lower than the 150-node evolved compositional pattern

producing networks (CPPNs) reported in [133] (NMSE = 0.1696). And for the NARMA-

10 task at 400-nodes, the means of all evolved architectures in Fig. 7.3a are lower than

the evolved 600-node GESN in Table 7.2.

7.7 Task Generalisation

For any reservoir computer good performance often requires a trade-off between memory

and non-linearity, as non-linearity inherently degrades memory. This trade-off is widely

studied in reservoir computing [194]. A recent illustration of the dynamical mechanism

behind it is shown in [85], as well as how adding “a pinch” of linear dynamics to non-

103



CHAPTER 7. HIERARCHICAL AND MODULAR RESERVOIR COMPUTERS

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
NMSE

100

200

400
N

od
es

LI-ESN(M-GA)
RoR-IA
DeepESN-IA
DeepESN
RoR
Ensemble

(a) NARMA-10 Task

0.08 0.1 0.12 0.14 0.16 0.18 0.2
NMSE

100

200

400

N
od

es

LI-ESN(M-GA)
RoR-IA
DeepESN-IA
DeepESN
RoR
Ensemble

(b) NARMA-30 Task

Figure 7.3: Task performance for each architecture. For all architectures (except M-GA),

100 nodes is equal to 2 sub-reservoirs of 50 nodes, 200 nodes = 2×100 nodes, and 400

nodes = 4×100 nodes. The single network (M-GA) produces the lowest errors, followed

closely by RoR-IA.
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linear reservoirs can significantly improve reservoir systems.

Hierarchical structures offer a way to decouple non-linearity and memory, removing

the trade-off problem. A decoupled structure has the potential to exhibit multi-scale dy-

namics that could be utilised for multiple tasks. Hierarchical networks therefore, in theory,

have the potential to have greater network generalisation to other tasks, as generalisable

features may emerge.

To test the task generalisation hypothesis, two additional benchmark tasks are evalu-

ated: the Santa Fe laser time-series prediction task and the Hénon map task. The experi-

ment is therefore to evolve an architecture to some task then evaluate its ability to perform

a new task it was not evolved for. If the hierarchical/modular reservoirs consistently gen-

eralise better to the new task than does the single network, we can infer some potential

benefit from structural differences.

The Santa Fe laser dataset is the same applied in Chapter 4. The task is to predict the

next value u(t +1) based on the current input u(t). Training and testing is split into three

sets: 2500 samples for reservoir weight training, 1250 validation, and 1250 samples for

testing with a washout of 100 samples.

The Hénon map [77] task is featured in both reservoir computing and recurrent neural

networks. The task is to predict the next value y(t +1) of a two-dimensional mapping of

a strange attractor, given by:

y(t) = 1−1.4y(t−1)2 +0.3y(t−2) (7.10)

To increase the difficulty of the task, Gaussian white noise with a standard deviation of

0.05 is added to y(t). The dataset for this task is split into: 2000 training, 3000 validation

and 3000 testing, with a washout period of 100 samples for each.

In the following experiment, the two best performing hierarchical networks from the

previous experiment are used as well as the non-hierarchical LI-ESN (M-GA) network.

For each architecture, the best evolved network from each run is re-trained to each new

task; re-training applies only to the output weights, no other parameters are changed.

The results show the RoR-IA architecture generalises better to every task compared

to the LI-ESN (M-GA), despite size and original task. Fig. 7.4 shows each instance of

the experiment split into network size and original evolved task. This suggests the RoR
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Figure 7.4: Results of evolved networks retrained to laser and Hénon map tasks.

structure helps improve generalisation, which also appears to increase with network size.

RoR is also the only architecture to perform better when using more nodes, whereas for

the other two performance typically decreases.

The DeepESN-IA, however, shows no significant difference within the 95% confid-

ence level from the non-hierarchical LI-ESN (M-GA). This might suggest that hierarchy

alone does not necessarily always lead to improved generalisation.

Understanding which hierarchies and what dynamical properties of each sub-network

improves generalisation still requires further investigation. This is an interesting avenue

for future work as the task generalisation results in Fig. 7.4 show retrained networks can

outperform other reservoir models, and even match some reservoirs optimised directly to

the test task. Reported averages using 200 nodes in the literature are: NMSE = 0.0082 for

an ESN in [158] and an NMSE = 0.0066 for evolutionary pre-trained CRJ in [206]. The
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RoR-IA with 200 nodes, despite being trained on another task, has an average NMSE =

0.0075 and the best network gives NMSE = 0.0047.

7.8 Future Work with RoRs

In [124, 125], separate projection and encoding layers are defined to maximise feature

abstraction and break the collinearity problem. Each encoding layer produces a low-

dimensional representation that projects into the next layer. The evolved solutions in this

chapter potentially do not take advantage of cascading high-dimensional projections, as

representations generated in the first sub-reservoir can project into a state space of the

same dimension. However, in these experiments, connectivity between sub-reservoirs

is typically low and sparse (see Fig. 7.5), potentially allowing multi-scale projections

between sub-reservoirs. To better understand this requires further investigation.

An interesting experiment for future work would be to combine different reservoir

architectures. Sub-reservoirs could be constructed from different neural network archi-

tectures and reservoir computing systems. The reason why one might want to do this is to

exploit unique dynamical characteristics of different architectures. The potential for com-

bining different architectures can be seen in the literature, where examples include adding

and combining feed-forward layers and Extreme Learning Machines (ELM) [26, 27], and

adding encoding layers [124, 125].

Other avenues for future work include: i) a thorough analysis of the evolved weights

to assess the homogeneity of the network. As explained in [92] with HESNs, more con-

nections between sub-reservoirs often leads to more homogeneous networks. As briefly

shown in Fig. 7.5, which tends to be a typical case for RoRs, the networks are more

heterogeneous than homogeneous. ii) further tuning of the microbial GA could lead to

increases in performance.

7.9 Summary

In this chapter, the Reservoir-of-Reservoirs (RoR) architecture is described; it com-

prises a master reservoir containing smaller evolved sub-reservoirs. The first results
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Figure 7.5: Weight matrices plots of an evolved 200 node RoR-IA network. Matrices W1,1

and W2,2 represent the internal connectivity/weights of the two 100 node sub-reservoirs.

Matrices W1,2 and W2,1 show connectivity between the two sub-reservoirs.

showed the microbial GA outperforms not only random search but significantly outper-

forms other ESN optimisation techniques using smaller networks. This result is encour-

aging, as the microbial GA’s implementation is very simple, making it easy to transfer to

other systems.

The main results showed the RoR works best when the input is presented to every sub-

reservoir. However, all of the evolved hierarchies typically fall short of the performances

found with evolved non-hierarchical ESNs. This is hypothesised to be a consequence of

the difference in the number of connections between models, with some models having

up to 75% fewer weight connections. It is shown that if connectivity is compensated for,

by adding additional nodes, the evolved hierarchies perform very well in comparison,

and improve upon much larger reservoir systems in the literature. This result could help

inform design decisions and considerations when moving to the physical domain. For
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example, forming a large reservoir from many smaller reservoirs will undoubtedly feature

the same connectivity problem, but this might be negated by the impracticality of creating

such large, equivalent sized physical reservoirs anyway.

In the final experiment, the RoR’s ability to learn generalised features is tested by

retraining evolved networks to new tasks. The results show the RoR provides significant

improvements over other tested architectures, suggesting the RoR consistently evolves

some generalised features that others do not. This result raises some interesting ques-

tions and possibilities. If consistent, it could help prove the potential of a more general

computing multi-substrate reservoir computer.

Although encouraging results are shown, a current drawback of this chapter is that too

few experiments are conducted to observe what effect the number of sub-reservoirs has

on performance. In fact, little is still known about what the ideal ratio of sub-reservoir

neurons to number of sub-reservoirs is. Furthermore, it is still unknown whether more, or

fewer, sub-reservoirs are advantageous or detrimental. Further experiments and analyses

are still needed to answer these fundamental questions.

In the next chapter we take a step back and try address a basic, but non-trivial problem;

how to determine whether a substrate is suitable for reservoir computing. To fully exploit

the mutli-reservoir architecture proposed in this chapter many new substrates may be

necessary, featuring different but complementary properties. How to find and compare

such reservoirs is still unknown. For this reason, in the next chapter, we propose a generic

framework to assess and compare the quality of any substrate for reservoir computing.

109



Chapter 8

Characterising Substrate Quality for

Reservoir Computing

In recent years, the reservoir computing framework has been applied to a variety of

physical systems such as, optoelectronic and photonic [10, 191], quantum [59, 151, 189],

disordered and self-organising [40, 184], magnetic [155], and memristor-based [51] com-

puting systems. The way each substrate realises a reservoir computer varies. However,

each tends to implement, physically or virtually, a static network of coupled processing

units.

Each implementation is designed to utilise and exploit the underlying physics of the

substrate, to embrace its intrinsic properties to improve performance, efficiency and/or

computational power. As with many physical systems, each can be configured, controlled

and tuned to perform a desired functionality. In all of the above examples, this requires the

careful tuning of parameters in order to produce working and optimal physical reservoirs.

In general, the abstract term reservoir usually represents a single, typically static,

configuration of the substrate. For an artificial recurrent neural network, implemented

in silico, this may refer to a set of trained connection weights, defined neuron types and

topology. For another substrate, configuration may refer to the physical morphology,

physical state, external control signals, or complexification of the driving input signal.

This implies that the number of possible reservoirs realised by one substrate depends

upon the number of free parameters and distinct dynamical behaviours resulting from

those parameters. For unconstrained substrates, limited only by the laws of physics, this

110



CHAPTER 8. CHARACTERISING SUBSTRATE QUALITY FOR RESERVOIR
COMPUTING

number may be vast. Yet, this does not imply that every configuration/reservoir is practical

or useful.

In terms of all possible reservoirs realisable by one substrate, the vast majority may be

unusable in terms of solving a task. However, some region of the substrate’s configuration

space may well provide interesting reservoirs and potentially high-performing reservoirs,

or even reservoirs with large generalising computing abilities.

Characterising the configuration and reservoir space (referred to below as the beha-

viour space) of usable and optimal reservoirs would thus help describe the substrate’s

“quality” for reservoir computing, that is, the substrate’s ability to realise different reser-

voirs, and therefore its capacity as a generic reservoir computing substrate.

According to [43], all dynamical systems have an almost universal characteristic to

perform useful information processing, provided a fading memory and linearly independ-

ent internal variables are present. However, each dynamical system tends to suit different

tasks, and rarely, but not unattainably, will one feature a universal set of properties to per-

form well across many, if not all tasks. This implies that high-performing, task-specific,

and potentially some good task-generalising reservoir computers can be built. Then, when

combined with highly-efficient unconventional substrates, these unique and powerful new

computers can become a disruptive force.

8.1 How Do We Measure Quality?

Dambre [43] devises a quantitative measure which is independent of physical real-

isation, allowing anyone to compare the computational properties of a broad class of dy-

namical systems. However, that total capacity measure may not be informative enough to

guide substrate optimisation for specific tasks, or physically demonstrate how expressive

the substrate is in terms of realising vastly different reservoirs.

So far, no practical framework exists to map, then utilise, the full computational ex-

pressiveness of physical or virtual substrates. That is, no experimental method has been

proposed to characterise the reservoir computing quality of substrates, or to use measures

of computational properties to configure and discover optimal reservoirs.

The challenge in creating a generic framework arises from the enormous variety of
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Figure 8.1: Framework levels and building blocks.

possible substrates, and from each substrate having its own set of configuration and other

parameters. The term “substrate” is used here to refer to any physical or virtual system that

realises a reservoir computer, e.g. a physical electronic or optical circuit, a virtual gene

regulatory network, or a cellular automaton; essentially anything featuring configurable

parameters and a method to observe system states.

To tackle this non-trivial problem the SQuARC (Substrate Quality Assessment for

Reservoir Computing) framework is proposed. The main purpose of the framework is to

characterise and assess the quality of any potential RC substrate. This attempts to comple-

ment previous theoretical work in the RC community, such as [43]. The framework also

has a secondary purpose, to utilise the quality assessment process to better understand the

general relationships between computational properties and task performance.

8.2 The SQuARC Framework

To conceptualise and visualise the framework it is divided into a series of building

blocks and levels, as shown in Fig. 8.1. To make use of the framework, and to assess

accuracy and validity, five stages are to be completed. These are represented by the five

levels: 1) Definition, 2) Exploration & mapping, 3) Evaluation, 4) Learning, and 5) Ap-

plication.

Each level of the framework features a reliance on the level below: to start a new
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Figure 8.2: Example of a 3-Dimensional Behaviour Space. Here each abstract behaviour

is relative to the three chosen property measures. Given enough time to explore the space,

the substrate’s dynamical/behavioural limitations become apparent.

level requires the completion of the level below. Each level consists of building blocks.

In general, these blocks are adaptable and may be improved. For example, the current

method for exploring the behaviour space may be improved or interchanged with another

exploration technique. Another example is that more dimensions can be added to the

behaviour space with the creation of new property measures. In some cases, as will be

explained later, some blocks/levels can even be removed.

8.2.1 Definition

On the first level, a behaviour space is defined. This abstract behaviour space rep-

resents the dynamical behaviour of the substrate when configured. To represent the n-

dimensional space, n independent property measures are used, defining the axes of the

space (see example in Fig. 8.2). It is hypothesised here that the more distinct measures

applied, the better the representation of the substrate’s dynamical freedom and thus the

better the accuracy of the quality measure.
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8.2.2 Exploration & Mapping

The next level is Exploration & Mapping. To determine a true measure of quality,

not only an approximation, exploration of the behaviour space would require an exhaust-

ive search of the substrate’s parameter space, which is infeasible. Rather than exhaustive

search, an implementation of novelty search (NS) [107] is recommended. Novelty search

is an open-ended genetic algorithm designed to explore a behaviour space for novel solu-

tions until some user-defined termination criteria.

Rewarding novelty can maximise exploration by promoting diversity into new areas

of the search space. A key advantage over objective-based search is that novelty search

can be particularly useful when the relationship between parameters and behaviours is

deceptive [107], for example, when a strong selection pressure can in fact inhibit innova-

tion.

When applied in this manner, exploration characterises the substrate’s search space

and as a by-product outlines its dynamical boundaries, when given enough time. This

experimental characterisation can then help determine the practical use, if any, of the

substrate, or whether the selected method of configuration and observation (which itself

may be optimised) is appropriate.

To make later use of the exploration process every behaviour found throughout the

search is stored in a database. The NS algorithm itself is designed to perform a global

search of the space: exploration rather than exploitation. However, across the generations

many smaller local searches are also occurring in the process. The database therefore

keeps a record of all behaviours, including localised behaviours around a novel behaviour.

8.2.3 Evaluation

The next level is Evaluation. To determine quality, the spread and number of dis-

tinct behaviours recorded in the abstract behaviour space (the database) is quantitatively

measured. Quality is therefore a measure of how many distinct dynamical behaviours the

substrate experimentally possesses. The measure itself can be simple, however, any meas-

ure of quality requires some contextual reference. To assess the quality of a new substrate

it is recommended that an easy to define/inspect, ideally known to be high-performing,
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reference substrate first be assessed and evaluated. In the work here, to provide a baseline

substrate to compare to, and to evaluate the framework, simulated ESNs are used as a

reference substrate. In the future, if better, i.e. good generalising substrates with higher

degrees of dynamical freedom, are found, the reference substrate can be replaced.

The second building block on the evaluation level represents the task evaluation pro-

cess when the database is assessed on specific tasks. Although not necessary to evaluate

the quality of a substrate, this process is required to utilise the top two levels of the frame-

work.

8.2.4 Learning and Application

The next two levels (Learning and Application) fulfil the secondary goal of the frame-

work to relate computational properties and behaviours to performance. These two levels

also provide a method to validate the substrate-independence of the framework. As a bo-

nus, they also provide a method to significantly reduce the cost of future task assessments

by predicting task performances based on similarly behaved substrates.

To validate the framework, a conjecture from Abstraction/Representation theory [81]

is followed hypothesising that a faithful abstract representation should provide an abstract

prediction of how the system will evolve. For example, in this scenario, if the behavioural

representation is faithful across substrates and the relationship between properties and

performance can be faithfully abstracted, it may be possible to predict performance of

one substrate based on another. However, to predict performance across systems requires

us to solve another challenging problem.

As explained in [65], relating properties to expected performance is non-trivial for all

task applications, as good properties for one task may be detrimental to another. There-

fore, no single set of properties will always lead to high performance. However, the

relationship between properties and a single task may be simpler to determine.

To model and estimate the statistical relationships between properties and task per-

formance a broad range of properties and performances are required. Novelty search

provides property diversity in the exploration and mapping level, discovering reservoirs

with (hopefully) very different dynamical properties. At the evaluation level task per-

formances can be assessed; this leads to a basic dataset to train a learning system, for

115



CHAPTER 8. CHARACTERISING SUBSTRATE QUALITY FOR RESERVOIR
COMPUTING

example, a neural network.

Building and training the learning system represents the learning level of the frame-

work. This is again adaptable, as different models can be used to learn the relationships.

At this level, the accuracy of the prediction implies how well the relationship between

properties and performance can be abstracted. The resulting prediction accuracy also

helps approximate the accuracy of the property measures and faithfulness of the behavi-

oural representation. For example, if no relationships between properties and perform-

ance were found there would be little confidence in the ability of the property measures

to represent the true computational properties of the system.

At the final Application level, the full validation of the framework is achieved. This

is attained by measuring the difference in prediction accuracy between the reference and

new substrate. A small difference would validate the accuracy of the learned models, the

behaviour representation and substrate-independence of the framework. Beyond valida-

tion, this level is also useful to predict the task performance of any substrate – without the

need to evaluate directly – based on the reference substrates behaviours and task perform-

ances.

8.3 Task-Independent Properties

In order to create the behaviour space, each axis/dimension of the space must be

defined. In the following sub-sections different computational properties and measures

are discussed.

A potential problem in defining the behaviour space is that some properties are dif-

ficult, if not impossible, to measure across all substrates. It is therefore important to

remember that any properties applied with the framework should represent the behaviour

of the system independent of its implementation.

The basic framework demonstrated later in the chapter applies only a subset of the

properties discussed here. This section is intended to inform the reader of the various

properties available in the RC community and potentially inspire the creation, or adoption

from other fields, of new property measures for this framework.
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8.3.1 Chaos and Criticality

Chaotic behaviour in dynamical systems can be characterised by sensitivity to perturb-

ation and initial conditions. This is popularly measured by estimating the rate of diver-

gence between close trajectories using the spectrum of Lyapunov exponents. Typically,

the maximal Lyapunov exponent is preferred in reservoir computing. However, estimat-

ing the Lyapunov exponents can be non-trivial for high-dimensional noisy systems [120]

and impractical in many cases for physical systems.

Chrol-Cannon & Yin [33] show that the maximal Lyapunov exponent and kernel qual-

ity (a measure of the separation property, described later) often strongly correlate, arguing

that both capture similar dynamical properties of the reservoir. This makes observing a

critical phase easier when Lyapunov exponents are difficult to estimate, or cannot be es-

timated. However, this relationship is found to break down when the number of distinct

reservoir states required to separate the input classes has been reached.

The general consensus in reservoir computing is that Lyapunov exponents are good

predictors for optimal performance across many tasks investigated [16, 25, 195, 196].

However, often a critical state by itself is only a weak indicator of performance across

many task domains. For some tasks, high performance does coincide with a critical bal-

ance between chaotic and ordered behaviour, described by Verstraeten & Schrauwen [195]

as a region between the excitability of the reservoir and its degrees of freedom in the state

space. Being in a critical state, however, close to the edge of chaos is not a necessity.

Some tasks require very different levels of computational dynamics, or even minimum

levels of computation. Therefore, maximising any computational property can often be

misleading and unnecessary.

Despite its limitations, the edge of chaos theory can, and has, played a useful role

in quantifying reservoir performance and optimisation in simulated networks. The same

concepts could also have direct connotations to material computation whereby a material

can exhibit “richness”, and therefore be exploitable, only by operating close to or within

this phase transition. A novel example of this can be seen where a self-organising struc-

ture of carbon nanotubes evolves to produce maximum entropy given a strong applied

electric field [14]. The same proposition has only recently been considered in the field of

evolution in materio with physical substrates [146], with more substantial investigations
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still needed.

An encouraging thought is that emergent criticality and self-organising properties

might be commonplace in dynamic networks [181], suggesting many potential reservoir

computing systems.

8.3.2 Kernel Quality and Generalisation Rank

Kernel quality is a measure of the reservoir’s ability to produce a rich non-linear rep-

resentation of input u and its history u(t − 1),u(t − 2), . . .. Also known as the linear

separation property, it was first introduced by Legenstein & Maass [105] to measure a

reservoir’s ability to separate distinct input patterns. As many practical tasks in machine

learning are linearly inseparable, reservoirs would not be able to solve such problems

without some non-linear transformation of the input.

The kernel quality measure is performed by computing the rank r of an n×m matrix

M, outlined in [25]. To create the matrix M, apply m distinct input streams ui, ...,um and

collect the resulting reservoir states xui . Place the states xui in each column of the matrix

M and repeat m times. The rank r of M is computed using Singular Value Decomposition

(SVD) and equal to the number of non-zero diagonal entries in the unitary matrix. The

maximum value of r is always equal to the smallest dimension of M. To calculate the

effective rank, and better capture the information content, remove small singular values

using some high threshold value. To produce an accurate measure of kernel quality m

should be sufficiently large, as accuracy will tend to increase with m until it converges.

The generalisation rank is a measure of the reservoir’s capability to generalise given

similar input streams. It is calculated using the same rank measure as kernel quality,

however each input stream ui+1, ...,um is a noisy version of the original ui. A low gener-

alisation rank symbolises a robust ability to map similar inputs to similar reservoir states.

Reservoirs in ordered regimes typically produce low ranking values in both measures,

and both are high when in chaotic regimes. In general, it is said that a good reservoir

should possess a high kernel quality rank and a low generalisation rank [25]. However,

in terms of matching reservoir dynamics to tasks, the right balance will vary. These two

measures are important but by themselves do not capture enough information about the

reservoir’s dynamical properties.
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8.3.3 Memory Capacity

A simple measure for the linear short-term memory capacity (MC) of a reservoir was

first outlined in [87] to quantify the echo state property. For the echo state property

to hold, the dynamics of the input driven reservoir must asymptotically wash out any

information resulting from initial conditions. This property therefore implies a fading

memory exists, characterised by the short-term memory capacity.

To evaluate memory capacity of a reservoir, how many delayed versions of the input

u(n− k) the outputs can recall, or recover with precision is measured. Using Eqn. (8.1),

memory capacity is measured by how much variance of the delayed input is recovered,

summed over all delays. This is carried out by training individual output units O =

{O1,O2,O3, . . . ,ON×2} to recall the input u at time k, i.e. Ok = u(n− k).

MC =
O

∑
k=1

MCk =
O

∑
k=1

cov2(u(n− k),y(n))
σ2(u(n))σ2(y(n))

(8.1)

Jaeger [87] demonstrates that echo state networks driven by an i.i.d. signal can possess

only MC ≤ N, where N is the number of nodes.

A full understanding of a reservoir’s memory capacity cannot be encapsulated through

a linear measure alone, as a reservoir will possess some non-linear capacity. Other

memory capacity measures proposed in the literature quantify the non-linear, quadratic

and cross-memory capacities of reservoirs [43].

8.3.4 Class separation

Class separation is a metric that corresponds directly to different classes of input stim-

uli. Demonstrations of class separation can be found in [33, 63, 150]. Separation is meas-

ured as the average distance between resulting states, once again, given the assumption

that significantly different inputs should generate significantly different reservoir states.

To calculate separation requires the division of the input and state vectors into discrete

classes; [63] provides an alternative measure characterised on the original assumption.

For example, given two different input vectors u j(n) and uk(n) the euclidean distance

between inputs should be large and positive, as described by D:

D := ‖u j(n)−uk(n)‖ (8.2)
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Figure 8.3: Separation Ratio Graph [63]. Graphical representation of the phase transition

between chaos and order. Systems in the target zone possess both a good separation

property and ideal dynamic behaviour to produce optimal reservoirs.

If the reservoir exhibits a good separation property the reservoir states x j(n) and xk(n)

should increase in distance, or be equal to the original distance:

D≤ ‖x j(n)− xk(n)‖ (8.3)

which can be represented as the ratio:

‖x j(n)− xk(n)‖
‖u j(n)−uk(n)‖

≥ 1 (8.4)

This simplified measure has been extended into Separation Ratio Graphs to produce

a visual representation of separation and the phase transition of correlated dynamic beha-

viour (see Fig. 8.3).

Konkoli & Wendin [99] offer another comparable method for identifying reservoir

quality in memristor networks. This metric is again based on the assumption that quality

can be measured by observing the reservoir’s ability to generate different dynamic states

at the output. In this case, it is observed by measuring the dissimilarity between output

states and a linear combination of the inputs, i.e. determining if the non-linear frequency

response of a network cannot be approximated by a linear mixture of delayed inputs.

Dissimilarity is measured in the Fourier space (ω) between outputs o(n) and a linear
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combination of the time shifted inputs z(n), given by:

δ =
‖o(ω)− z(ω)‖
‖o(ω)‖

(8.5)

A large dissimilarity (large δ ) is ideal in a reservoir as it describes a complex projec-

tion of the input. A small δ on the other hand may simply describe a linear propagation

of the input, highlighting the absence of richness in the reservoir.

8.3.5 Information Theory

Another way to measure computational properties of dynamical systems is to utilise

information theory [37, 169]. Information theory can describe the transmission, pro-

cessing and storage of information. As a broad simplification, computation can be de-

scribed as operations performed on information, or a manipulation of information. How

much information is transferred between components during operations, the bandwidth of

the communication and the internal storage of each component can help us quantify the

dynamical properties of the system.

Shannon entropy, a key measure in information theory, estimates the average uncer-

tainty of any measurement x of a random variable X . The typical measurement of entropy

is in units of bits, using the base two logarithm as defined in:

HX =−∑
x

p(x) log2 p(x) (8.6)

Other important measures are as follows: The joint entropy of two random variables

X and Y is a generalization to quantify the uncertainty of their joint distribution:

HX ,Y =−∑
x,y

p(x,y) log2 p(x,y) (8.7)

The conditional entropy of X given Y is the average uncertainty that remains about, or

the amount of information needed to describe the outcome, x when y is known:

HX |Y =−∑
x,y

p(x,y) log2 p(x|y) (8.8)

The mutual information between X and Y measures the average reduction in uncer-

tainty about x that results from learning the value of y, or vice versa:

IX ;Y = HX −HX |Y = HY −HY |X (8.9)
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The conditional mutual information between X and Y given Z is the mutual informa-

tion between X and Y when Z is known:

IX ;Y |Z = HX |Z−HX |Y,Z (8.10)

In [16, 113, 114, 165], these measures are used to quantify properties of complex

systems such as Local Active Information Storage (AIS) and Transfer Entropy (TE).

Information-theoretic measures can be used to describe the process by which each

reservoir node X updates or computes its next state, with each computation utilising in-

formation storage from the node itself, and information transfer from other nodes.

The information storage of a node is the amount of past information present relevant

to predicting its future state. Excess entropy, as formalised by Lizier et. al. [114], is

a measure of the total information storage used in the future of a process. Lizier et. al.

also describe how information storage in a node’s environment within a distributed com-

putation increases its information storage capacity beyond its internal capability. This

effectively explains how nodes can utilise stigmergy and store extra information in neigh-

bours and the rest of the network to be retrieved later. Some information in this process,

however, will not necessarily be used at the next time step. Therefore, knowing how much

stored information is used to compute the next value at the next time step is useful. This

is described as the active information storage AX .

This AIS for a node X is defined as the average mutual information between its semi-

infinite past x(k)n =
{

xn,xn−1, . . . ,xn−k+1
}

and its next state xn+1:

AX = lim
k→∞

∑
xn+1,x(k)

p(xn+1,x(k)) log2
p(x(k)n ,xn+1)

p(x(k)n )p(xn+1)
(8.11)

Another useful measure is Transfer Entropy (TE) [113, 165] representing the dynamic

information transfer between a source and a destination node. This is defined as the in-

formation provided by the source about the destination’s next state that was not contained

in the destination’s past.

Transfer entropy is measured as the mutual information between the previous state of

the source node Y to a destination node X . This is formulated as the source node yn and the

next state of the destination xn+1, conditioned on the semi-infinite past of the destination

x(k)n (as k→ ∞):
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TY→X = lim
k→∞

∑
un

p(un) log2
p(xn+1‖x

(k)
n ,yn)

p(xn+1‖x
(k)
n )

, (8.12)

where un is the state transition tuple (xn+1,x(k),yn) and TY→X (k) represents finite-k approx-

imation.

To make quick use of these measures, toolboxes such as the Java Information Dynam-

ics Toolkit (JIDT) [112] are recommended.

8.4 Behaviour Exploration

In general, theoretically determining the computational capacity of a system helps us

understand its limitations. One might think that this knowledge should then be used to

construct or search for reservoirs with a maximal computational capacity. However in

practice such maximisation is often unnecessary, time-consuming and may in fact hinder

performance. A balance between properties is essential to match reservoir dynamics to

tasks.

The SQuARC framework starts by exploring and mapping a vast range of dynamics

for which the right balance can be selected for any task. In order for the framework to

function properly and translate to many systems, this mapped space of dynamics requires

substrate-independence.

To be substrate-independent, exploration must function without any prior knowledge

of how to construct reservoirs far apart from each other in the behaviour space. Explora-

tion cannot, therefore, be measured in the substrate parameter space; diversity in dynamics

does not always coincide with diversity in parameters.

8.4.1 Objective-Based Evolutionary Algorithms

Exploration with objective-based search methods has a popular history, however at

times it can be tricky and difficult to implement universally. In general, objective-based

search focusses on an optimisation problem involving the minimisation or maximisation

of single or multiple objectives. The exploration process depends heavily on the defined

objectives and constraints.
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In many approaches with evolutionary algorithms, exploration is characterised by pro-

moting population diversity, the distance between genotypes or phenotypes, or fostering

niches through selection [23, 64], for example, optimising the ratio of the number of

unique individuals over population size, or the Hamming distance between genotypes

represented by binary strings. Improving population diversity, in general, is often viewed

as a way to directly tune the exploration/exploitation trade-off, biasing the evolutionary

process in favour of more exploration.

In some multi-objective evolutionary algorithms, diversity of the population becomes

an objective itself [45, 188]. These Pareto-based algorithms, often searching for a non-

dominated set of solutions spanning the objective space (called the Pareto front [46])

can be programmed to obtain not only Pareto-optimal trade-offs between the original

objectives, but also diverse solutions spanning the Pareto front.

A disadvantage of using this technique for the SQuARC framework is the loss of

potentially interesting solutions that do not lie on the Pareto front. In many ways, an

objective-based search does not necessarily align with the type of exploration wanted, in

particular, where total coverage of the space is desired, not just optimal solutions.

8.4.2 Novelty Search

For these reasons, an open-ended evolutionary algorithm called novelty search (NS)

[107, 108, 110] is adopted. In this particular implementation, novelty search is used to

characterise the substrate’s search space, i.e. the dynamical freedom of the substrate, by

sampling its most interesting dynamical behaviours.

In contrast to objective-based techniques, a search guided by novelty has no explicit

task-objective other than to maximise novelty. Novelty search directly rewards divergence

from prior behaviours instead of rewarding progress to some objective goal.

Exploration without objectives has been shown, somewhat counter-intuitively, to out-

perform objective-based methods with deceptive task and solution spaces [157]. A de-

ceptive objective (fitness) landscape is one where local optima are pervasive. When char-

acterising substrate dynamics, this is of particular concern due to the high dimensionality

of the substrate’s computational properties which are only partially described, i.e. meas-

ures are only approximate.
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Novelty search explores the behaviour space by promoting configurations that exhibit

novel behaviours. Novelty of any individual is computed with respect to its distance from

others in the behaviour space. To track novel solutions, an archive is created holding

previously explored behaviours. Contrary to objective-based searches, novelty takes into

account the set of all behaviours previously encountered, not only the current population.

This enables the search to keep track of (and map) lineages and niches that have been

previously explored.

To promote further exploration, the archive is dynamically updated with respect to two

parameters; ρmin and an update interval. The ρmin parameter defines a minimum threshold

of novelty that has to be exceeded to enter the archive. The update interval is the frequency

at which ρmin is updated. Initially, ρmin should be low, and raised or lowered if too many

or too few individuals are added to the archive in an update interval. Typically in other

implementations, a small random chance of any individual being added to archive is also

set.

In the following implementation, a small initial ρmin is selected relative to the beha-

viour space being explored and updated after a few hundred generations. ρmin is dynam-

ically raised by 20% if more than 10 individuals are added and ρmin is lowered by 5% if

no new individuals are added; these values are guided by the literature.

To maximise novelty, a selection pressure rewards individuals occupying sparsely

populated regions in the behaviour space. To measure local sparsity, the average dis-

tance between an individual and its k-nearest neighbours is used. A region that is densely

populated results in a small value of the average distance, and in a sparse region, a larger

value. The sparseness ρ at point x is given by:

ρ(x) =
1
k

k

∑
i=1

dist(x,ξi) (8.13)

where ξi are the k nearest neighbours of x.

The search processes is guided by the archive contents and the current behaviours in

the population, but the archive does not provide a complete picture of all the behaviours

explored. Throughout the search process the population tends to meander around existing

behaviours until a new novel solution exceeding the novelty threshold is discovered. To

take advantage of this local search, here all the explored behaviours are stored in a separate
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database D. The database therefore stores all the information to later characterise the

substrate and has no influence on the search, which uses only the archive.

8.4.3 Novelty Search Implementation

In the literature, novelty search is frequently combined with the Neural Evolution

of Augmented Topologies (NEAT) [110, 174] representation; this neuro-evolutionary

method focusses on adapting network topology and complexifying a definable structure.

For the SQuARC framework, a more generic implementation is desired: an evolutionary

search algorithm that uses co-evolution and speciation, but features a minimalistic im-

plementation not based on any specific structure or representation. For these reasons, an

adaptation of the steady-state Microbial Genetic Algorithm (MGA) [76] combined with

novelty search is used here. The MGA is a genetic algorithm reduced to its basics, featur-

ing horizontal gene transfer (through bacterial conjugation) and asynchronous changes in

population where individuals can survive long periods.

To apply the MGA to the problem a number of adaptations are required. Caching fit-

ness values in the standard steady-state fashion is not possible (as in Chapter 7), as fitness

is relative to other solutions found and stored in the growing archive. In this implementa-

tion, no individual fitnesses are stored across generations, however the same steady-state

population dynamics are kept, i.e. individuals are not culled, and may persist across many

generations.

An overview of the evolutionary loop is given in Fig. 8.4. The complete process is

also outlined in pseudo-code in Algorithm 3.

At the beginning of the search process, a random population is created. In the popu-

lation, both the substrate configurations and the resulting behaviours B are stored. This

initial population is then added to the archive A and database D.

At step 1, tournament selection with a tournament size of two is used. To ensure

speciation, the first parent is picked at random and the second is chosen within some

proximity to the other determined by the MGA parameter deme size. In this step, the

fitnesses (novelty) of both behaviours are calculated relative to population P and archive

A. The individual with the larger distance, that is, occupying the less dense region of the

behaviour space, is adjudged the winner. This elicits the selection pressure towards novel
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Figure 8.4: Adapted microbial GA with novelty search.

solutions. The microbial GA differs from other conventional GAs as the weaker (here,

less novel) individual becomes “infected” by the stronger (more novel) one, replacing its

original self in the population.

At step 2, the configurations of both behaviours are retrieved and manipulated. This

constitutes the infection and mutation phase. In the infection phase, the weaker parent un-

dergoes horizontal gene transfer becoming a percentage of the winner and loser. The ge-

netic information of the weaker parent does not disappear in this process, as some percent-

age defined by the recombination rate parameter remains intact. In the mutation phase,

the weaker parent undergoes multiple point-mutations, becoming the new offspring.

At step 3, the configuration of the new offspring is untested, therefore the behaviour

BChild of the individual needs to be updated. At steps 4a and 4b, the offspring’s behaviour

and configuration are added to the database D and it replaces the loser in the population

P.

At the last step 4c, the fitness/novelty of the offspring BChild is compared to both the

current population P and archive A. If the novelty of the offspring exceeds the novelty

threshold ρmin, the behaviour BChild (configuration is not needed) is added to the archive

A.
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Algorithm 3 Novelty search with microbial GA algorithm
pop← random . initial random population list length P

A← pop . archive initialised

D← pop . database initialised

while searching do

i :∈ 1..PopSize . parent 1 from pop

j :∈ deme i . parent 2 from deme

if f (pop(i),A, pop)> f (pop( j),A, pop) then

winner, loser← i, j . fitness is novelty

else

winner, loser← j, i

child← in f ection(winner, loser)

child← mutation(child)

pop(loser)← child

if child is sufficiently novel then

add child to A

add child to D

if generation == n×updategen then

update novelty threshold ρmin

Overall, three fitness values are calculated at each generation. Two fitness evaluations

occur in the selection phase and a third fitness evaluation is carried out on the offspring,

in order to update the archive. The computational complexity of the fitness function

is O(nd + kn) using an exhaustive k-nearest neighbour search. As the dimension d of

the archive/behaviour space is small (d = 3 property measures in the later example), the

number of k-neighbours (here k = 15) has the dominant effect. This value of k is chosen

experimentally; larger k-values improve accuracy but increase complexity. As the archive

size increases, complexity increases proportional to archive size n. To reduce complexity,

Lehman and Stanley [110] describe a method to bound the archive using a limited stack

size. They find that removing the earliest explored behaviours, which also results in some

backtracking, does not significantly harm exploration performance in all cases.
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8.5 Applied to Echo State Networks

In this section, we begin by defining the behaviour space of interest and characterising

the quality of the reference substrate. The chosen reference substrate is the virtual ESN

substrate.

As a basic demonstration of the framework, a three-dimensional space is chosen using

properties/metrics described in section 8.3: memory capacity (MC), kernel quality rank

(KR) and generalisation rank (GR). These three measures capture different aspects of the

reservoir, both chaos and order, and are simple to apply to physical systems.

To evaluate and validate the framework, multiple ESN network sizes are evolved and

assessed against a control comprising of random populations the same size as D. The

four ESN network sizes chosen are: 25, 50, 100, and 200 node. This provides a small

spectrum to assess the framework with, from simple to more complicated reservoirs.

If novelty search performs well, i.e. better than random, with each ESN network size,

it might be possible to extrapolate that the same will hold true of other network sizes, and

possibly different substrates.

8.5.1 Measuring Quality

To evaluate the quality of each ESN network size, a simple metric (Eqns. (8.14) and

(8.15)) measures how much of the behaviour space is covered: greater coverage implies a

greater degree of dynamical freedom. Statistical measures of dispersion such as standard

deviation, variance, mean absolute deviation and inter-quartile range are not particularly

suitable: they downplay outliers, whereas we want to push the boundaries of the region

explored. Instead, the behaviour space is divided into discrete volumes, representing these

‘behaviour voxels’, and the quality measure defined counts how many ‘behaviour voxels’

are occupied: the more such behaviours, the larger the volume of space explored.

In the 3d example, this discretised behaviour space is captured by a cube represented

by the 3d array Bi, j,k; where the coordinate j captures discretised memory capacity values

(a continuous-values measure) and i and k capture the kernel and generalisation rank

values (already discrete); the assignment of metrics to specific coordinates is arbitrary and

does not affect exploration. The appropriate size of B can be deduced from measurement
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constraints and from the MC bounds imposed on ESNs: KR ≤ N,GR ≤ N and MC ≤ N.

A simple discretisation of MC is chosen, taking the integer part, so B is an N×N×N

array.

B is defined as follows. Bi, j,k = 1 (occupied) if there is at least one individual in the

database D with kernel rank KR = i, discretised memory capacity MC = j and general-

isation rank GR = k; otherwise Bi, j,k = 0 (unoccupied):

Bi, j,k←∃d ∈ D s.t. KR(d) = i∧bMC(d)c= j∧GR(d) = k (8.14)

The total space covered, φ , in an evolutionary run is the number of occupied points in

Bi, j,k; 0≤ φ ≤ N3:

φ =
N

∑
i=0

N

∑
j=0

N

∑
k=0

Bi, j,k (8.15)

The behavioural voxel occupancy measure works well for this 3d case. For higher

dimensional behaviour spaces (ones based on more properties/metrics) where the total

number of voxels is considerably larger, the representation and measure may need adapt-

ing.

8.5.2 Experimental Parameters

In the following experiments, regardless of ESN network size etc., the same restric-

tions are placed on global parameter ranges and local weights, and the same weight ini-

tiation processes is applied. For example, global parameters ranges include: an internal

weight (W ) scaling between [0, 2], input scaling [−1, 1], leak rate [0, 1], and the sparse-

ness of W [0,1]. For both random and novelty search, at creation a reservoir has each

global parameter drawn from a uniform random distribution, as well as input weights and

internal weights drawn uniformly from other ranges; Win between [−1, 1] and W between

[−0.5, 0.5].

For the evolutionary algorithm, the following GA parameters are selected from pre-

liminary experiments: population size = 200, deme = 40, recombination rate = 1, mutation

rate = 0.2, ρmin = 3, and ρmin update = 200 generations.

To compare novelty search and the random control, 10 runs are conducted, with a

limit of 2000 generations for novelty search, and 2000 randomly initialised reservoirs for

random search.
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(a) 25 node (b) 50 node

(c) 100 node (d) 200 node

Figure 8.5: Average coverage (over 10 runs) of behaviour space against number of gener-

ations. Error bars show minimum and maximum coverage.

8.5.3 Results: Random Versus Novelty Search

For every ESN network size, novelty search is able to explore a greater area of the

behaviour space than the control (random search) in the same time. The total coverage

(θ ) of the behaviour space versus generations (or database size) is shown in Fig. 8.5. The

results show that, with more generations novelty search can continue to explore an even

greater area than random search, increasing linearly with the number of generations.

Fig. 8.6 shows all 10 runs of each network size plotted in the behaviour space, helping

visualise the difference in coverage. Random search appears to produce similar patterns

in the behaviour space with different network sizes. These patterns include sparse regions

that are difficult to occupy when uniformly sampling the parameter space, highlighting
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(a) 25 node (b) 50 node

(c) 100 node (d) 200 node

Figure 8.6: Plot of all behaviours found through novelty search (Red, Top row) and all

behaviours found through random search (Black, Bottom row).

132



CHAPTER 8. CHARACTERISING SUBSTRATE QUALITY FOR RESERVOIR
COMPUTING

Figure 8.7: A comparison of all experiments shown in fig. 8.5 when plotted as the rate (r

= θ/generation).

how deceptive the behaviour space is compared to the parameter space. Novelty search

on the other hand covers the behaviour space more uniformly, both filling sparse regions

and expanding beyond the region covered by random search. The difference in coverage

between the two methods also becomes more distinct with an increase in network size.

Looking at Fig. 8.5 there appears to be a similar linear relationship between cover-

age (new behaviours) and generations across all ESN network sizes. However, the scales

differ, suggesting network size may affect coverage in different ways, e.g. the rate of cov-

erage between 100 and 200 nodes does not increase as much between 25 and 50 nodes.

To better understand this, each experiment is replotted using the rate r of total coverage

θ per 200 generations; the number of generations coverage was recorded and calculated.

For example, a rate r = 1 would indicate a new behaviour was found every generation,

and a rate r = 0 would show exploration halted. In Fig. 8.7, we see that smaller net-

works find fewer novel solutions per generation and larger networks maintain or increase

slightly. This is most likely a product of larger networks having more adjustable paramet-
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ers (weights). This leads to a higher dynamical degrees of freedom and therefore more

distinct behaviours can be found per generation, resulting in smaller networks converging

faster to r = 0.

8.5.4 Discovering Parameter Patterns

In the ESN literature, intensive work has been carried out to characterise parameter re-

lationships with performance and to provide practical tips for setting parameters to ensure

certain dynamics and properties exist, e.g. ensuring the echo state property [86, 117].

However, physical substrates are open systems, can vary significantly, and tend to be

largely uncharacterised with little known about parameter–performance relationships. If

the same effort was required for every new substrate, there would be little time to freely

explore different substrate designs and configuration types.

In this section, we demonstrate how the behaviour space and search for novelty could

(re)discover general parameter “rules”, distributions and patterns for free during the search

process.

Weight matrix scaling

The first global ESN parameter of interest is internal weight matrix W scaling. This

parameter is used in conjunction with the spectral radius. Typically a random sparse W is

generated; the spectral radius ρ(W ) is computed; and then W is divided by ρ(W ). This

matrix is then scaled by the W scaling parameter.

An ESN with a large ρ(W ) is said to have chaotic properties and an ρ(W ) < 1 tends

to ensure the echo state property [117].

In this work, the spectral radius is not computed for each reservoir and therefore W is

not divided by ρ(W ), then scaled. Computing the spectral radius can be computationally

expensive, computed as the maximum absolute eigenvalue of the W matrix. Instead, the

internal weights W are just globally scaled directly by the parameter.

When plotting the relationship between this parameter and the behaviour space in

Fig. 8.8a using random ESNs of 100 nodes, the phase transition between order and chaos

can be seen. The W scaling parameter itself pushes the activations (tanh functions) in the

134



CHAPTER 8. CHARACTERISING SUBSTRATE QUALITY FOR RESERVOIR
COMPUTING

(a) Random Search

(b) Novelty Search

Figure 8.8: W scaling: 100 node ESNs.

network towards linear or non-linear characteristics. This affects how fast information

from the input degrades in the reservoir with time, thus general stability of the reservoir.

Although with random search (Fig. 8.8a) the phase transition can be clearly seen, with

novelty search this appears to break down (Fig. 8.8b). This is arguably because individual

weight mutations in the evolutionary loop can make global parameters more redundant.

Despite this, there are some relationships still present, for example close to 1, the largest

MCs remain and the best trade-offs (↑MC = high MC, ↑KR = high KR and ↓GR = low

GR) are still present.

Input scaling

The next global parameter of interest is input scaling (IS). The input weight matrix

Win is usually fully connected and weights are drawn from a uniform random distribution

between [−1, 1]. The scaling parameter is then selected from the same range. Input scal-

ing determines the non-linearity of the reservoir response. Thus, whether the activation
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(a) Random Search

(b) Novelty Search

Figure 8.9: Input Scaling: 50 node ESN.

function operates in a linear regime or a non-linear binary switching regime.

In Fig. 8.9a with 50 node random ESNs, a low input scaling can result in the two

extremes, both linear and non-linear ESNs. On the KR vs. MC metric plot, both ↑MC

and ↑KR are seen in clusters at either end of the plot, with nothing really present in

between.

This changes when moving to novelty search (Fig. 8.9b). A low input scaling occupies

most of the behaviour space, however, some clearer patterns also emerge. For example,

0.5 > IS > 0 gives ↑MC, ↑KR and ↓GR, typically meaning a good trade-off is present.

In addition, 0 > IS >−0.5 gives ↓MC, ↑KR and ↑GR, implying more chaotic reservoirs

are present. This implies a low input scaling close to 0 will work well for many tasks, but

for difficult tasks desiring an optimal trade-off between memory and non-linearity a small

positive (between [0, 0.5]) input scaling may work best.
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(a) 25 node

(b) 200 node

Figure 8.10: W connectivity: 25 and 200 node ESNs (novelty search only).

Sparsity/connectivity of the weight matrix

Another global parameter is the sparsity/connectivity of the W matrix. In [117],

sparsity is described as having a small effect on performance, however, it is typically

recommended, as it can speed up the reservoir update process.

In the random search ESN experiments, the sparsity/connectivity of the ESNs is se-

lected from a uniform random distribution and the parameter is indeed seen to have little

effect w.r.t. the behaviour space (see Appendix, Fig. B.4).

When looking at the novelty search results, some small relationships appear to be

present. For example, in Fig 8.10 and Fig B.8, a higher connectivity ascending to 1

(paler colours) seems to be preferred to fill the behaviour space as ESN size increases. It

is also seen that some relationships reverse as ESN size increases. For example, a low

connectivity produces a ↑MC, ↑KR and ↓GR at 25 nodes (a good trade-off) and the same

low connectivity results in the opposite at 200 nodes; ↓MC, ↑KR and ↑GR, i.e. generally

more chaotic. This still requires further investigation, much like the rest of the parameter
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(a) 25 node

(b) 200 node

Figure 8.11: Input connectivity: 25 and 200 node ESNs (novelty search only).

plots. However if anything can be learned from this, novelty search may have found a new

parameter rule that can guide practitioners when designing ESNs with desired behavioural

properties.

Density of the input weight matrix

The next parameter, usually less prioritised with ESNs, is the density (or non-zero

elements) of the input weight matrix Win. In general, this is typically set as dense, i.e.

one-to-one connectivity between inputs and ESN nodes with no zero elements. In this

work, at creation, the Win weights are sampled from a uniform distribution between [−1,

1].

With the novelty search algorithm, mutation can flip an input weight to zero. This res-

ults in different input weight densities. With random search, the density is always close

to 1. In general, it is found that a low Win connectivity is preferred as ESN size increases

(see Fig. 8.11). This is the reverse of the W connectivity pattern mentioned before, sug-
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gesting an interesting relationship between the two w.r.t. ESN size and behaviour space

coverage. For example, for the 25 node ESN, a ↑Win combined with ↓W produces the

best trade-off. At 200 nodes, ↓Win combined with ↑W produces a similar trade-off but

also occupies other areas of the behaviour space too.

Leak rate

The last global parameter under evolutionary control is leak rate. The leak rate para-

meter effectively works as a exponential (low-pass) filter on the node state, attempting

to reduce the mismatch between input dynamics and reservoir dynamics. Setting a small

leak rate is said to slow the dynamics of the reservoir and increase the duration of the

short-term memory [117].

The relationship to behaviour space appears to be more distinct with smaller ESNs

(see Appendix, Fig. B.3 and B.7), however, determining anything with these current met-

rics is difficult. In Chapter 4, it is demonstrated that leak rate can have a positive effect on

performance. This would suggest the current metrics may not fully capture the impact of

adjusting the leak rate parameter.

Conclusion

In each example presented, there is a clear non-linear relationship between the beha-

viour space and the ESN parameter space, with some behaviours close by in behaviour

space often having very different parameter values. This itself shows how difficult it is

to select parameters for desirable behaviours, even when the system is closed and well-

characterised.

Overall, in this section some general principles of building ESNs have been redis-

covered, e.g. W scaling ≈ 1 works well, but other relationships are also observed, e.g.

how connectivity of W and Win may have a greater effect as ESN size increases. The

potential for novelty search to (re)discover interesting relationships requires further in-

vestigation. However, if it can find any, or the behaviour space representation can help

discover such relationships, the framework will potentially help guide substrate design or

configuration practices.
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8.6 Representation and Predicting Performance

At this stage, we have described how to define the behaviour space, how to ex-

plore/map it and how to use coverage (φ ) as measure of substrate “quality”. However,

so far, little intuition is given on how well the behaviour space represents computation in

substrates and what relationship properties have to task performance.

Under Abstraction/Representation theory proposed in [81], if the reservoir represent-

ation provides a faithful abstract representation of the substrate, it should be possible to

provide a prediction of how the system states will evolve. In the context of this frame-

work, we expand the A/R conjecture and hypothesise that if the measures of behavioural

properties are substrate-independent and if relationships between properties and task per-

formance can be learned, then it should be possible to predict the performance of one

substrate based on another substrate that exhibits similar behaviour.

To assess whether the property measures represent a faithful representation, here we

attempt to learn and model the relationship between properties and task performance.

How well this relationship can be learned will indicate how accurately the properties

represent computation within the substrate.

8.6.1 Prediction Tasks

Determining the property–performance relationship across all tasks is non-trivial. How-

ever, relationships between individual tasks and properties are sometimes simple. To pre-

dict performance, four benchmark tasks are selected based on dissimilar requirements of

reservoir properties: the common non-linear autoregressive moving average (NARMA)

task with a 10-th and a 30-th order time-lag; the Santa Fe laser time-series prediction task;

and the non-linear channel equalisation (NCE).

The NARMA task was previously used in Chapters 3 and 7. It evaluates a reservoir’s

ability to model an n-th order highly non-linear dynamical system where the system state

depends on the driving input and state history. The laser time-series prediction task was

also previously used in Chapters 4 and 7. It predicts the next value of the Santa Fe time-

series Competition Data (dataset A)1.

1Dataset available at UCI Machine Learning Repository [200]
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The Non-linear Channel Equalisation task introduced in [90] has benchmarked both

simulated and physical reservoir systems [153]. The task reconstructs the original i.i.d

signal d(n) of a noisy non-linear wireless communication channel, given the output u(n)

of the channel. To construct reservoir input u(n) (see Eqn. 8.17) d(n) is randomly gener-

ated from −3,−1,+1,+3 and placed through Eqn. 8.16:

q(n) = 0.08d(n+2)−0.12d(n+1)+d(n)

+0.18d(n−1)−0.1d(n−2) (8.16)

+0.091d(n−3)−0.05d(n−4)

+0.04d(n−5)+0.03d(n−6)+0.01d(n−7)

u(n) = q(n)+0.036q(n)2−0.011q(n)3 (8.17)

Following [90], the input u(n) signal is shifted +30 and the desired task output is

d(t−2).

8.6.2 Experimental Set-up

As part of the framework’s evaluation phase, the database is assessed on tasks provid-

ing a target dataset.

In preliminary experiments (see Appendix E), two machine learning models were

investigated and compared, using different feature and data preprocessing settings. From

these basic experiments, it was concluded that a 100-neuron feed-forward neural network

(FFNN) was the better choice to accurately learn the property-performance relationships.

To model the relationships the FFNN is configured for regression, i.e., given beha-

viours from the novelty search database, predict performance on a task. The inputs to the

FFNN are: MC (continuous-valued), KR and GR (discrete values). The output of the net-

work is task performance (continuous-valued), recorded as the normalised mean squared

error (NMSE) of the reservoir with the corresponding input behaviour.

To train the FFNN, Bayesian regularisation is used for 1000 epochs, with the training

dataset set as 70% of the data (database D), and 30% set aside for testing.
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8.6.3 Prediction Results

In this section multiple FFNNs are trained, per task and per ESN size.

If the property measures are accurate and provide a faithful representation of the sub-

strate, the prediction error of all trained models should be low and similar to each other,

i.e. shows a relationship is present, not too difficult to model and holds when the substrate

is changed (in this case a different size). However, there will be some deviation in error

between models trained with databases holding different behaviours, because having a

greater or smaller behavioural range can result in an increase or decrease in complex-

ity of the modelled relationships. For example, reservoirs in the behaviour space around

KR = GR = MC ≤ 25 tend to have similar poor performances on the NARMA-30 task

because they do not meet the minimum requirement (MC≥ 30). This means the NARMA-

30 task is easier to model with the database created by the 25 node ESNs. When databases

with larger ESNs are used to model the relationship, prediction error will likely increase.

This is not always true, for some tasks to accurately model the relationship requires

a greater variety of behaviours than smaller ESNs can provide (e.g. for the non-linear

channel equalisation task). Therefore, an FFNN trained on a database provided by the

200 node ESNs will perform better than one provided by the smaller 25 node ESNs. This

is one example of where the non-trivial problem of relating properties to performance

presents itself.

In Fig. 8.12, the results of FFNNs (four per task) trained on different tasks and data-

bases are shown as heat maps. The test error (either root mean square error RMSE or

mean absolute error MAE) of an FFNN trained and tested using the same database is

given along the diagonal, where train ESN size y = test ESN size x. When focusing on

these results, we tend to see a small deviation between model accuracies, however there

are some exceptions, as previously discussed.

Also shown in Fig. 8.12 is how well each FFNN predicts the task performance of

reservoirs from different databases, i.e. when train ESN size y 6= test ESN size x. The gen-

eralisation to other databases, holding possibly new behaviours, varies depending again

on the task. In general, if train y ≥ test x, the FFNNs prediction error is usually greater

than the original, but considerably less than train y≤ test x .

The most likely cause of the first case, when train y≥ test x, is a loss in granularity of
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(a) NARMA-10

(b) NARMA-30

(c) Laser

(d) Non-linear Channel Equalisation

Figure 8.12: Mean performance of 20 FFNNs trained and tested on each database (differ-

ent sized ESN), per task .
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the learned relationships between databases. Stretching the same number of data-points

to a larger area will result in fewer examples to learn from in each region of the behaviour

space, i.e., a loss in resolution that might be important to the learned problem. This can

be thought of as a sampling bias or quantisation effect. The second case is simply a result

of new behaviours predicted based on no prior data, resulting in a poor prediction.

Overall, the prediction accuracies appear consistent, with small deviations as the beha-

viour range increases or decreases. This would suggest the behaviour space and property

measures are a somewhat faithful representation of the substrate’s computational capabil-

ities.

8.7 Completing the Framework

At this stage, the framework definition is almost complete. The hypothesis so far is

that the behaviour space of the substrate can be explored and quality can be measured

with a faithful representation of the substrates computational mechanisms.

The final part of the framework is: i) to apply each level to a new uncharacterised

substrate, ii) to evaluate quality w.r.t. the reference substrate, iii) to use the predictive

network from section 8.6 to predict task performance, and iv) to use the prediction to

validate the substrate-independence of the behaviour space.

The substrate that is used to demonstrate this part of the framework is the physical

substrate investigated in [40, 41, 42] and throughout this thesis. The substrate comprises

of a carbon nanotube–polymer composite, forming random networks of semi-conducting

nanotubes suspended in a insulating polymer, deposited onto a micro-electrode array.

In earlier chapters (3, 4 and 5), a small amount of characterisation has been done show-

ing that even the best substrate (1% concentration of carbon nanotubes w.r.t. weight mixed

with poly-butyl-methacrylate) typically exhibits low memory capacity, despite different

methods of configuration. This leads to overall modest performances, but encouraging

when compared relative to size, on benchmark tasks such as NARMA-10 and the Santa

Fe laser time-series prediction task.

The challenging aspect of characterising this black-box substrate is due to its dis-

ordered structure and self-organisation during the fabrication process, making it imprac-
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tical (or even impossible for the general case) to model internal workings. Originally,

the CNT/polymer was proposed as a sandpit substrate to discover whether computer-

controlled evolution could exploit a rich source of physical complexity to solve computa-

tional problems [18]. Due to its shortcomings, it provides a challenging substrate for the

proposed framework and is useful for demonstrating the process.

The training and evaluation of the substrate is conducted on a digital computer. Inputs

and representative reservoir states of the substrate are supplied as voltage signals. The

adaptable parameters for evolution are the number of input-outputs, input signal gain

(equivalent to input weights), a set of static configuration voltages (values and location),

and location of any ground connections. Configuration voltages act as local or global

biases, perturbing the substrate into a dynamical state that conditions the task input signal.

An in-depth description of the how the system is configured is given in Chapter 6.

An advantage of physical substrate-based reservoirs is that computational speed of

a trained reservoir is limited only by interface hardware and physical response time,

which can potentially be all analogue. However, the training process can take consid-

erably longer as multiple runs for statistical tests are often needed. With this substrate

in particular, there are many unstable configurations. Therefore, extra evaluations are re-

quired to measure statistical stability in order to discard unstable signals from the training

process. For this reason alone, predicting performance across substrates and removing

the task training process would be decidedly beneficial.

8.7.1 Experimental Parameters

Here, a 1% carbon nanotube poly-butyl-methacrylate (CNT/PBMA) mixture substrate

is investigated. The same GA parameters applied to the virtual ESN substrate are reused

with the physical substrate. These are: generations limited to 2,000; population size

= 200; deme = 40; recombination rate = 1; mutation rate = 0.2; ρmin = 3; and ρmin

update = 200 generations. Five runs were conducted here, as the time to train increases

significantly.
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(a) 25 Node ESN

(b) 100 Node ESN

Figure 8.13: Carbon nanotube composite behaviour space (Red) superimposed on ESN

behaviour space (Black)

8.7.2 Quality of Physical Substrate

The results of the evolved physical substrate suggest a poorer quality and a limited

dynamical degrees-of-freedom compared to the reference ESN substrate. This would

appear to be in agreement with previous work comparing the physical substrate to ESNs

in Chapters 3, 4 and 5.

When overlaying the explored behaviour space of the physical substrate on top of the

reference substrate the difference becomes distinct (see Fig. 8.13). The average coverage

of the physical substrate in Fig. 8.14 is almost a magnitude smaller than the 25 node ESN

experiment.

The effective number of equivalent nodes an ESN should possess to compare fairly to

this physical substrate is unknown. As a rough guide, the physical substrate has up to 64

state observations at any one time, therefore it might be considered generous to compare

it to a 25 node ESN, however, this assumes similar non-linear nodes, network dynamics,

146



CHAPTER 8. CHARACTERISING SUBSTRATE QUALITY FOR RESERVOIR
COMPUTING

(a) 25 Node ESN (b) 100 Node ESN

Figure 8.14: Comparison of behaviour space covered; carbon nanotubes (Red) and ESNs

(Black).

connectivity, etc.

In general, the search struggles to find configurations beyond a memory capacity of

5, reaching what appears to be a memory capacity limit. The bounds on the ranks are

also small given only a small number of inputs are typically in use. This would suggest

the substrate struggles to exhibit enough (stable) non-linear behaviour to create a strong

non-linear projection, and effectively store recent input and state information.

To investigate if the substrate limits are reached, random search is also conducted

(Fig. 8.15) and the novelty rate is plotted (Fig. 8.16).

When comparing random search to novelty search in Fig. 8.15b, novelty search on

average appears to explore slightly faster and further for roughly 1200 generations but

then begins to plateau around θ = 360.

Looking at the novelty rate of the physical substrate (Fig. 8.16), we see that the rate of

new behaviours drops considerably over the course of the evolutionary runs. For random

search this drops faster, then novelty search reaches the same low novelty rate after 1600

generations, maintaining the same decrease in novelty rate as random.

Fig. 8.16 also shows how the physical substrate compares to a 25-node ESN. The

physical substrates rate r starts much lower, around r = 0.5 compared to the ESN (r =

0.8). This itself begins to suggest the physical substrate has a small degree of dynamical

freedom, as less than half of the 200 original random behaviours were unique.
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(a) Behaviour space comparison

(b) Total coverage comparison

Figure 8.15: Physical substrate: novelty search (red) versus random search (black).
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Figure 8.16: The novelty rate (r = θ/generation) of the physical substrate and compared

with 25 node ESN.

The rate r for both random and novelty search then both decrease at a similar rate,

however, this is not the case for the ESN. Although both decrease as the behaviour space

is explored/filled, the difference in r gradually increases, with random dropping early and

continuing to get smaller; similar divergence patterns are seen at other ESN sizes, see

Fig. 8.6.

This small difference in r across the generations, combined with a low starting and

very low finishing r, plus a struggle to find unique behaviours (Fig. 8.15a), suggests

the physical substrates dynamical limits have been reached. Although this shows the

substrates are limited for reservoir computing, it more importantly demonstrates that the

framework can approximate and quantify the dynamical boundaries of the substrate.

8.7.3 Prediction transfer

In the final part of the framework, the substrate independence of all levels can be

evaluated. To do this, all the single-task FFNNs from the learning level (section 8.6)

are used to predict the performance of the carbon nanotube composite. Then, using the

difference ∆ between prediction errors of both substrates we measure how accurately the

modelled relationships translate across substrates.

The measure ∆ represents the difference between the trained ESN substrates test error
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(a) NARMA-10

(b) NARMA-30

(c) Laser

(d) Non-linear Channel Equalisation

Figure 8.17: FFNN prediction errors of all trained and tested ESNs, and tested on physical

substrate.

150



CHAPTER 8. CHARACTERISING SUBSTRATE QUALITY FOR RESERVOIR
COMPUTING

Figure 8.18: The average difference ∆ between prediction errors for ESNs trained/tested

using same size and physical substrate, across the four tasks: T1 = NARMA-10, T2 =

NARMA-30, T3= Laser, T4= Non-linear channel equalisation.).

and new physical substrates test error. To support the hypothesis that the behaviour space

and the property measures have substrate independence, a low ∆ close to zero is desired.

Prior to the prediction tests, one database created from a single run is assessed on the

four tasks, creating the test set for the physical substrate. This is done here for evaluation

purposes only, if the framework is found to be substrate-independent the task evaluation

step on the physical substrate can be ignored.

The prediction error of all FFNNs, trained with different size ESNs and tested on the

substrate for all four tasks, are given in Fig. 8.17. The first column in each grid provides

the test error of the FFNNs when predicting the physical substrates task performance.

On every task except non-linear channel equalisation, the FFNNs predict the task

errors of the physical substrate almost as well as an FFNN trained and tested with the

same ESN size. As seen in Fig. 8.17d, the FFNNs trained to predict the non-linear channel

equalisation task struggle to accurately translate the learnt relationships to the physical

substrate. Although the prediction error is worse than if trained and tested on the same

size ESN, the error is considerably lower than if an FFNN was trained using a small ESN

size then tested on a larger ESN size.

Another interesting result is that, in some cases, the FFNN trained with the 200 node

ESN more accurately predicts the performance of the physical substrate than a FFNN

trained with a smaller sized ESN. This is somewhat counter-intuitive because an FFNN

trained with a 200 node ESN has fewer examples in the behaviour space occupied by
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the physical substrate, i.e. in the region within KR = GR = MC ≤ 25, thus would likely

over-generalise/under-fit this region, as it does when tested with the 25 node ESN.

All these trends are summarised in the ∆ plot, Fig. 8.18. The average ∆ (in units

RMSE or MAE) is given for each task and for all FFNNs (10 per ESN size), applied to

the physical substrate. For the first three tasks, small ∆’s close to zero are present in most

cases, despite ESN size. However, as before, ∆ increases significantly for the non-linear

channel equalisation task.

The reasons why the modelled relationships of the non-linear channel equalisation

task struggle to translate across substrates is still unknown and requires further investig-

ation. However, a potential lead to explaining this is that the variation in performance

across the behaviour space is very low, with reservoirs requiring very low metric values to

perform well at this task. Therefore, the greater variation seen with the physical substrate

is likely to be poorly modelled by the FFNNs trained with larger ESNs.

Overall, the results in this section suggest the framework has a good level of substrate

independence and the behaviour space can accurately represent the substrate’s compu-

tational properties. It also highlights again the non-trivial nature of the task–property

relationship and how some tasks can be more difficult to model, or require extra thought

and manipulation, than others.

These last results also show that the learning phase (and task evaluation) only needs to

be performed with the reference substrate, once per task, leading to a significant reduction

in time to evaluate and test new substrates on specific tasks. For example, one could

evaluate the reference substrate’s database on a new task, train an FFNN, then predict

whether a previously explored physical substrate would be suitable, perform well on the

task, or even what the best configuration would be, without having to test directly on the

substrate.

8.8 Summary

It has recently been shown that the coexistence of both linear and non-linear dynamics

can significantly boost reservoir performance for certain tasks [85]. This relates directly

to a fundamental question in reservoir computing: for a given task, what characteristics of

152



CHAPTER 8. CHARACTERISING SUBSTRATE QUALITY FOR RESERVOIR
COMPUTING

Behaviour space

Novelty search Database

Quality
Task 

performance

Performance-

behaviour relationship

Predict 

performance

Evaluation

Definition

Exploration & Mapping

Learning

Application

(a) Phase 1 – Reference Substrate
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(b) Phase 2 – Test Substrate

Figure 8.19: Framework summary. a) Reference substrate mapped providing a reference

quality and learned relationships to predict performance. b) Test substrate is assessed for

quality. No task assessment is necessary and learning phase is skipped. Performance of

test substrate is predicted using learned relationships from reference.

a dynamical system or substrate are crucial for meaningful information processing? The

presented framework attempts to tackle this question by focussing on the substrate rather

than the specific task. In the process, solutions to two non-trivial problems are proposed;

(i) how to characterise the quality of any substrate for reservoir computing, and (ii) how

computational properties relate to performance.

To fully utilise the framework, two phases must be completed, see Fig. 8.19. First, the

lower levels of the framework are applied to the reference substrate, providing context to

future quality measures on other substrates. Then, the upper levels are applied to learn the

transferable relationships between substrate behaviours/properties and task performance;

helping validate the framework and predict performances of similarly behaved substrates.

The second phase applies a reduced set of levels (see Fig. 8.19b) to a new substrate for

which a measure of quality is desired. Then, the learned transferable relationships can be

used to predict how well the second substrate could perform a task without having to be

assessed directly on the task.

Throughout this chapter, each level of the framework has been described and tested. In

some cases, adaptations and the removal of different levels/building blocks have also been

discussed. One promising adaptation of the framework is provided in Appendix D where

a multi-thread version of the framework is tested. In another experiment, the importance

of the archive is tested (see Appendix C). Interestingly, when the archive is replaced by
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the database the change in total coverage appears minimal. The only apparent benefit to

using the archive, instead of the database, is a computationally cheaper fitness evaluation.

This suggests many further improvements are possible at least at the exploration & map-

ping level, e.g. a reduction in archive size [110] and the introduction of minimal criteria

for novelty [109]. This demonstrates both the flexibility and potential power of the frame-

work where building blocks can be changed, integrating new techniques or measures not

currently available.

What has been learnt whilst using the framework is that exploration (novelty search)

has a unique ability to help uncover hidden parameter relationships (section 8.5.4) and

outline substrate limitations (section 8.7.2). The framework even helps explain why the

carbon nanotube composite struggles to compete with ESNs in previous work.

Another feature highlighted is the non-trivial problem of relating properties to task

performance (section 8.6.3), suggesting current measures of dynamical properties only

provide a partial view of the full characteristics of reservoir systems. Therefore, in order

to fully understand these systems we need to explore each property and its relationship to

others.

Ultimately the framework has provided a basic methodology to compare and evaluate

any substrate for reservoir computing, something not achieved, believed to be possible,

or widely discussed in the reservoir computing community. The advantage of having

such a framework can only be speculated, but any method to compare systems, or even

techniques for perturbing or observing systems, has the chance to rapidly improve the

design and implementation process. Furthermore, it potentially opens the reservoir com-

puting field to a wider audience where new interesting unconventional computing sub-

strates could appear.
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Chapter 9

Conclusion and Future Work

9.1 Outcomes of Thesis

At the beginning of the thesis a simple question is posed; can the reservoir computing

(RC) framework improve aspects of the evolution in materio (EiM) technique? To answer

this, a new hybrid reservoir computing in materio (RCiM) framework has been developed.

To evaluate the new approach, carbon nanotube composites were evolved in materio

and trained in silico to solve a variety of reservoir computing tasks. The results show

these techniques complement each other well, adding optimisation to RC and a level of

abstraction to EiM (see Chapters 3, 4, and 5). However, each chapter uncovered potential

limitations of both techniques, for example, the hardware scaling problem accompanied

with computing in materio, and a single reservoirs inability to model multi-scale dynam-

ics. Solutions to such problems were given in Chapters 6 and 7.

Perhaps the most fundamental problem to arise from early exploratory work was how

to better understand and measure the underlying computational mechanisms being ex-

ploited by evolution. This basic, but non-trivial problem, formalised itself as Chapter 8.

The SQuARC framework solves this problem by abandoning the idea of characterisa-

tion through tasks. Instead, open-ended evolution and search exploration is embraced

to characterise a substrate with respect to its dynamical degrees of freedom. Mapping

the expressiveness of a substrate (based on dynamical properties, not tasks) defines and

quantifies what dynamical traits are being exploited.

This ambitious framework has resulted in a unique synergy of the two fields, demon-
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strating the potential not only to assess the quality of any substrate for reservoir computing

– using computer-controlled evolution – but also to predict the performance of substrates

expressing similar computational properties.

9.1.1 Thesis Chapter Summary

A summary of each experimental chapter and its technical details are given in this

section. This provides a useful reference to significant results and outcomes of the thesis.

Preliminary experiments in Chapter 3 show both the reservoir computing and evolu-

tion in materio concepts are compatible. It demonstrates that computer-controlled evolu-

tion can pre-train physical substrates into working reservoir computers using the RCiM

framework.

• Materials under-test: three carbon nanotube/polymer composites (PMMA 0.1%,

PBMA 0.53%, PBMA 1%) dropcast onto glass slides with 12-electrodes; a gold

resistor array patterned onto glass with 16 electrodes.

• Two system settings (short-circuit and open-circuit) were also tested.

• Benchmark tasks: NARMA-5 and NARMA-10 tasks; wave generator task.

• A 1+λ evolutionary strategy is used to evolve input-output mappings and control

signals (static voltages). Inside the training loop, the output states of the material

are used to train the readout layer, reducing the error (NRMSE) between the the

reservoir’s states and the target signal.

• The encoding of the configuration was represented by a 21-gene genotype, featuring

active and non-active genes.

• Results: the material has a significant role in the computing system; when removed

(in the short- and open-circuit setting) the system performs poorly.

• On benchmark tasks, no significant difference is found between the resistor array

and materials, suggesting little more than resistivity is present in the materials. This

is confirmed when analysing memory capacity, which is found to be low, typically

MC ≤ 4.
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• Despite poor performances on the NARMA tasks, the materials performed well on

the wave generator task compared to atomic switch networks.

• In the experiment, the difference in nanotube density appears to have a minimal

effect.

• The stability of configurations, referred to as solution drift, is discussed, as well as

the hardware limitations of a small electrode array.

In Chapter 4, a more in-depth analysis of the RCiM framework is given, including

ways to improve the previous approach in Chapter 3. Four key features are assessed: i)

performance compared to random search, ii) a weighted input mechanism directing to

multiple electrodes (instead of one), iii) introduction of an output filter to reduce the mis-

match between task and material time-scales, and iv) the effect of solution/configuration

drift.

• The two system settings (short- and open-circuit) are dropped; the previous four

materials (including the resistor array) are used.

• A similar 1+λ evolutionary strategy and training process is applied. The genetic

encoding is altered slightly to feature input weights and the time-scaling parameter

(α).

• Task used to benchmark each feature: the Santa Fe laser time-series prediction task.

• The more traditional reservoir computing input mechanism is introduced, moving

from a one-for-one input mapping to a one-to-many. The leak rate parameter is

also introduced, adding an extra evolvable parameter that adjusts a smoothing filter

on the output states. The results of all combinations (e.g. input weighting “on”

and time-scaling “off”, etc.) show, when combined together, both poor and good

performance reservoirs can be fine tuned.

• The results confirm evolutionary search produces reservoirs with better perform-

ances than random. They also show the 1% density SWCNT/PBMA material (near

the 1% percolation threshold) tends to outperform the others, on this task.
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• For the laser task, the performance difference between carbon nanoutbe materials

and the resistor array is significant.

• In the final experiment, the repeatability of performance is measured. This is evalu-

ated by reapplying configurations after multiple time periods (an hour, a day, and a

week), and after reconfiguration to other tasks. The results show error can increase

with time, but tends to settle after a day, with up to an 11% increase in error.

• The performances achieved in Chapter 4 on the laser task is very competitive in

comparison to other virtual and physical reservoir computers,

In Chapter 5, the RCiM framework is compared directly to the EiM technique. The

highly-programmable RCiM approach is assessed to see whether increased programmab-

ility (over the EiM approach) results in a loss in performance. At the end of the chapter,

the RCiM approach is also compared to in silico reservoirs (of approximately equivalent

size) to determine what effect sub-sampling of the reservoir states has on reservoir per-

formance. As a result, a greater understanding is gained of what material characteristics

are being exploited by evolution.

• Six materials were used: 0.1%, 0.53%, 1%, two 0.71% materials, and the gold

resistor array.

• To enable comparison with EiM, a new non-temporal benchmark is used: the Iris

classification task.

• The same training process in Chapters 3 and 4 is used; fitness is determined by the

prediction accuracy of discrete classes.

• For the first time, multiple task inputs and outputs are required.

• On average, RCiM produces higher training and test accuracies than EiM. Like

Chapter 4, the 1% density material features the best performances.

• Greater diversity in performance (w.r.t to SWCNT density) is observed when com-

pared to Chapter 3. As with Chapter 4, the difference in performance between

materials and resistor array is measured to be significant.
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• The materials performances compare favourably to the in silico evolutionary pro-

gramming technique, Cartesian Genetic Programming (CGP).

• When measuring the effects of sub-sampling reservoirs in silico, a significant dif-

ference is found. This result suggests sub-sampling in materio systems can have

either a detrimental or positive effect on performance, depending on the task. For

example, for the classification task, access to more states results in over-fitting.

However, in Chapter 4 for the laser task, sub-sampling results in poorer perform-

ances.

• No significant difference is found between the performance of the best 1% density

material and in silico reservoirs (ESNs) with 7-nodes (including the 50-node ESN

sampled to form 7-nodes).

• Analysis of the in silico parameters explain why both in materio and in silico reser-

voirs perform similarly well on this task. The ESNs evolve to feature dynamical

traits common to the carbon nanotube materials.

In Chapter 6 a new hardware platform is developed, increasing the 12 electrode

system from previous chapters (3, 4 and 5) to 64 electrodes. During the testing phase,

evolution’s ability to exploit not only the substrate but also the surrounding system was

demonstrated on an early version, leading to a second hardware design with substrate

isolation.

• In order to route 64 electrodes to the previous data acquisition system, a new ex-

ternal routing board has been designed. Two iterations of the board have been

created, the second improving substrate isolation compared to the first.

• Due to complications in manufacturing glass electrode arrays, a PCB electrode ar-

ray has been designed and tested.

• New materials samples are used with the new electrode arrays. An outline of the

fabrication process is given in section 6.2.3.

• A significant problem highlighted in Chapters 3 and 4 is solution stability. To com-

pensate, a new measurement strategy is used, involving multiple readings and the
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removal of unstable electrode readings to improve measurement precision.

• A new genetic encoding is defined. This new configuration representation allows

both input weights and control signals to be used simultaneously. It is also designed

to take into account other hardware restrictions, such as a limit of 32 inputs at any

one time.

• When testing the first iteration of the routing board, it was discovered that evolu-

tion found ways to exploit other electronic components of the measurement system.

This anomaly was highlighted when simple LED arrays produced implausibly im-

pressive performances, featuring up to a 92% improvement compared to previous

carbon nanotube experiments in Chapters 3 and 4. This was due to a measurement

error, caused by signal “ghosting”, achieving greater memory than the substrate

could exhibit alone. This was due to poor impedance matching. In the second iter-

ation, ghosting was removed using analogue buffers. Substrate isolation improved,

and the implausible performances dropped.

• Designs for a multi-substrate reservoir are introduced.

Reservoirs possess fundamental limitations: due to network coupling, reservoirs can-

not model multiple time-scales simultaneously. Furthermore, to solve more complex tasks

requires impractically large reservoirs (the task complexity problem). In Chapter 7, an

evolvable hierarchical structure, the Reservoir-of-Reservoirs (RoR) architecture, is intro-

duced. Its primary design is to facilitate future multi-substrate reservoir systems. The aim

is, through hierarchical organisation, to overcome restrictions in hardware (i.e. adopting

multiple smaller systems, rather than creating one large system), model multiple scales,

add increased layers of abstraction, and reduce the task complexity problem.

• To demonstrate the concept, a master reservoir connecting a network of smaller

leaky integrator echo state networks (sub-reservoirs) is defined. All parameters

within the architecture (except output weights) are open to evolutionary manipula-

tion.

• Two variations of the RoR architecture are investigated: inputs to a single sub-

reservoir (RoR) only, and inputs to all sub-reservoirs (RoR-IA).

160



CHAPTER 9. CONCLUSION AND FUTURE WORK

• Two other multi-reservoir architectures are also evolved for comparison: an en-

semble of ESNs and deep layered ESNs (DeepESN). For the DeepESN, two vari-

ations are defined similar to RoR: inputs-to-one (DeepESN) and inputs-to-all (DeepESN-

IA).

• The steady-state microbial GA is used to evolve all architectures and parameters.

Output training is conducted in the same manner to all previous chapters, reducing

the error between reservoir states (from all neurons) and a target signal.

• Two benchmark tasks are applied: the NARMA-10 and NARMA-30 tasks.

• First a baseline is established, evolving non-hierarchical ESNs (200-node and 400-

node) using the microbial GA. The results show the microbial GA could outperform

all other optimisation techniques found in the literature. In some cases, evolved

smaller networks significantly outperform larger optimised networks.

• For all hierarchical networks, three network sizes are chosen and fixed (100-node,

200-node and 400-node) split into arbitrary sub-network sizes; 100-node=2× 50-

nodes, 200-node= 2×100-nodes, 400-node= 4×100-nodes.

• On average for every size and task, the baseline ESN outperforms all hierarchical

architectures. However, in some cases, no significant difference in performance is

present between the baseline ESN and RoR-IA.

• The general decrease in performance, resulting from adding hierarchical structure,

is postulated as an effect of fewer evolvable parameters, since dividing larger net-

works into smaller sub-networks causes a loss of internal parameters (i.e. neuron-

to-neuron weights). To compare fairly to a single larger network, an increase in

sub-network size is required to remove the deficit in parameters. This is demon-

strated with a compensated RoR-IA. The results show the new RoR-IA significantly

outperforms equivalent, same-sized baseline ESNs.

• Despite performing less well than the non-hierarchical ESN, all evolved hierarch-

ical architectures still outperform other hierarchical and non-hierarchical architec-

tures in the literature.
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• In the final experiment, the hypothesis that hierarchy can improve task generalisa-

tion is tested. Two further benchmarks (Santa Fe laser time-series prediction and

the Hénon map map task) are evaluated on the best evolved architectures from both

the NARMA-10 and NARMA-30 experiments. The results showed RoR-IA gen-

eralises better to each new task, despite size and original task. The result suggests

something within the RoR structure improves generalisation, which also appears to

increase with network size.

In Chapter 8, the new SQuARC framework (built on the RCiM framework) provides

a method to measure the quality of any substrate for reservoir computing. The hypothesis

is: substrates that can exhibit more distinct behaviours have a greater dynamical freedom,

which implies they can realise more distinct reservoirs, thus have a greater quality for

reservoir computing. The framework fills a significant gap in both the RC and EiM field,

providing a method to compare different reservoir systems (both in silico and in materio),

and to understand what computational properties are required to compute specific tasks

and exhibit a generalised computing ability.

• The SQuARC framework is defined by five layers (and two phases); 1) Definition,

2) Exploration and mapping, 3) Evaluation, 4) Learning, and 5) Application. The

first phase requires the assessment of a reference substrate, and the second phase

assesses the desired test substrate.

• The first phase of the framework is applied to echo state networks, forming the

reference substrate.

• To measure quality, an abstract task/substrate-independent space is defined, called

the behaviour space. It represents reservoir behaviours (measured as approxima-

tions of dynamical properties) of different substrate configurations. The applied

task-independent measures of dynamical properties are given in section 8.3.

• The behaviour space to be explored is defined by three axes; kernel rank (KR),

generalisation rank (GR), and Memory capacity (MC).

• To measure how many distinct behaviours are found (the total space covered) the

space is divided into behaviour voxels.
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• Novelty Search, the algorithm used to map and explore the behaviour space, is

described in section 8.4.3 and its implementation in section 8.4.2.

• Results of random search versus novelty search show the latter has a greater ability

to explore the behaviour space in the same time. This is demonstrated using four

ESN sizes; 25, 50, 100 and 200-nodes.

• The effect network size has on the rate of exploration (novelty rate) is investigated.

It is found that for larger networks novelty search explores the space faster (as the

rate increases), whereas the rate for random search decreases steadily with time.

The difference observed between the larger and smaller networks’ novelty rate is

postulated as being the result smaller networks converging faster. With fewer new

distinct behaviours attainable as time passes – as novelty also becomes more diffi-

cult to obtain – the rate of smaller networks decreases faster.

• In section 8.5.4, novelty search’s ability to (re)discover general parameter “rules”

is discussed. As an example, common parameter rules associated with ESNs are

highlighted and a potential new rule is discovered; the inverse relationship between

connectivity of W and Win as ESN size increases.

• To test the accuracy of the property measures, and determine whether they faithfully

represent computation within the substrate, the property-task relationship is mod-

elled. To model the relationship, every behaviour discovered from every ESN size

is evaluated on a series of tasks. The four tasks used are: NARMA-10, NARMA-

30, Santa Fe laser, and the non-linear channel equalisation task. Data from each

ESN size is then used to train individual feed-forward neural networks (FFNNs)

and predict performance across different network sizes.

• Low prediction errors found with different tasks and ESN sizes show the property

measures represent a faithful approximation. For some tasks, however, prediction

is harder than others (e.g. non-linear channel equalisation), demonstrating the non-

trivial problem of modelling property-task relationships. The results also show that

when the ESN size to be predicted is greater than the training ESN size, prediction

error can be high.
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• In the second phase, the new 64-electrode hardware platform is used. The sub-

strate under-test is the newly made carbon nanotube/polymer substrate (1% SW-

CNT/polymer mixture). Results of the quality assessment show the physical sub-

strate exhibits limited behaviour compared to small (roughly equivalent) ESNs.

• The poor quality of the physical substrate is investigated further. Using the novelty

rate, it is determined that the dynamical boundaries/limits of the substrate have

been reached.

• In the final stage of the framework, the prediction transfer (i.e. ability to predict

performance of one substrate based on another) from reference substrate to physical

substrate is measured. The hypothesis is: the prediction transfer error (∆) between

substrates can quantify the substrate-independence of the framework. The results

show on average a small ∆ is present when predicting the physical substrate’s task

performance, using FFNNs trained with ESNs of all sizes. The non-linear channel

equalisation task proved more difficult to predict than other tasks. The best ESN

size to use as a reference is determined to be the larger 200-node ESN, suggesting

a simple and intuitive rule: the quality of the reference substrate determines the

accuracy the FFNN’s prediction, with greater quality resulting in greater accuracy.

9.2 Future Work

Although all the in materio work presented uses carbon nanotube composites, the

substrate acts only as a proxy to test the reservoir computing in materio concept. Each

framework proposed is designed to generalise to any physical (and in some cases virtual)

substrate. This leads to a vast amount of open research as a result of the theses, such

as testing new substrates and adjusting/updating frameworks accordingly, and using the

frameworks to help design better substrates.

Future work associated with more specific parts of the thesis are as follows:
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9.2.1 The RoR Architecture

The RoR architecture in Chapter 7 shows promising results, however, many aspects

of the architecture can be improved, and many questions are still left unanswered:

• A more in-depth investigation is required to understand the effect sub-reservoir

size has on RoR architecture performance and transfer learning. In experiments,

the chosen sub-reservoir sizes were arbitrary. What was discovered is that master

reservoirs with more sub-reservoirs tend to show greater task generalisation. How-

ever, a general “rule” is still missing. This leaves the question; what is the threshold,

or ideal ratio, at which the number of sub-reservoirs degrades performance and task

generalisation?

• Little is still known about the architecture’s homogeneity/heterogeneity. More tasks

and analysis are required to determine the architecture’s ability to model multiple

scales.

• Before any in materio experiments, multiple in silico sub-reservoirs should be com-

bined and tested. For example, instead of using only ESNs, combine other ran-

dom recurrent networks (e.g. long-short term memory (LSTMs) [80], gated re-

current units (GRUs) [32], liquid state machines (LSMs)), non-recurrent networks

(random feed-forward networks/extreme learning machines (ELM) [83, 84]), and

other dynamical systems (e.g. random boolean (RBN), gene regulatory networks

(GRN) [95], cellular automata (CA) [202]).

• Redundancy could be a key advantage to the RoR architecture. This conjecture,

however, still needs testing. For example, what effect does removing, or isolating, a

sub-reservoir have? Can connections in the master reservoir be removed after train-

ing? Would regularisation and pruning improve the evolutionary search and reduce

overall reservoir size? Examples include using “dropout” [173] (dropping out units)

to remove redundant nodes, pruning of the readout [52], or starting evolution with

minimal complexity [174].
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9.2.2 Heterotic Computing

Heterotic computing [96, 182] is defined as a combination of two or more computa-

tional systems such that they provide an advantage over either substrate used separately.

The hypothesis is that different computational models can be combined to form a more

powerful non-classical computing system. The inclusion of different models therefore

leaves different computational devices to do what they do naturally, and best.

The original rationale for the RoR architecture was for multi-substrate reservoir com-

puting. In some ways, it mirrors the same principles outlined in heterotic computing.

However, all substrates umbrella under the reservoir computing framework, i.e. are rep-

resented as reservoirs. In future work, a merger in ideas and techniques between multi-

substrate reservoir computing and heterotic computing could offer new unique computing

systems. In Chapter 8, ideas from Abstraction/Representation Theory [82], used to for-

mulate heterotic computing, have already been put to good use.

9.2.3 Reservoir Computing in materio Framework

The RCiM framework is proven in Chapter 5 to have benefits over EiM. However,

there are many ways to improve and future-proof the RCiM framework:

• Design new input encodings for tasks that require multiple inputs. So far, only a

few experiments have been conducted with multi-input tasks, and as such, only a

rudimentary input strategy is used. In the future, tasks with greater input-output

complexity will be desired. This may include, high-input classification tasks such

as image and speech, natural language processing, sequence generation, dimension-

ality reduction, cryptography, etc.

• A potentially significant problem for in materio systems in the future is an ability

to retain information intrinsically for long-periods of time. However, methods of

storing information in analogue mediums are bountiful. The potential danger is

adopting more classical techniques to solve the long-term memory problem, thus

bringing the bottlenecks associated with it. How best to achieve this is still largely

unknown, and perhaps even unnecessary; a hybridisation with digital computers
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could remove the problem. An alternative solution for longer-memory could come

from adopting hybrid principles presented in Neural Turing Machines (NTMs) [66]

and the Differentiable Neural Computer (DCN) [67], where neural networks are

coupled to external memory resources which they can interact with by attentional

processes.

• To solve the more immediate short-term memory problem, experienced by weak

memory substrates, several avenues are possible: adding various levels of feedback,

which has been here largely unexplored, could promote oscillatory dynamics and

thus improve memory. This could include, delayed feedback through analogue

components, or virtually in the digital domain. Another avenue may be to create

temporary artificial memory cells, storing and relaying past information back into

the substrate (physically or virtually) using state update equations similar to long-

short term memory networks (LSTMs) [80] and gated recurrent units (GRUs) [32].

• Greater hardware expansion, and larger in materio reservoir sizes, are still pos-

sible. As technology improves, the current system can be expanded. However,

other means of measurement (and configuration) may be desirable. The flexibility

of both the evolution in materio and reservoir computing frameworks allow for a

vast variety of methods (and combinations) to observe states and evolve paramet-

ers. Lessons learnt about substrate isolation from Chapter 6 may prove invaluable

to any future expansion.

• An all analogue implementation is still desired, where the readout/output weights

are realised in hardware. In such an implementation, making the readout evolvable

would also remove the supervised training process. However, this could also lead

to greater genotype-phenotype complexity. Achieving an all-analogue implement-

ation could make the whole RCiM concept more viable to real-world applications.

9.2.4 The SQuARC framework

The SQuARC framework’s modular design makes it easy to enhance and update. Ex-

amples of future experiments with the framework include:
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• Enforce minimal criteria to the search for novelty. In [109], solutions not satisfying

the minimal criteria are given a low fitness/novelty, adding a selection pressure

towards more functional solutions. It is a method to prune the “space of viable

behaviours”, and is found to be more efficient than searching for novelty alone. To

achieve this in the framework, one might require some dynamical property exist, or

a particular physical constraint to be adhered to.

• Test the SQuARC framework on different physical and virtual substrates. Once new

substrates are collected and compared, a repository could be created. This would

feature reference substrates and task prediction systems for general use by the wider

community.

• Apply the RoR architecture to the SQuARC framework. The framework may re-

quire adjusting to compensate for multi-reservoir architectures, as multiple sets of

a dynamics will need to be captured.

• Add more reservoir metrics and map more complex tasks to the behaviour space.

This should improve the accuracy of the framework and our understanding of re-

quired computational properties needed to compute both simple and complex tasks.

• Utilise the behaviour space and genetic representation to better understand the phys-

ical interactions being exploited. This might consist of modelling the relationships

between behaviour space and inputs/outputs/control signals, or, visualising the con-

nectivity of the underlying structure using the strength of signals between elec-

trodes.

9.2.5 Framework-in-the-loop Hardware Design

Due to the relatively automated process of assessing the quality of substrates via the

SQuARC framework, new avenues could open for substrate design.

In the future, the design and fabrication of the substrate may also be under evolution-

ary control, resulting in computers that can design other computers from the bottom-up.

This is made possible by the quality measure providing a method to compare substrates,

therefore quality could be optimised, or explored autonomously.
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One way to implement this could be through additive design/manufacturing processes,

such as the 3D printing of substrates, with the potential to evolve both the substrate and the

interface design (e.g. electrodes). Other implementations could involve the evolution of

chemical or biological substrates, with the potential of rapidly improving the computing

capability of unconventional computing systems.
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Appendix A

Hardware Platform Designs

In this appendix are ideas and designs for different components related to the new

hardware platform.

Early ideas of how to connect and route the electrodes to the DAQ cards are shown

in A.1. The final designs for the second iteration of the routing board are given in A.2.

In A.3, different 64 electrode array designs and masks are shown with various electrode

spacings and contact sizes. These designs were made for etch-back photo-lithography on

glass slides, however they were never used. A.4 gives I-V curve plots of various carbon

nanotube composites investigated within this work. These also include the effect of a bias

on the current vs. voltage relationship.

In the last section A.5, the initial ideas for a multi-substrate housing are given, along

with details of the LED arrays used in Chapter 6.
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Cross-point

SPDT

64 contact electrode Array – 
housed in 2 EDAC edgecard connectors (possibly via ribbon cable to pcb). Requires 

cable with 0.1" (2.54mm) pitch.

DAQ IN

DAQ OUT

Control signal

E.g. 0000

Cross-point Cross-point Cross-point

Cross-point Cross-point Cross-point Cross-point

SPDT

DAQ IN

Cross-point 
switch array
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16 SPDT’s (or 4 quad SPDT’s) 
per xPoint switch, i.e. one for 

each switch channel

Electrode Array

Control signal

Control 
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DAQ IN DAQ IN

DAQ OUT

· In total 64 analogue switches are required, e.g. (2:1) SPDT’s. This 
could however be easily integrated into (2:1) quad SPDT’s (e.g. an 
ADG1634 or ADG1234/ADG1334). In a setup using quads only 16 
ADG1634's would be required. 

· A two-by-four array (8 total) of Cross-point switch array’s 
(AD75019) is needed – currently possess 8 AD75019JPZ’s. This will 
take in analogue voltages supplied by an National Instruments PCI-
6723 DAQ (purchased). Switches can be daisy chained via SOUT.

· The switches connected to each electrode (e.g. ADG1634's) should 
connect to the AD75019 and directly to the NI PCI-6225 
(purchased) connections. This could be through the NI SHC68-68 
shielded cable/connector.

· An ADG1634 is suggested as it has a dual power supply +/- 5V, and 
therefore an analogue signal range between +/- 5V. The inputs 
from each AD75019 channel should be no bigger than +/- 5V 
(defined by the DAQ), and the voltage drop across the material at 
the readout should be significantly less. Although, the ADG1334 
has a higher dual power range between +/- 15V – which is closer 
to the AD75019 (and cheaper!), but has a higher internal on 
resistance (130Ohm compared to 4.5Ohm). Suggestions would be 
appreciated.

· It has been suggested the power supplies to the AD75019's (+12V,-
12V,+5V) require 10uF and 0.1uF capacitors.  

· Ideally power to the main board could be something like a single 
+12V input, with inverters and 5V regulator (although the DAQ 
does provide a 5V line) added to power the AD75019's/SPDT’s.

· PCLK to the AD75019's probably requires a 10KOhm pull-down. 
· I currently have two EDAC card connectors (Part No. 345-064-520-

202) to interface with the electrode array. These are dual 32-pin 
card connectors (one side won’t be used). I think the best solution 
(but not ideal) solution is to connect the EDAC connector to the 
PCB via something like ribbon cable because, at the moment, the 
EDAC’s connect to either side of a glass slide. Therefore, soldering 
the connectors to the board would make inserting a slide, difficult.

· I’ve done little research on this, so far: To control the SPDT’s a 64-
bit (or 32-bit x2, 16-bit x4, 8-bit x 8) shift register(s) could be used.
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Notes:

Total DAQ channels needed:
· 32 outputs
· 64 inputs
· 1 digital trigger 

(connecting both cards)
· 5V (available, if 

necessary) 
· DGND
· SCLK
· PCLK
· SIN
· Shift register signals 

(depends on choice): 
“Data In”, “CLK”, 
“Latch”, “Clear”, “Data 
out”, etc. (NI PCI-6225 
has 24 digital I/O) 

DAQ OUT

E.g. 0001
Shift registers(?) – for SPDT 

control signals

64 Header pins/ ribbon cable connector to electrode array

64 Header pins/ ribbon cable connector to electrode 
array

RevoMat Board: 64/32 input/output, 2x8 cross-point switch array, 64 SPDT’s, shift-register controlled. 

APPENDIX A. HARDWARE PLATFORM DESIGNS

A.1 Routing Board Ideas
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APPENDIX A. HARDWARE PLATFORM DESIGNS

A.3 Electrode Masks
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Sweeps from -5V to 5V @10mA 
 

B02S06 – 0.71% PMMA 

 

B15S11 – 1% PMMA  

 

 
B16S02 – 0.02% PMMA 

 

 
 

B16S03 – 0.032% PMMA 
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A.4 Substrate I-V Curves
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B16S04 – 0.042% PMMA 

 

 
 

B19S01 – 0.71% PMMA 
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Sweeps from -5V to 5V @10mA (Bias added) 
B19S02 – 0.5% PMMA 

 

 

 

B12S11(spin coated)  – 0.5% PBMA w/ 0V bias & -
3V bias 

 

 

 

B15S12 – 1% PBMA w/ 1V bias,-3V bias & 5V 
bias 

 

 

 

B16S04 – 0.042% PMMA w/ -1V bias, 3V bias & -
5V bias 
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16x1 LED Test card

16 electrode connector (1) 16 electrode connector (3)

16 electrode connector (3) 16 electrode connector (4)

PCB connector (64)

Notes:
- LEDs, e.g. 0402 SMDs (white) and resistors 
(black)
- Component placement has to leave room for 
card connector - about 8mm
- Dimensions: card insert 80mm x 30mm (at 
least, ref above). Pitch between contacts 
2.54mm
- For EDAC 345-064-520-202 edge connector

30
.0

0 
m

m

80.39 mm

Notes:
- Component placement has to leave room for 
card connector - about 8mm
- Dimensions: card insert 76mm x 30mm (at 
least, ref above). Pitch between contacts 
3.96mm
- For EDAC 307-018-505-104 edge connector

Notes:
- PCB connector is the same d-type 64 
connector used on other board 
- Electrode connectors are the EDAC 307-
018-505-104 edge connector. Dimensions: 
94mm x 8mm x 11mm
- No particular dimensions, but smaller the 
better.

Multi-connector board: 4x 16-pin edge connectors

LED Test cards: Two-sizes, 64 and 16 test cards

3.96 mm
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A.5 Multi-Substrate Housing and LED Designs
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Appendix B

SQuARC: Supplementary ESN Plots

Here different plots are provided highlighting the relationships found between ESN

parameters and the behaviour space. When conducting random search, certain ESN para-

meters, e.g. spectral radius and input scaling, have reoccurring relationships with the

behaviour space across different ESN sizes (see Fig. B.1 and B.2). However, some are

more difficult to interpret, e.g. leak rate and W connectivity (see Fig. B.3 and B.4).

When using novelty search, the same relationships either breakdown or change. In

many cases, much of the behaviour space is occupied around a localised parameter value,

e.g. a spectral radius roughly around 1.2 in Fig. B.5. In other cases, relationships change

depending on the network size, e.g. in Fig. B.6 (input scaling) and B.7 (leak rate). Much

can still be learned about ESNs from these plots. For example, why novelty search ap-

pears to better exploit the connectivity of W (Fig. B.8), the leak rate (Fig. B.7), and the

connectivity of the input (Fig. B.9).
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APPENDIX B. SQUARC: SUPPLEMENTARY ESN PLOTS

(a) 25 node

(b) 50 node

(c) 100 node

(d) 200 node

Figure B.1: Random Search: Spectral radius relationship to behaviour space.
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APPENDIX B. SQUARC: SUPPLEMENTARY ESN PLOTS

(a) 25 node

(b) 50 node

(c) 100 node

(d) 200 node

Figure B.2: Random Search: Input Scaling relationship to behaviour space.
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APPENDIX B. SQUARC: SUPPLEMENTARY ESN PLOTS

(a) 25 node

(b) 50 node

(c) 100 node

(d) 200 node

Figure B.3: Random Search: Leak rate relationship to behaviour space.
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APPENDIX B. SQUARC: SUPPLEMENTARY ESN PLOTS

(a) 25 node

(b) 50 node

(c) 100 node

(d) 200 node

Figure B.4: Random Search: W connectivity relationship to behaviour space.
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APPENDIX B. SQUARC: SUPPLEMENTARY ESN PLOTS

(a) 25 node

(b) 50 node

(c) 100 node

(d) 200 node

Figure B.5: Novelty Search: Spectral radius relationship to behaviour space.
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APPENDIX B. SQUARC: SUPPLEMENTARY ESN PLOTS

(a) 25 node

(b) 50 node

(c) 100 node

(d) 200 node

Figure B.6: Novelty Search: Input Scaling relationship to behaviour space.
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APPENDIX B. SQUARC: SUPPLEMENTARY ESN PLOTS

(a) 25 node

(b) 50 node

(c) 100 node

(d) 200 node

Figure B.7: Novelty Search: Leak rate relationship to behaviour space.
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APPENDIX B. SQUARC: SUPPLEMENTARY ESN PLOTS

(a) 25 node

(b) 50 node

(c) 100 node

(d) 200 node

Figure B.8: Novelty Search: W connectivity relationship to behaviour space.
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APPENDIX B. SQUARC: SUPPLEMENTARY ESN PLOTS

(a) 25 node

(b) 50 node

(c) 100 node

(d) 200 node

Figure B.9: Novelty Search: input connectivity relationship to behaviour space.
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Appendix C

Dynamic Archive or All Behaviours?

As a side experiment, I thought it would be interesting to see what effect adding all

the behaviours to the archive would have. Therefore, fitness would be assessed based

on all previously explored behaviours. In practice, this results in a very large archive

being stored. However, selection pressure may be stronger to move away from previously

explored regions.

To test this, two network sizes we used; 25 and 50 node ESNs. According to the results

(Fig. C.1 and C.2), adding all behaviours leads to mixed gains and losses in coverage. For

the 25 node it may look like an advantage, however, across 10 runs it does not appear to

be significant. Similar results are seen at 50 nodes, despite lower values in a few runs,

there is no significant difference.
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APPENDIX C. DYNAMIC ARCHIVE OR ALL BEHAVIOURS?

(a) 25 node (b) 50 node

Figure C.1: All behaviours in the archive versus a dynamic sized archive: behaviour space

coverage against number of generations.
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APPENDIX C. DYNAMIC ARCHIVE OR ALL BEHAVIOURS?

(a) 25 node

(b) 50 node

Figure C.2: All behaviours found with “full” archive (Red, Top row) and all behaviours

found with dynamic archive (Black, Bottom row).
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Appendix D

Multi-Thread SQuARC Framework

For the SQuARC framework, implemented with ESNs, a multi-thread version was

also built. The aim was to utilise the asynchronous capability of the microbial GA.

In order to parallelise the algorithm a number of adjustments were made. Each thread

was set to perform selection on the same population and create its own offspring. Then,

the output/offspring of each thread was collected and compared to see if any individual

was concluded the loser multiple times. If any were to lose more than once, a comparison

check was performed to see which new offspring produced the higher fitness, i.e. in

a sparser region of the behaviour space. The winning offspring was then selected to

supersede the losing individual in the population and thus carried forward to the next

generation. Any losing offspring however was still added to the database, along with all

other offspring created.

Having a parallel version of the algorithm allows faster and greater exploration of the

space, given roughly the same time to compute, as seen in Fig. D.1 and D.2a. However,

the asynchronous update of the population can produce other effects. For example, more

exploitation than exploration, resulting in longer searches within a niche. To test this

potential side-effect, the serialised and parallel implementations were compared given the

same database size; as the database indicates how many reservoirs have been created/bred

and thus evaluated.

The resulting behaviours of both searches are shown in Fig. D.2. The (black) bottom

plots in Fig. D.2a show the serial implementation of a 200 node ESN, with a database

size of 2000. Fig. D.2b shows the parallel implementation also with a database size of
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APPENDIX D. MULTI-THREAD SQUARC FRAMEWORK

2000. In the parallel version, the behaviours appear to less uniformly cover the space,

suggesting greater exploitation.

To quantify whether greater exploitation is occurring, distribution plots of each dimen-

sion are given in Fig. D.3. In particular, kernel rank appears to concentrate more compared

to the non-parallel equivalent. This could amount to more local search in the kernel rank

dimension, or more likely, more chaotic reservoirs being produced; as indicated by the

increase in high generalisation rank (Fig. D.3a). So rather than more exploitation, it could

just suggest more unstable reservoirs are created using the parallel implementation.

In general, this side-effect might be offset by the vast numbers of behaviours searched

within the same time-frame. This suggests room for improvement, however, the parallel

implementation is likely to be preferred over the original.

Figure D.1: Total coverage against generations: Parallel versus normal implementation.
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APPENDIX D. MULTI-THREAD SQUARC FRAMEWORK

(a) Parallel vs. Normal

(b) Parallel with equal database size

Figure D.2: a) All behaviours found with parallel implementation (Red, Top row) and all

behaviours found with normal implementation (Black, Bottom row). b) Behaviours of

parallel when set to equal database size.
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APPENDIX D. MULTI-THREAD SQUARC FRAMEWORK

(a) KR vs. GR Distribution (b) KR vs. MC Distribution

(c) MC vs. GR Distribution

Figure D.3: Comparison of behaviour distributions: Parallel versus Normal, with same

database size.
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Appendix E

SQuARC: Supplementary Prediction

Plots

Two learning systems were investigated as part of the SQuARC “learning” level, using

all the collected ESN data to solve the behaviour space/task performance regression prob-

lem. These were Bagged (Ensemble) Decision Trees and Feed-Forward Neural Networks

(FFNN).

In Fig. E.1 to E.8, results of each prediction model are shown for each ESN size. Each

trained separately on a task, then tested with every ESN size. To represent this, heat maps

are given, where trained size y (y axis) is evaluated on test size x (x axis). Every ESN

size is modelled and tested 10 times, with the average prediction error of the model (Root

Mean Square Error (RMSE) and Mean Absolute Error (MEA)) displayed.

Each figure represents one of four data configurations; using three (original KR,

GR and MC) or eleven (functions of the originals) features, with a task performance

threshold/ceiling set to 1 or 0.8. A threshold/ceiling was set to remove any data points

outside the set value – in some cases the target data (ESN task error) was very large,

resulting in large bias in the training stage.

In general, the two techniques used to predict ESN performance do well. They also

tend to generalise better when the model is trained on data from a larger ESN than the test

ESN; in all cases for the FNN model, but not the bagged decision trees.

The task that appears to be the easiest to learn is the NARMA-30 task and the hardest

is the non-linear channel equalisation task.
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APPENDIX E. SQUARC: SUPPLEMENTARY PREDICTION PLOTS

The most accurate predictions are seen using a ESN task error threshold of 0.8. The

number of features, however, affect the prediction less.

Applying the best settings: 11 features and a threshold of 0.8, both the bagged decision

trees and feed-forward networks perform roughly the same. The decision trees generalise

better than the FFNNs when the model is trained on a smaller ESN size and tested on a

larger ESN size, however generalise slightly worse in the opposite configuration. Based

on these results, out of the two, feed-forward networks are recommended as generalisation

with y≥ x is slightly better.

In a second experiment, a new FFNN was trained to predict all tasks simultaneously

(see Fig. E.9). As with previous tests, multiple data configurations were set.

The results of the multi-task predictor suggest a feed-forward network can learn and

predict all tasks well; this advantage requires fewer networks to be trained per task. In

terms of configuration, a threshold of 0.8 and using 3 features tends to work best.

In the final experiment, four FFNNs were trained on all the data collected (per task),

i.e. the databases from all ESN sizes. The objective was to see how well the FFNNs

generalise to each ESN size when trained on everything.

The results are shown in Fig. E.10. The networks perform similarly to the networks

trained in Fig. E.6, suggesting multiple substrates can be used to improve the accuracy

and range of the predictive systems.
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APPENDIX E. SQUARC: SUPPLEMENTARY PREDICTION PLOTS

(a) NARMA-10

(b) NARMA-30

(c) Laser

(d) Non-linear Channel Equalisation

Figure E.1: Bagged Trees: Features=3, Threshold=1.
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APPENDIX E. SQUARC: SUPPLEMENTARY PREDICTION PLOTS

(a) NARMA-10

(b) NARMA-30

(c) Laser

(d) Non-linear Channel Equalisation

Figure E.2: Bagged Trees: Features=3, Threshold=0.8.
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APPENDIX E. SQUARC: SUPPLEMENTARY PREDICTION PLOTS

(a) NARMA-10

(b) NARMA-30

(c) Laser

(d) Non-linear Channel Equalisation

Figure E.3: Bagged Trees: Features=11, Threshold=1.
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APPENDIX E. SQUARC: SUPPLEMENTARY PREDICTION PLOTS

(a) NARMA-10

(b) NARMA-30

(c) Laser

(d) Non-linear Channel Equalisation

Figure E.4: Bagged Trees: Features=11, Threshold=0.8.
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APPENDIX E. SQUARC: SUPPLEMENTARY PREDICTION PLOTS

(a) NARMA-10

(b) NARMA-30

(c) Laser

(d) Non-linear Channel Equalisation

Figure E.5: FFNN: Features=3, Threshold=1.
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APPENDIX E. SQUARC: SUPPLEMENTARY PREDICTION PLOTS

(a) NARMA-10

(b) NARMA-30

(c) Laser

(d) Non-linear Channel Equalisation

Figure E.6: FFNN: Features=3, Threshold=0.8.
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APPENDIX E. SQUARC: SUPPLEMENTARY PREDICTION PLOTS

(a) NARMA-10

(b) NARMA-30

(c) Laser

(d) Non-linear Channel Equalisation

Figure E.7: FFNN: Features=11, Threshold=1.
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APPENDIX E. SQUARC: SUPPLEMENTARY PREDICTION PLOTS

(a) NARMA-10

(b) NARMA-30

(c) Laser

(d) Non-linear Channel Equalisation

Figure E.8: FFNN: Features=11, Threshold=0.8.
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APPENDIX E. SQUARC: SUPPLEMENTARY PREDICTION PLOTS

(a) Features=3, Threshold=1

(b) Features=3, Threshold=0.8

(c) Features=11, Threshold=1

(d) Features=11, Threshold=0.8

Figure E.9: Multi-Task FFNNs.
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APPENDIX E. SQUARC: SUPPLEMENTARY PREDICTION PLOTS

(a) NARMA-10

(b) NARMA-30

(c) Laser

(d) Non-linear Channel Equalisation

Figure E.10: FFNN trained on all ESN sizes. Features = 3, Threshold = 0.8.
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[32] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the proper-

ties of neural machine translation: Encoder-decoder approaches. arXiv preprint

arXiv:1409.1259, 2014.

[33] J. Chrol-Cannon and Y. Jin. On the correlation between reservoir metrics and

performance for time series classification under the influence of synaptic plasticity.

PloS one, 9(7):e101792, 2014.

[34] K. D. Clegg, J. F. Miller, M. K. Massey, and M. Petty. Travelling salesman prob-

lem solved ‘in materio’ by evolved carbon nanotube device. In Parallel Problem

Solving from Nature–PPSN XIII, pages 692–701. Springer, 2014.

[35] K. D. Clegg, J. F. Miller, M. K. Massey, and M. C. Petty. Practical issues for

configuring carbon nanotube composite materials for computation. In ICES 2014,

IEEE International Conference on Evolvable Systems, pages 61–68. IEEE, 2014.

[36] M. Conrad. The price of programmability. The universal turing machine a half-

century survey, pages 261–281, 1995.

220



BIBLIOGRAPHY

[37] T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley &

Sons, 2012.

[38] M. Dale. Neuroevolution of hierarchical reservoir computers. In Proceedings of the

Genetic and Evolutionary Computation Conference, pages 410–417. ACM, 2018.

[39] M. Dale, J. F. Miller, and S. Stepney. Reservoir computing as a model for in-

materio computing. In Advances in Unconventional Computing, pages 533–571.

Springer, 2017.

[40] M. Dale, J. F. Miller, S. Stepney, and M. A. Trefzer. Evolving carbon nanotube

reservoir computers. In International Conference on Unconventional Computation

and Natural Computation, pages 49–61. Springer, 2016.

[41] M. Dale, J. F. Miller, S. Stepney, and M. A. Trefzer. Reservoir computing in ma-

terio: An evaluation of configuration through evolution. In 2016 IEEE Symposium

Series on Computational Intelligence (SSCI), pages 1–8, Dec 2016.

[42] M. Dale, J. F. Miller, S. Stepney, and M. A. Trefzer. Reservoir computing in ma-

terio: A computational framework for in materio computing. In 2017 International

Joint Conference on Neural Networks (IJCNN), pages 2178–2185, May 2017.

[43] J. Dambre, D. Verstraeten, B. Schrauwen, and S. Massar. Information processing

capacity of dynamical systems. Scientific Reports, 2, 2012.

[44] S. Dasgupta, F. Wörgötter, and P. Manoonpong. Information theoretic self-

organised adaptation in reservoirs for temporal memory tasks. In Engineering

Applications of Neural Networks, pages 31–40. Springer, 2012.

[45] E. D. De Jong, R. A. Watson, and J. B. Pollack. Reducing bloat and promoting

diversity using multi-objective methods. In Proceedings of the 3rd Annual Confer-

ence on Genetic and Evolutionary Computation, pages 11–18. Morgan Kaufmann

Publishers Inc., 2001.

[46] K. Deb. Multi-objective optimization using evolutionary algorithms. Wiley, 2005.

221



BIBLIOGRAPHY

[47] E. C. Demis, R. Aguilera, K. Scharnhorst, M. Aono, A. Z. Stieg, and J. K.

Gimzewski. Nanoarchitectonic atomic switch networks for unconventional com-

puting. Japanese Journal of Applied Physics, 55(11):1102B2, 2016.

[48] Z. Deng and Y. Zhang. Collective behavior of a small-world recurrent neural

system with scale-free distribution. IEEE Transactions on Neural Networks,

18(5):1364–1375, 2007.

[49] B. Derrida and Y. Pomeau. Random networks of automata: a simple annealed

approximation. EPL (Europhysics Letters), 1(2):45, 1986.

[50] P. F. Dominey. Complex sensory-motor sequence learning based on recurrent state

representation and reinforcement learning. Biological cybernetics, 73(3):265–274,

1995.

[51] C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, and W. D. Lu. Reservoir computing

using dynamic memristors for temporal information processing. Nature commu-

nications, 8(1):2204, 2017.

[52] X. Dutoit, B. Schrauwen, J. Van Campenhout, D. Stroobandt, H. Van Brussel, and

M. Nuttin. Pruning and regularization in reservoir computing. Neurocomputing,

72(7-9):1534–1546, 2009.

[53] A. Eiben, S. Kernbach, and E. Haasdijk. Embodied artificial evolution. Evolution-

ary intelligence, 5(4):261–272, 2012.

[54] M. J. Embrechts, L. A. Alexandre, and J. D. Linton. Reservoir computing for static

pattern recognition. In 17th European Symposium on Artificial Neural Networks

(ESANN 2009), 2009.

[55] C. Fernando and S. Sojakka. Pattern recognition in a bucket. In Advances in

Artificial Life, pages 588–597. Springer, 2003.

[56] A. A. Ferreira and T. B. Ludermir. Comparing evolutionary methods for reservoir

computing pre-training. In Neural Networks (IJCNN), The 2011 International Joint

Conference on, pages 283–290. IEEE, 2011.

222



BIBLIOGRAPHY

[57] A. A. Ferreira, T. B. Ludermir, and R. R. De Aquino. An approach to reservoir

computing design and training. Expert systems with applications, 40(10):4172–

4182, 2013.

[58] M. Fiers, T. Van Vaerenbergh, F. Wyffels, D. Verstraeten, D. J. Schrauwen, B., and

P. Bienstman. Nanophotonic reservoir computing with photonic crystal cavities to

generate periodic patterns. IEEE Transactions on Neural Networks and Learning

Systems, 25(2):344–355, 2014.

[59] K. Fujii and K. Nakajima. Harnessing disordered-ensemble quantum dynamics for

machine learning. Physical Review Applied, 8(2):024030, 2017.

[60] K. Funahashi and Y. Nakamura. Approximation of dynamical systems by continu-

ous time recurrent neural networks. Neural networks, 6(6):801–806, 1993.

[61] C. Gallicchio and A. Micheli. Architectural and markovian factors of echo state

networks. Neural Networks, 24(5):440–456, 2011.

[62] C. Gallicchio, A. Micheli, and L. Pedrelli. Deep reservoir computing: a critical

experimental analysis. Neurocomputing, 2017.

[63] T. E. Gibbons. Unifying quality metrics for reservoir networks. In IJCNN 2010,

The International Joint Conference on Neural Networks, pages 1–7. IEEE, 2010.

[64] D. E. Goldberg, J. Richardson, et al. Genetic algorithms with sharing for mul-

timodal function optimization. In Genetic algorithms and their applications: Pro-

ceedings of the Second International Conference on Genetic Algorithms, pages

41–49. Hillsdale, NJ: Lawrence Erlbaum, 1987.

[65] A. Goudarzi and C. Teuscher. Reservoir computing: Quo vadis? In Proceedings

of the 3rd ACM International Conference on Nanoscale Computing and Commu-

nication, page 13. ACM, 2016.

[66] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint

arXiv:1410.5401, 2014.

223



BIBLIOGRAPHY

[67] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-
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