Issue 2021-2
July 2021

FM E
A A ACM
ol

| ol
METHODS C
BC S R SCHC
C m
I A
UM L
IFMSI|G
T
E E
e
The Newsletter of the
» Rl Agecis o Copuing Formal Aspects of Computing Science
E e (FACS) Specialist Group

ISSN 0950-1231

FACS FACTS Issue 2021-2 July 2021

About FACS FACTS

FACS FACTS (ISSN: 0950-1231) is the newsletter of the BCS Specialist Group on Formal
Aspects of Computing Science (FACS). FACS FACTS is distributed in electronic form to
all FACS members.

Submissions to FACS FACTS are always welcome. Please visit the newsletter area of the

BCS FACS website for further details at:

https://www.bcs.org/membership/member-communities/facs-formal-aspects-
of-computing-science-group/newsletters/

Back issues of FACS FACTS are available for download from:

https://www.bcs.org/membership/member-communities/facs-formal-aspects-
of-computing-science-group/newsletters/back-issues-of-facs-facts/

The FACS FACTS Team

Newsletter Editors

Tim Denvir timdenvir@bcs.org
Brian Monahan briangmonahan@googlemail.com

Editorial Team:
Jonathan Bowen, John Cooke, Tim Denvir, Brian Monahan, Margaret West.

Contributors to this issue:
Jonathan Bowen, Andrew Johnstone, Keith Lines,
Brian Monahan, John Tucker, Glynn Winskel

BCS-FACS websites

BCS: http://www.bcs-facs.org

LinkedIn: https://www.linkedin.com/groups/2427579/

Facebook: http://www.facebook.com/pages/BCS-FACS/120243984688255
Wikipedia: http://en.wikipedia.org/wiki/BCS-FACS

If you have any questions about BCS-FACS, please send these to Jonathan Bowen

at jonathan.bowen@lsbu.ac.uk.

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/
mailto:jonathan.bowen@lsbu.ac.uk
http://en.wikipedia.org/wiki/BCS-FACS
http://www.facebook.com/pages/BCS-FACS/120243984688255
https://www.linkedin.com/groups/2427579/
http://www.bcs-facs.org/
mailto:brianqmonahan@googlemail.com
mailto:timdenvir@bcs.org
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/back-issues-of-facs-facts/
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/back-issues-of-facs-facts/

FACS FACTS Issue 2021-2 July 2021

Editorial

Dear readers,

Welcome to the 2021-2 issue of the FACS FACTS Newsletter. A theme for this issue is
suggested by the thought that it is just over 50 years since the birth of Domain
Theory'.

Why did computer science need Domain Theory? To provide a semantics for
computational structures, one needs to construct a mathematical model for them. In
many high-level programming languages it is possible to define recursive data types,
and to write successful programs which use them. Yet it is impossible to model
recursive data types, such as those that contain their own function spaces, in set
theory. Georg Cantor showed this in about 1874-1884°. Where data types embody
functions, they are computable functions, not the fully fledged functions found in set
theory. Domains provide a way of expressing these limited functions, which has,
almost happily, the accidental effect of enabling types to have this kind of recursion.

Programming languages were not the first context in which we find recursion.
Developments in mathematical logic, in the early 20™ century, used the idea decades
before. In their introduction to the second edition of Principia Mathematica®> Whitehead
and Russell refer to that theorem of Cantor’s, stating it very succinctly:

2" >n

Here 2 denotes the two-value set {0,7}, n denotes the set of natural numbers [0:n-1],
2" denotes the set of functions from n to 2 and > compares the cardinalities of the
sets. Whitehead and Russell remark that Cantor’s proof is limited to finite sets n, but if
that historically is the case, it is easy to extend a natural proof to infinite sets of any
cardinality (left to the reader!). (Note that if n is countably infinite, then the theorem
and proof are isomorphic to another strongly related theorem of Cantor’s, that the
Reals are uncountable).

Enough of this from me. Our first feature article is by my co-editor, Brian Monahan,
Domain Theory Revisited, an introduction and thoughtful discourse on the subject.
Then comes John Tucker, Haskell B. Curry at War, a historical note from the History of
Computing Collection at Swansea University. The third feature is by Glynn Winskel,
Domain Theory and Interaction. This is a splendid grand tour of the history from
Domain Theory’s beginnings, through interactive computation, concurrent games and

'Dana S. Scott. Outline of a mathematical theory of computation. Technical Monograph PRG-2, Oxford University
Computing Laboratory, Oxford, England, November 1970; Dana Scott and Christopher Strachey. Toward a
mathematical semantics for computer languages Oxford Programming Research Group Technical Monograph.
PRG-6. 1971.

See e.g. https://mathshistory.st-andrews.ac.uk/Biographies/Cantor/

*Alfred North Whitehead & Bertrand Russell, Principia Mathematica, CUP 1910, second edition 1927, paperback
edition to *56 1962, page xiv.

3

https://mathshistory.st-andrews.ac.uk/Biographies/Cantor/

FACS FACTS Issue 2021-2 July 2021

strategies, to recent work on dialectica categories and container types. Then, Andrew
Johnstone provides a most instructive review of the recent book by Cliff Jones,
Understanding Programming Languages (Springer Switzerland 2020), again extremely
relevant to program language semantics.

Finally we have reports on some recent FACS and FACS-related events. Keith Lines
summarises the webinar by Conor McBride & Fredrik Nordvall Forsberg, Dimensionally
correct by construction: Type systems for programs. Jonathan Bowen details the ABZ
2021 conference, which was preceded by a festschrift for Egon Borger. Jonathan also
covers FACS and other relevant seminars that have taken place so far this year: Keith
Lines, NPL’s Experience with Formal Aspects; Marta Kwiatkowska, Probabilistic Model
Checking for the Data-rich World (BCS Lovelace seminar); and Michael Leuschel, New
Ways of Using Formal Models in Industry (joint FACS and FME seminar).

We hope you enjoy FACS FACTS issue 2021-2.

Tim Denvir
Brian Monahan

FACS FACTS Issue 2021-2 July 2021

Domain Theory — Revisited

Brian Monahan

Introduction

Tust over 50 vears ago, the logician Dana Scott discovered a way to give an elegant
smathematical semansics to Church's (untyped) lambda calenlus. At the time. this was an
extraordinary and most unexpected discovery that required some surpnsing and unanti-
cipated developments in the kind of mathematics mvolved.

This mathematics made significant use of a range of concepts, most of which were en-
ticely new to Theoretical Computer Science, at least up until that point. Although this
initially seemed all rather shocking and sirange — certainly unusual — the mathematics
came 10 be seen as the beginning of a liberating revolution with some far reaching con-
sequences. The mathematical framework in question was, of course, Domain Theary,
as it later came 10 be Known.

What is perhaps difficult for us to see today 15 just how controversial and infamous
lambda calculus had become amongst logicians and theoreticians of the day. From
the time it emerged in the 1920% as a primirive notion of “function as rules”, lambda
caleulus was gquickly seen by logicians to be rather problematical, despite consisting
of only a few equational rules, It was regarded with much suspicion and considerable
doubt as to its utility and consistency, since it was plagued with seeming foundational
questions from the outset. such as finite expressions which appeared to never terminate,
and particular terms which required arbitrary functions (o have fix-points — and so on.
Perhaps the most shocking thing of all was that the lambda calculus was envisaged as
modelling something quite basic and fundamental - the pnmitive idea of “functions as
rales™ — and yet it proved to be far from simple! If this could be so problematical, what
hope could there be for ickling anvithing more complicated?

The distinction between the tvped and wntvped lambda calculus is very important herne,
The simply tvped lambda calculus seemed 1o be tar better behaved and relatively tame
{due 10 strong normalization), compared o 118 apparently unruly sibling, the untyped
lembda calculus. However, this only led to vet more unsettling guestions and creating
even greater unease and suspicion in the minds of logicians, Given the simplicity, whit
could possibly have gone wintg? The answer was that nerfifng had gone wrong - we
just hadn't vet undersiood what the rules described.

FACS FACTS Issue 2021-2 July 2021

Roadmap

This essay takes an informal tour throogh various ssoes surmounding Domain Theory,
such s

What were the underlving questions that motivated Domain Theory's develogp-
mem?

What preblems can Domain Theory help us solve?

How does Domain Theory work, mathematically speaking?

And, what insights were needed?

The tour concludes by examining what Domain Theory opened up for Computing Sci-
ence and where ithas led us @ isday.

What this essay doesn T set out to do is to present a definitive historical account of the
development of Domain Theory — the story presented here is more concerned with the
ideas themselves and their inter-relationships. Onme may alresdy find a very extensive
historical account of the onigins and development of both lambda calculus and Domain
Theory from Felice Cardone and Roger Hindley [7].

My primary source for technical understanding, inspiration and background has been
an extensive chapter from the Handboek of Logic in Compater Science called Domain
Theory, by Samson Abramsky and Achim Jumg [2]. I hos proved (o be an imvaluable
and relialle resource concerning the mathematics of Domain Theory,

Logic, Language and Programming

These days we all know whal programming 15 - programming involves instructing a
device w perform a series of caloulations that solves some problem by producing out-
puts, given suitable inputs, These instructions determine the behaviour of the device and
they may be given in the form of textual computer programs, machine instructions — or
even simply by selecting and clicking on something in a browser window with o mouse.

The issee urgently confronting computing in the late 1960 and early 19705 was o do
with organising and instructing computer systems on an ever-increasing scale, I was
clear that this would need to be done through the use of computer programs wntten ina
variety of computer programming languages and later ranskated imo machineg insirue-
bHoms inoan automsted manner.

However, it was soon realised that the problem an hand was rwo-foold in natre:

FACS FACTS Issue 2021-2 July 2021

s Firstly. it concerned how to keep programs manageable so that precise instructions
for behaviowr could be provided in machine format = via machine wanslators and
compilers,

o Sccondly, how to make programs sefficiently intelligible to people so that an ac-
curate human understanding of the machine’s behaviour given by the program
could be obtained purely from the progrom text itself. Without this, it s very
doubtful how anyone'could organise. marshall and be confident of what any given
proaram wordd do — or even what it could do.

The issue became one of compmunication between human and maching in two distinet
senses — providing precise instructions to the machine to direct its activity, and husman
tirtderstanding for creating and reasoning about systems behaviour. In short, prograoms
should provide the basis for reasoning about the behaviour they precisely describe. Both
logic snd language are required for effective programming.

The remainder of this essay is concerned with the basics of what Domain Theory it-
salf does and how its application helped w make programming isell more reasonable
and therefore more effective. This story invelves understanding the primitive basis of
programming in terms of the (untyped) lambda calculus and showing how this prime-
itive calculus was given a precise mathematical semantics, despite the caleulus iself
involving self-reference, thereby courting potential circulanty and inconsistency.

What problem does semantics help solve?

Why do we need (model-theoretic) mathematical semantics — what problems can it help
us solve?

The short answer is that semantics helps o show that what we say is capable of being
meaningful, of comveying meaning. Imagine we are doing formal reasoning of some
kind in, say, something like first order predicate logic. What we would like 0 know is
that, when our formal reasoning is well-formed, we can be sure that the inferences we
make produce, at cach stage, statements that make sense (i.e. they are werliel).

Tor do this, we firstly need o introduce 8 mathematical semantics as a function that can
assign a suitable valwe W every well-formed expression and relational formula — we say
that such a value 15 a denofation. Typically this semantic funchion will need to depend
upon an merpretation (or model) associating denotations with primitive symbols and
terms of the language. Furthermore, we will say that any semantic function associal-

'OF course, where “anvone’ here includes soreself, after having weitten and 1essed the code only six
menths previously”

FACS FACTS Issue 2021-2 July 2021

ing denotations with expressions and formulae (usoally defined by induection over the
syntactical phrase structure), is known as a denofational semantics.

Formal semantics then defines what validity means by introducing a fegical conseguence
Cor safisfaction) relation over the structure of formulag, This says what it means for uni-
versally closed statements {or senfences having no free vanables) to be valid, relative
a particular model, Sentences are them said 10 be (universally d valid whenever they are
valid with respect to all (appropriate} models. We also say that u system of inference
rules is sowrrd whenever each inference rule preserves validity = that is. whenever the
premisses are valid, then sois the conclusion. Sound inferences map valid statements
it valid statements.

Obvionsly, the soundness of a logic or caloulus is a very desirable property o have —
indeed, nol possessing soundness would make 10 worse than useless!

Orverall, semantics is generally needed 1o say what is meant by soundness of inference.
Without o semantics and a consequential notion of soundness, 1t calls into question
whether deduction and inference is even meaningful, and potentially undermining con-
fidence in the utility of the entire calculus.

1175 worth explicitly zaving that Formal caleuli are often symbolically defined in a purely
aigebraic stvle just in terms of eguations o proof-theoretically in terms of inference
rules {e.g. process algebra, Siroctural Operational Semantics). This might be done
without any particular or overniding concern for providing 4 model-based denotational
sermantics, In these cases, the focus of concem naturally becomes one of feemeal derfv-
ahility using the inference rules. The extent to which that has any significance or not
baoils down 1o what the caleolos in guestion 15 for. Denotational semantics generally
makes an appesrance to provide a mathematical correspondence between logical state-
ments about things on the one hand, and those relatonships that hold between things on
the other.

Consistency

The question of consistency is related to the notion of validity - and is therefore right
at the core of our concerns, To discuss this, it is perhaps easier to say what lock of
consislency, Oor ncorsestency, means for a logic or calculus, Having done this, we then
define consisrency w mean the fack of inconsisiency, or equivalently, sor inconsisien!.

The general wdea 1s that inconsiztent syslems derive abserd conclusions - such as asserl-
ing that all values are the same when there are at least twao distinct values (e.g. 0 = 1),
Inconsistency means that validity collapses, leading (o all propositions being identfied
together = making truthhood and falsehood indistinguishable. We may more generally
say that a logic is #wconsistent when every possible sentence or statement is derivable —

FACS FACTS Issue 2021-2 July 2021

and therefore no distinctions could be drawn by wsing inferences in that system.

From a model-theorctic point of view, this immediately says that there cannot be any
well-defined, non-trivial models for an inconsistent logical system — because in any non-
trivial model, only some propositions will hold, and others will not. Since inconsistency
collapses validity and all propositions would be identified together. there could not then
he any non-trvial models,

Consequently, a consistent syvstem always has ot least one well-defined, non-trivial
maodel (ypically many, many more than cne!d = and, from an inference point of view,
not every statement or equation is denvable.

Adl of this will have particular sigmficance when we come to consider the semantics of
the untyped lambda caleulus below.

Untyped Lambda Calculus

The uwniyped lambda calculus arose in the late 19205 and was pioneered by a number
of logicians, primarily Alonzo Church and then Haskell Curry. This formal systen
provided a way o explore functional forms involving abstraction, substitution and ap-
plication [13, 4], The (simply) typed lambda calculus came about somewhat later in the
early 19305 For completeness, here are the basic rules of the untyped lambda caleulus®:

wopmv: Ar . M = Ay . Mr =y (Tor variable & not occaming freely in A0
Aeonv: {Ar . M} N = Mr:=N|
geonv: {Ar . Mz = M {lor varable ool occurmng freely m A7)

The above are generally regarded as lefi-to-right redicrion piles, The o reduction mle
only renames bound variables within terms, bringing no change. On the other hand,
A reduection “unfolds” the terms on the left, therefore doing something more radical,
Finally, 7 reduction cancels redundant lambda's.

After applying these rules in a {possibly empty) sequence of reductions, a term 5 said
tor b in el -form (or normalised) when no further 3 or 4 reductions arc possible,
module o conversion.

However, this begged some guestions. For example, does it matter how each of these
stnkingly stmple mules 15 applied? Could differens normal-forms be produced by differ-
enl rediction sequences’

These guestions were clenred up by Alomeo Church and T, Barkley Rosser in 1936 when

"The: substitusion notation M [x 1= ¥| means “substitute term ¥ for all free cccurrenses of © within
lerm M

FACS FACTS Issue 2021-2

10

they showed that reduction® is comfluens. This meant that for any term £ that reduces to
term £ and also reduces to term b, then there exists a common term 1 where both terms
Lpoand £y reduce o £y [15]. Furthermere, this implies that noemal-forms are weigee,
simce iF any redoction seguence could produce o term in normal -fommn, then all of them
could, and what's more. each of these normal-forms have to be equal to cach other, by
transitivity of equality.

This removed some degree of concern for the untyped lombda caleulus. When terms
possessed movrmal-forms, then reduction sequences behaved oo deterministic manner,
vielding a single result, However, as illustrated below, not all reduction sequences nor-
malized, raising further concern over whiat the untyped Tombda calculus might mean.

Self-Reference, Circularity ... and Non-Termination

A the core of this issue are those meaningfif lambda terms thiat dao mot reduce Lo sormal-
form, such as, for exwmple, Curmy's fix-point combinator, ¥

Yo= Af o (Ar o (e ()) A - fly (o))
Applications of this expression do not normalise because of the following derivation™;

Yigd = (Ax = ({2 Ay - gly {300 [1]—dein. of ¥ + 5 conv,

[RET = (210N = glw (wl)) [2] = 7 comv. + a cony,

Az e alz (2000w wlu (w)))) [31- 4 com, + o cony,

gl Y gl [4] —back substitution From [2]

alalgl = 1)) [5] = by inductive repetition of [4]

The above well-formed expression Tor Vo ocontains self-applicanons such as (o (o)),
Seli-apphications like this lustrates how every entity could always recefve arguments
and may alsn be applied as an argument, even to itself. As can be seen, the self-
application directly gives nse tooa circulanity at each stage, where a fresh application
is produced. This is effectively a direct. unguarded loop — and, as we may all appreci-
are, this keads (0 non-terminating reduction behaviour when evaluated exgerly.

Combinatory Logic (CL)

In an earlier and paralle]l development o untyped lambda calealus, Combimatory Logic
ior CL) was formulated and explored onginally by Moses Schienfinkel in 1924, and

"Orginally proven for g nwne resmicied varant of untyped Jambda coloulus,

“The: umderlining indicanes the site of substitution — typacally 7 comversion

July 2021

FACS FACTS Issue 2021-2

11

then rediscovered by Haskell Curry. The general idea was to develop a way of express-
g fanctional Tormes, bt without the explicrs use of bound varables, In modem terms,
this amounts o an equational approach that expresses combinatory functions, in much
the same way that untvped lambda calculus does |13, 4, 28], We have:

S m5fgpy = fxigx) K PRIy =%
g Fx=u g rt=y
p=F
; Fr =1 |
i e
= B = v Ffi=g
i Ffr = fu i Ffe =g

Equational inference rules for {5.K} Combinatory Logic

There is an elegant simplicity and a purity of form in CL. Whereas the rules for the un-
typed lambda caleulus involves a mets-logical “substitution” notation, no such device 1=
necessary in formalising CL, Becavuse these nodations are inter-comnvertible amd therefore
expressively equivalent, the issoes inherent in either form necessarily find expression in
the other. Because of its spartan simplicity, expressions in CL are typically consider-
ably longer than in pure lambda calculus, with a worst-case expansion of ((n%) [16].
For example, given below is the shortest possible 514 term [30] representing a fix-point
combinator — of which there are many:

SER(SIRK({SS(5(SSK K]

The particular combinator names, 5 and K have some informal mnemonic valee — the
5 combinator can be thought of as a kind of “Subsution” operator, whereas the &
combinator might be thought of as a Kind of "Konstant” operator!

The core problem

The issue of course is that both CL and untyped lambda calcalus were each very basic
formal systems encoding functional forme wogether with a process of calculation, given
in terms of equational reduction. 1t is hard to imagine a simpler system than these, that
expressed the same intent.

July 2021

FACS FACTS Issue 2021-2 July 2021

Civen this stark simplicity, it waos inioinvely clear that anything more practical or more
involved in terms of computation would almost certainly exhibat aspects similar 1o those
witnessed in these calouli. Therefore, studying these rather primitive systems seemed
like a necessary step to make. And so it proves,

The general nadive idea was that lambda terms formalised functions isfensionally by
defining them vig equational rules, as opposed to defining them extensionally in tenms
of sets of ordered pairs. [t was gquite naturally assumed that these two notions exactly
corresponded and were merely two different ways of describing the same thing.

However, as understanding of fambda calculus grew, it became increasingly clear that
these two notions of function were not completely alike. In particular, because of the
Y combinator, this showed that aff lambda terms possess a fix-point — namely, the term
Y I since:

Y (f) = fi¥Y (1)

Moreover, this also meant there were also terms that faeled 1o normalize. This failure
miizhi be paturally aceounted Tor by considening lambada terms just b represent pareiial
functions — where the lack of normalization then comesponded to undefined behaviour,

The confluence result of Church-Rosser was especially welcome as it showed that the
way lambda terms could be reduced o nomal-form was entirely consisient with this
suggestion (c.f, deterministic behaviour), Importantly, it also demonstrated that the
lambda calculus was, from a proof-theoretic standpoint, consistent (e.g. not all values
were eguividlent).

However, there was a remaining serious issee. though: every lambda termy represented
a function-like entity, since every term could be applied to every term, including it-
self. This severely complicates the idea that lambda terms somehow represented simple
functions of any kind, The difficulty bere amounts te finding a non-trivial mathematical
struciure L [xevmorpdiie 0 its own set of functions = that is:

==

However, this Baily contradicts Cantor’s Theorem concerning coardinalities of sets and
their corresponding sefs of fupctions, The only pessible set-theoretical solution might
conceivably be to make [a trivial, one-point set and then the set of functions would
then have w correspond Lo the set of rodal functions from D w 2, just o satisfy the
cardinality constraint’,

Hewewver, using total functions here could not explain the lack of nommalisation for some
termis — nor the fact that the Church-Rosser result implics that £ would have at least two
distinct values. Problematical indeed!

5‘.p'|,|||3.- Rl n-l'p.\rlull lunchions for any non-gmply sef has al least vive elements

12

FACS FACTS Issue 2021-2 July 2021

All of the above was widely understond during the 1930s, Despite the Church-Rosser
resuli ¢learly demonstrating consistency for the uniyped lambda calculus as a pure re-
duction theory of functional forms, it was hard to reconcile this with whatl was generally
undersiood mathematically aboul functions,

Unsurprisingly, this led (o a general disguiet about the ustyped lambda calculus amaongst
logicians and mathematicians. Of course, no such concerns plagued the simply-typed
lambda calculos and typed combinatory logic - amnd generally speaking, research focus
shifted wowards those approaches instead.

Alan Turing and Lambda Calculus

Ome may therefore be forgiven for thinking that all this fuss aboul a somewhat bizarre
equational caleulus 15 rather blown oot of proportion — alter all, dises i really matter of
there were all these 1ssues”? The short answer is, ves, of course it does,

The basic reason is that, as part of Alan Turing’s landmark work in 1936-1937 [31. 32,
23, 5] Turing showed that a number of what we would now call compuiational models
{including lambda caloulus) were all equivalent, in the sense that they were intencon-
vertible — everything that could be expressed in cne model, could alzo be expressed in
any of the other models. What's more, Turing was able to present s convincing justific-
ation [31] that “effective computation” cormesponds o performing svmbolic operations
according to rules (e.g. Turing Machines, Post Correspondence Problem. and Lambdo
Calculus) [#, 11].

This meant that unty ped lambda calculus embodies full-blown weiversal computation in
all its intricate variety — which provided even greater impetus to understand its nature.
By giving a model-based semantics o wniyped lambda calculus, it meant that these
cocerns of logicians could then be resolved in purely mathematical werms,

Although the Church-Rosser theorem had already shown in the 193s that untyped
lambda calculus is consistent proof-theoretically, what wisn't known until Sooll was
if o model-based semantics of untyped lambda calculus properly existed. Although it
15 now known that there are many possifde models for the lambda calcules (consider
Cartestan-Closed Categories), Domain Theory shows us that i1 15 covsisfent 10 say;

¢ Az intended, lambda terms denote functions of some description.

® Although not every erm fas a normal-form, even those terms that don't normalize
are still meaningful and nevertheless possess a denotation. What's more, even
though o sub-term may oot be normalizing, a term containing such a ferm may
still normalize overall.

s Elegantly cxplains why all lambda terms possess fix-points.

13

FACS FACTS Issue 2021-2 July 2021

Properies of calculations in lambda calculus could be established just by mathematic-
ally examining and exploring the model itself. In this way, the model theory naturally
provides a mrefatheory for the underlving calculus and its derivation structure.

The need for programming language semantics

This puzzie of the uniyped lambda catculus fangoished for many vears. Here was what
appeared to be a remarkably simple caleulus consisting of only a few rules that was
intended to capture the basic idea of “function as rule” (i.e. computation) — and vet
there were several deep 1ssues concerning what it might mean’

During the 19605 and 1970, the need 10 use programming languages to express pro-
grams and then o compile, translate and run them, became ever more pressing. Back
then, most of the R&D effort on language development and design had focused almost
exclusively on the *parsing” problem — how to parse complex textual phrase structures
InLo [reg represeniaions.

However, 45 languages become ever more sophisticated and therefore complex, the com-
piters, translators and other infrastrecture necessarily become much more technically
complicated and difficult to managze. For example, landmark languazres ke ALGOL 60
had by then emerged, as well as executable application languages like SIMULA, both
ol which needed complex processing to translate from phrase structures into maching
instruction sequences. The issue of compiler comrectness, and how o describe what that
might mean, loomed large,

For example. the language SIMULA illustrates this trend of increasing tools sophistic-
ation arising from complex application needs that were provided for through language
design, From the outser, SIMULA was considered mostly as & way to precisely descnibe
complex arrangements of systems that interact 1o produce behaviour. Operationally, this
included all sorz of complex structures, such s corcutines, discrete event simulation,
garbage collection and of course, object-oriented programming in terms of objects and
classes [17, 9.

AL around this time, the ides of wening o logic and using some Kind of mathematical
approach was starding o emerge among rescarchers, in particular Christopher Strachey
at the University of Oxford; this approach would involve extending amd developing lin-
guistics and logical structure o give meaning and content 1o programming languages,
The whole area cried oul for finding a way o ufilise mathematics somehow (o help bring
some coherence and much needed structure to the general understanding of program-
ming languages,

However, given the puzzle of the untyped lambda caloulus — still unsolved at that time
— 1t was clear that such a programme of research was never going to be straightforwand.

14

FACS FACTS Issue 2021-2 July 2021

Fartunately, Chrstopher Strachey was by then collaborating with Dana Scoit, both of
whom were no doubt very well-aware of the issues sumrounding formal mathematical
semantics, In purticular, these concems included the potentially problematical nature of
seneral recursive definitions over syntactic phrase structures {See | 200).

The puzzle of the untyped lambda caleulus mentioned earfier suggested that 2 novel
approach w mathematical semantics of programming languages was required. This was
the same Kind of problem in cach case alter all — the onivped lambda calculus was
known o be centrally concemaed with computation, and it also seemed highly plausible
that the foundational issees ansing for providing the lambda caleulus with a semantics
could easily reappear when dealing with more complex programming lunguages.

This all pointed towards finding some degree of deep understanding of the lambda cal-

culus itself and the mathematical ditficulties of giving it o formal semantics.

The puzzle of the lambda calculus needed o be solved!

Scott’s solution

The key insight was o realise that lambda terms weren't representing arbitrary functions
between plain old sets of values, but instead they represented some Kimd of function over
sets that were endowed with some extra mathematical structure. Furthurmore., these
larnbda definable funciions were not entively arbitrary themselves — they alse preserved
this additional structure.

Setting up the framework: Domains

In his 1970 PRG monograph "Outline of a Mathematical Theory of Computation” | [9],
Scout showed how a semantic model of the untyped lambda caleulus could be construc-
ted. The first part of the monograph introduced and motivated his framework under-
pinning his approach. Within this section, Scott in fact used the term “data type™ 1o
stand for what we might now call a domain®. To avoid any further confusion, the term
‘domain’ is used here instead. The framework Scott originally presented was given in
terms of 5 "axioms” or required properties of dommns and were as follows:

1. A domain is a partially ordered set,

Domains form basic set-like entittes and contan the elements or valoes of n-

"Within the practice of semantics, the lerm “domain” is somewhat Buidly defined in general, simply
because of the great variety of possible structares available for use. Typically, what "domain' may mean
15 only more sharply defiped within a particulor condext. I any evenl, domains are geneeally some
class ol partiolly ondered sets with addifionad structore and sotisdyieg some parbcular constrainls e,
conmpleteness,

15

FACS FACTS Issue 2021-2 July 2021

terest. These domains are endowed with a partial ordering over the elements and
represents approximation’ between values, written as » C .

Intuitively, this ordering qualitatively captures how data can appaecimeate other
data = for example, consider a sequence of real numbers of preater and greater
precision comverging towards a real number v the fimer.

Ik

Mappings hetween domains are monatonic.
The functions of interest (or mappings) all preserve this ardering on each domain.
[fm: A — Hthen, forall e, 0" A« a C o implies that mia) C mia’).

Intuitively, monotonic mappings preserve approximations — as the inputs become
better known, so also do the resulting outputs.

3. A domain is a complete lattice under it’s partial ordering.
A partially ordered set I is a camplete lattice whenever every subset 5 of P has
a least upper bound, written as | | 5 in 2. This also implies that every subset has
a greatest lower bound, written as [].5.

Taking the entire set 7, there is necessarily a least element of P, written as L, as
well as a greafesr element, written as T,

[mtuitively, the lattice structure captures how informaton may be combined to-
gether to vield fmproved approximations. Not all combinations are consistent in
that way and these vield the over-derermined or inconyistent element, represented
by T, the greatest element of a domain.

4. Mappings between domains are confinnons,
Al this poant, Scott brings in the key idea of continuons function, from topology,
albeit in a unexpected way, The broad idea is that continueus Tunctions preserve
Wnlvs of divected subsers.

To see what's going on here, we need the idea of a directed set ina partially
orderad set 7. A non-empty subset 12 of I is a directed subser whenever for any
two elements @, b € [J there exists € [suchthat o C d and & C o,

We mention that monotonic functions preserve directed sets — that is, they map
directed subsets For a domain into directed subsets for the result domain. This
holds because monotonic functions preserve the relevant ordering.

However, in general, monotomic functions may or may ned preserve limits — that
is, least upper bounds of (infinite) directed sets, Because of this, we need 1o
consider instead those functions which do,

"o redbuce netatienal clutier, we do mol use decoration 1o distinguish the oederings i different, but
relnfed, domnins

16

FACS FACTS Issue 2021-2 July 2021

We say that a monotonic function [- A — B is a Seor-continious function
whenever, for every directed subset O of A, we have that:

fAlder=L i fieres | cec)=|]fe)
We now wrte |4 — I for the set of all Scoft-continuous functions between
domains A and £,

The intuition is that directed subsets, [of a domain T represent congistent sets
eof approvimgrions of some value, v = | |1 from T. The Scott continsous func-
nons are then those funchions mapping consistent approximations indo consistent
approsimations, where the function applied w the limit of the inputs, is the same
as the limit of the comesponding outputs,

In summary, continueus funciions preserve the limits of consistent information,

3. A domain has an effectiively given basis.
This is the final ingredient of the framework described by Scott, and is the most
technical of his requirements by far Tt infroduces some constraints of a topelo-
gical nature ensuning that all entities are the limits of finite approximations, largely
echommg the sitwation of the real numbers beng linits of convergent rational num-
ber inbervaly.

The approach taken here is relatively economical and introduces only a few more
concepts. The main idea is to ensure that all valves in the data type are limits of
directed subsets of what are called basis elements,

We firstly introduce the way-below binary relation to capture more tightly what
approximation means for a domain, 7. We say that for o,y £ 1 that = is wav-
below w, written as 1 <2y, whenever, for all directed subsets 0 of T, that if
T L] I then there exists a o € I3 such that ¢ C o,

It is worth moting that if r < g then r C g as one might expect. Inmitively,
what & <20y savs is thal » wecoessarily approximates i becanse whenever y
approximates d = | | I for any directed subset I of T, then there is always some
valee a £ [J such that ¢ approximates & which, in tum, approximates . Clearly,
this must also mewn that o« C |_| I for every directed subset O whenever g C U i
— which explains the terminology “wav-below’.

Ve can now introdece what is meant by the basiy elemenss for a domain T, also
known as the compact or finite elements for T,

An element o 15 a compact element of domain 1 whenever ¢ <8 0 — informally,
this means that ¢ necessanily approximates every element above it. Hence, for
every directed subset 2 of T', if ¢ C o = | | 3, then there exists an element a £ 2
such that ¢ C a. Wi also define the set of all hasis elements for T 10 be;
KiT= {¢eT | cge)
= {cel | ciscompact }

17

FACS FACTS Issue 2021-2 July 2021

Finally, putting all this together, we sav that domain T is algebialc whenever:

a. Foreveryve T wehavethat v = | J{ce K(T) | eCw }
b, The basis set KT} is at most comtabdy infinite,

Technically, what is called a domain here is known as an w-algebraic domain. As
hinted @ earlier, every element of the domain T is then the limit of all the compact
ior basis) elements that wpproximate it

Interlude : Domains, least fixed points and recursion

Here we take an interlude 10 show how domain theory explains the idea of recursion
for continuous functions, through the use of least fixed points of appropriately given
functionals, Let 2 be any domain and let f - [{2 — [J] be a Scott-continuous function
from O 1o [

We mathematically define the least fic-paint operator FIX @ [0 — D) — DVinterms of
domains by,

FIX(]) = l_l[ffiLlel | nelN}
We can see that, for continuous [

FIFIX(1)

fi{ ML eD | neN})
L firiLliie D | nel)}
LI{ AP (L)eD | neN}
= FIX{f)

Thiz shows that every Scott-continucus function has a fixed point
O next illusiration uses a hypothetical programming notation o explain how recursion
is refated to least fixed points. Consider the humble factorial function, £act, mapping
Hat o Hat, typically defined by:

letrec factin) = i n==3 fhen 1 else n<facti{n-1]
The letrec indicates here that a recursive definition is being given and semantically

copuates o e use of the Ax-point eperator, FIX. In a call-by-name, lazy language
(such ms Haskell, for example) the above could equally be defined like this:

Iet faot = FIXIAfn « An « #f n==0 then 1 else n+frnin-1))

18

FACS FACTS Issue 2021-2

19

where we also have the following recursive definition:
FIN f = Aa - £ {FIX £} &

We shall show how this evaluates in o specific case — and to help with that, first introduce
this puxiliary function, called bodyFact by

let bodyFact fann = B p==0 then 1 el n«frnin-11}
meaning that we have:

fact m = {FIX bodyFact)] m
= FI¥X (Afn - An - bodyFact fn m} m

Using this machinery. we can then evaluate fact 2 by unrolling the above definition
using the properties of fis-poinis;

Facke 2 {FIX baodyFact] 2
= podyFact (FIX bodyFact) 2
= jf 2==0 then 1 el 2+ (FiX bodyFact) (2-1}
= & = [(FIX bhodyFact){l)
= (badyFact [(FIXK badyFack] 1)
(i l==0 them 1 eloe 1+ (FIX bodyFact) (1=1}1}
= 1 = [bodyFact (FIX bodyFact) 0}
= Z &« 1 « (W O==0 then 1 else 0« |FIX bodyFact) (0-1)1
- {2 & I -w 1) - 3

i
Pl

[]
T % T

This has illustrated, via an example, how fix-points can provide a mathematically sound
account of recursive definitions.

A semantic model of the untyped lambda caleulos

In the final sectiom of [19], a detaifed sketch is given showing how, in broad outline, the
framework could be used o build up a repertoire of basic domain-building operators
for constructing compound domains out of given domains. It was there shown how
these domain operators would then be used o formulate domain equations whose least
salutions (up toosemorphism) can yield other vseful domans, These solution domans
would tvpically be used 1o provide the mathematical structures {e.g, lisis, trees, eic,)
over which recursive functions could then be defined.

The elegant idea proposed by Scott and Strachey in [20] was to define the abstract svisax

for a notation using doman egquations, thereby mtroducing formal term structures that

July 2021

FACS FACTS Issue 2021-2

20

embodied the syntax represented i terms of trees ¢te. Semantic functions may then be
defined over these term structures by structural induction and recursion®.

A a part of this discussion, Scoit then indicated bow to construct a domain so that a
semantic model for the pure untyped lambda caleulus conld at last be given.

Consider the following infinite sequence of domains £1,, defined by:
Dr.'.rl = |Du —F ﬂ'll

Starting from a given (non-trivial) domain for £ (e.g. a two-point domain), the required
solution is [2.., the limit object that is obtained by *stitching together” all of these spaces
[, via approprate embeddings” Finally, we have that:

D = [De = D]

where, importantly, the isomorphism pair involved 15 itself produced as a by-product of
constructing the domain £2.,.. Such domains having a recursion 1o the Jeft of the function
arrow are knowin as reflexive domaims.

Computable functions are continuons = but nor vice-versa

What might have puzzled some readers here concerns the relationship between con-
tinuous functions and computable functions, For example, it might be assumed thar
contimuty imphes computable — but this s falve in general (e.g, for infimte domains)!

All partisl recursive functions can be shown o be Scott-continuous. a5 defined in Do-
main Theory [2, 26, 24]. However, just on cardinality grounds, there are far (0o many
continuous functions for them all to be compautable! The situation bere 15 somewhat
analogous to the cardinality relationship between the rational/algebraic numbers {(count-
abley wned the real numbers (uncouniable),

Moving away from Complete Lattices to DCPOs

In [19], domains were taken to be Complete Lattices. which meant that domains woald
necessarily possess a top value, T, The immediate advantage of using compleie lattices
wias that there could be ne gqueston that the appropriate limiz existed. thus neatly s21-
thing any uncase there |111'gl1'r have been on that score. However, from the point of view

E A popular alternative approach wses feitial Alsebg Semmniics o define semmniee functions [12]

"Technically, continuous “embed ding-projection pairs” need o be osed & g’ morphisms insoesd
of the simgpber cmbeddings, due e complicaions coonected with the sociure of funcron spaces (Bee
Section 4.2 of IE_I_I.

July 2021

FACS FACTS Issue 2021-2 July 2021

of defining semantic functions for programming nodations, having a T element was alzo
proving somewhat cumbersome, awkward and difficuli o moivae.,

It was then noticed that only directed spbsets were required o have least upper bounds,
instead of taking every subset in order for the theory to work out. The commaon approach
adopied for Domain Theory since then generally vses Dhirected Complete Partial Orders
{DCPOs) instead of Complete Lattices'™.

A partially ordered set P is o DEPO whenever:

I. 7 has a least element, L € P, and
2. Every nom-emply directed subset D ol P hos a least upper bound in 2
ie | | e P

By using DICPOs instead, this provided a helpful refaxation that simplifies some aspects
of the theory and additionally increases the range of pawral examples of domaing, and
hence applicability,

Categories, Domain Operators, and Domain Equations

It is perhaps worth saving that what Domain Theory provides overall is a mathematically
rich repenoire (or feoffox) of wavs of constructing mathematical spaces within which
our computational constructions and evaluations can then exist. Accordingly, the central
problem answered by Domain Theory concerns showing how to systematiclly construct
these mathematical semantics spaces in general.

Omiite naturally, Category Theory then began 1o be seen as providing the formal un-
derpinnings and un appropriate setting for the wider development of Domain Theory
el Category Theory gives a suitably structured account of broad classes of mathem-
atical spaces, based on the fundamental notion of transformations that preserve specific
kinds of mathematical structure = from moerpfiismy between objects, 10 fmctors belween
morphisms, und then natral fransformations between functors.

This modern categorial form of Domain Theory was pioneered by Gordon Plotkin, who
initiated, discovered and transformed so much of what 5 now knowen and anderstood
about these rich mathematical spaces [26, 21 A major part of this involved showing how
recursive doman equations can be formulated and solved in vanous calegorial settinges
{with Mike Smyih) [25]. Plotkin's contribution is of course not limited to Domain The-
ory but has substantially touched many areas of semantics and Computing Science, such
as formulating the moders treatment of Operational Semantics, for example [27, 6]

as & posigroduase studend il Edinburgh back in che Eoie 1970arly 1980s, 1 kearnt Domain Thetry
at the feet of Gordom Platkin, using his 'Pisa’ nedes [26], These notes genernlly took the mare mimimal
approach of wsing w-choin Complete Pantial Orders, rother than the ICPOs mentioned bere

21

FACS FACTS Issue 2021-2

22

July 2021

Domains Elements Ordering |
One-point domain, O {1} Timsil
Two=point domsim, | {L1.T} LET
Truth domain, T {11t 1T} lCcwlCHlr

| Number domain, 8, || {1} UN | 1CnforallneN |

Noume Basie (Flar) Domaing

MName Cperation - Iwefinitions
w lp s [0 !-D||.I:J'I'I:|ﬂ| i)
Lifung i « dnjopdd)] = . forany d = D
= L C oupld], for any o £ [2
s imd =0 = 0@ e [= (0 &)
winlich= (e 1}, forany e & 0 = { L}
Coalesced Sum L P wirw(el) = (w23 Tocany o £ £ — { 1]
windi L= L =inr[.L)
et L Cinle), forany c = O — {1} .
«fut: (O = D) = O, od: [(C = D) = D)
Cartesian Prodect O = 0 wlatlled)) = ol (o)) =d forany c £ Ol € D
e, O I:L"'.i.l"':l = i r"'.I Ad r.|":|
ot Product CaD " ﬁs.lbrcrmi:s-lim Prl.'-lllﬂ-.l::l.'ﬁr:l:pl thal pairing is separately
sirct; CL dYym | owfp L)
i g » The set of Seovr-Conppnons fanctions from C° 4 43,
by L &=+ 2 ordered painwise: ¢ [' = fie) [fie']
Strict Function Space | [C = D] |* A :uh?'.we font Fuinctaom Space, except that functons
arestricr (L= L

Sovme Demeain Ope rafors

T poweir idomiain [=0y
Do aof fruth wlues TZ1 &1
Dewnrior aof watveredd yuembers Mat = | ¢ Mal
= My
revemscries ool fndte fisis Matldst = | & (MNat = Natlist)
D aof finite drevs NatTeee = | & Nat & (NaiTree & Nat & NatTreee)

Devmain of finite and fnfinite || NotStream = | Q0 |I P MNat = Nntﬁtmmﬂ

sfrecins

Somme Dennain Eguaticns

FACS FACTS Issue 2021-2

23

This section completes our Brief 1our of the basic echnical iniricacies of lambda cal-
culus and Domain Theory. More advanced topics necessarily had to be omitted, such
as o dizscussion of Scott's universal domain construction, P, (see [21]1 Scott's eleg-
ant reformulation of Domain Theory in ferms of Iforsearion Svatens [22], Abramsky’s
notion of Domains in Logical Form (see [1]) as well as the guestion of full-absiraciion
[3].

More technical detail can be found in the mathematical accounts already cited |26, 2].
Further details on lattices and partial orders may be found o the texibook by Davie and
Pricstley | 10]. There are a number of well-known textbooks available covering elements
Of Domain Theory and mathematical semantics such as [29, 18, 33], also including the
following online motes: [14].

Discussion

The remainder of this essay discusses a range of questions typically raised about Domain
Theory, with the hope of dispelling some mvihs and misconceptions that have arisen
over time,

Domain Theory seems strange and unusual

Al first glance, Domain Theory seems rather strange mathematically. Who would have
thought that considerations of topology, continuity and approximation would ever make
any appearance within Computing Science itselfl, a subject that is highly focused uwpon
discrete actions and systems behaviour? And vet, that was what was needed to solve the
puzzle of the untyped lambda calculus!

Ay already discussed earlier, it was clear that untyped lamibxda calculus capiures some-
thing deeply primitive about the nature of effective calculation. The fact that such a
caloulus was extremely simple and yet contained apparently paradosical elements sug-
gests thiat more complex svstems of programming could contain at lesst similar sources
of difficulty, with probably far greater complexity and variety 1o follow.

We have seen that the primary difficulty solved by Domain Theory was showing how
to construct particular mathematical stroctures containing approprate semantic denota-
tions — providing a semantics modelling wolkit. The development of Domain The-
ory made it possible to confidently formulate and routinely write down mathematical
equations cormesponding 1o language definitions, allowing language designers 0 reason
about what was meant through mathematical investigation,

A further reason that Domain Theory may seem at least unfamiliar to some is that, in a

July 2021

FACS FACTS Issue 2021-2 July 2021

strong sense, Domain Theory mecessanily operates at the rrefa-maifenaniical level of the
fogical models used w interpret logical statements and definitions, rather than drawing
inferences about ohjects wirhin that logic,

Domain Theory and Engineering Specifications

For some practitioners, the preceeding discussion of Doman Theory may have seemed
somewhal esoteric and at odds with their understanding and general experience of com-
puting. For example, formal software specifications are vpically based on mathematical
formalisms such as Higher Order Logic and Typed Set Theory (e.g. Z and VDM, all
of which seemingly have limle or nothing o do with the arcane elements of Domain
Theaory.

It i= true that Domain Theory does not make a direct and explicit appearance in those
contexts, However, that being said, the study of Domain Theory forms o part of the
model-thearetic foundations of mathematical semantics more widely and has therefore
dfedlivecilv informed and influenced those areas, Domain Theory, tegether with the theory
of inductive defimitions, 1s largely responsible for providing a well-founded mathemal-
ical approach o recursion and recursive definitions.

More subtly, it was realised that, with a careful set-theoretical reatment of [vpes, 4
more comventional logic-based appronch might be very effectively used for software
specification, In that set up, all entities would be freely assigned meanings, just as in
predicate logic,

However, the main sticking poml would then be making sure that the sets and functions
thus assigned as denotations satisfied appropriate structural induction principles and
such like, so as 1o accord strongly with our computational experience. This amounts to
an extra-logical requirement that the assigned models were in some sense minimal'' —
which im turn brings the discussion full circle back o concems aboul recursive defimition
of various kinds, as tackled within Domain Theory.

Does untyped lambda calenlus remain controversial?

Admittedly, the uniyped lambda calealus did achieve some notoriety early on because
of 15 association with an early systerm of logic luter shown o be mconsistent (the Curry
paradox — See Chapter 17B of [13]) As mentioned earlier, there were also concerns
around the potential for non-termination and circularity dise o self-application, As we
have seen, this made niiive interpretation of lambda terms as pure functions somewhat
challenging!

W hiore teehmically, minmmality comesponds (o énitial iBan appeopreate sense from Category Theory.

24

FACS FACTS Issue 2021-2 July 2021

However, uniyped Famhdda caleulus is now far better understood and its equational theory
is now known to be consistent, while also accepling that some terms may mod gorralise,

What about concurrency?

Concurrency and Pacallelizm remains a hot topic for research in mathematical sempniics
and Computing Science. Within Domain Theory itself, there are semantic domains
given by the theory of powerdomains, due to Plotkin and Smyth [26, 2], as well as evenr
errcrires, as developed by Winskel [34], all of which have application (o concurmency,

How is Domain Theory used today?

At its core, Domain Theory provides two things:

o [t firmly establishes that recursion and recursive definition, when approprately
guarded, can be generally understood mathematically in terms of concepts such
as approximation, limit and fix-point.

(n the one hand, there are other ways in which recursion might be given a per-
fectly respectable understanding such as by structural induction. by (higher order)
prammilive recursicn of by proving a theorem showing that the particular definiton
has o prigue solution. However, coch of these approsches generally imposed fur-
ther construints on the form of the recursive definition In some manner o ensuee
that solutions (uniquely) exist. On the other hand, Domain Theory provides 2
more general and less constrained foundation for the mathematical aceount of
compulational recursive definitions.

& Domain Theory shovars howy toe construct mathematieal Spaces in which r-:-.:ur.r.ivtl'_-.l
defined enfities are then guaranteed o exist,

The sveeess of Domain Theory as a semaniic fromewert providing the foundation and
underpinnings of programming language semantics has encouraged the developimem
and exploration of other kinds of semantic frameworks. =uch as Tvpe Theory and Struc-
tural Operational Semantics, albeil from a more peost-theoretical starting poini. Each
of these have in same way benefited from Domain Theory, i only becanse they make
use of a similar meld-mathematical wolbox of ideas and technigues,

25

FACS FACTS Issue 2021-2 July 2021

Conclusions

What Domain Theory tells us is something profound. For example, it shows that the
untyped lambda calculus 15 surpnsingly quite meamng ol after all and is more accuraely
understood to be a uni-typed system, 45 opposed to a type-free system. Much the same
Kind of sitvation arises with the mere free-wheeling programming/seripting languages
like Javascript, Python, Perl. Lisp and Prolog, i the sense that they all do possess some
form of typing, except it is rather implicit, very often having some dynamic effect at
rLniime.

Much of modern computing has inhented ideas and concerns that were clearly evident
within Domain Theory, Prior to the emergence of Programming Language Semantics
and Domain Theory, concerns in Computing Science were largely resinicted o aufo-
mata, syntax and parsing, and, of course, complexity theory, Although Domain Theory
may not be as fashionable as it once was, it docs continue to shape and influence Com-
PULINE SCHence,

Drovmvain Theory 1= all about showing that our computational ideas are groondad and thar
they make sense by showing how to build consistent models in which our language-
based constructions can be embodied. Withouwt Domaim Theory and Proeromming Lan-
Buage Semantics, how would anyone be able o consistently judge correctness, even in
principle? How could we know what it means For a compiler to be correct?

Language descnptions are necessary and are used o arbicelate (by reasomng)y what is
and what is not permitted. Without a mathematical basis of some kind, it would be
difficult to argue one way or another, Although Domain Theary may id make an ex-
plicit appearance, it nenetheless has a profowsd eflect by showing that computational
definitions can be given in a precise and principled fashion and in a way that ultimately
‘miakes sense " mathematically,

Acknowledgements

Fam wery grateful w eo-editer Tim Denvir amd the editorial team: Jonathan Bowen, John
Coobke and Margaret West, all of whom kindly gave feedback on this rather long essay
— which is far longer than originally planned! T alzo thank Chris Tofis for his helpful
insights concerning SIMULA,

26

FACS FACTS Issue 2021-2 July 2021

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

27

Samson Abramsky,
Domam theory in /oglca/ form, Annals of Pure and Applied Logic, 51:1-77, 1991

Samson Abramsky, Achim Jung,

Domain Theory,

Pub. in: Handbook of Logic in Computer Science, Vol 3, Clarendon Press, Oxford, 1994
https://www.cs.bham.ac.uk/"axj/pub/papers/handy1.pdf

Samson Abramsky, C.-H. Luke Ong,

Full abstraction in the lazy lambda calculus, Information and Computation, 105:159-
267, 1993 https://www.sciencedirect.com/science/article/pii/S08...0448

H.P.Barendregt, The Lambda Calculus Its Syntax and Semantics, Studies in Logic and the
foundations of mathematics, North-Holland, 1981

Guy Blelloch, Robert Harper, A-Calculus - The Other Turing Machine, Conference paper,
Carnegie-Mellon University, July 2015
https.//www.cs.cmu.edu/-rwh/papers/Ictotm/cs50.pdf

Luca Cardelli, Marcelo Fiore, Glynn Winskel (Ed), Computation, Meaning, and Logic:
Articles dedicated to Gordon Plotkin, Electronic Notes in Theoretical Computer Science
172 (2007) https://www.sciencedirect.com/journal/electronic-...nce/vol/172

Felice Cardone, J. Roger Hindley, History of Lambda-calculus and Combinatory Logic,
Swansea University Mathematics Department Research Report No. MRRS-05-06, 2006
https.//www.researchgate.net/publication/2283868...inatory_logic

B. Jack Copeland, The Church-Turing Thesis, The Stanford Encyclopedia of Philosophy
(Summer 2020 Edition), Edward N. Zalta (ed.),
https://plato.stanford.edu/archives/sum2020/entries/church-turin

O-J Dahl, E.W.Dijkstra, C.A.R.Hoare, Structured Programming,
Academic Press, 1972
https://dl.acm.org/doi/pdf/10.5555/1243380

B. A. Davey and H. A. Priestley, Introduction to Lattices and Order,
Cambridge, 2002 (2nd Ed.)

Dina Goldin, Peter Wegner, The Church-Turing Thesis: Breaking the Myth, Lecture Notes
in Computer Science 3526:152-168, June 2005
https.//www.researchgate.net/publication/221652812_T...ing_the_Myth

https://www.researchgate.net/publication/221652812_The_Church-Turing_Thesis_Breaking_the_Myth
https://dl.acm.org/doi/pdf/10.5555/1243380
https://plato.stanford.edu/archives/sum2020/entries/church-turing/
https://www.researchgate.net/publication/228386842_History_of_lambda-calculus_and_combinatory_logic
https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/172/suppl/C
https://www.cs.cmu.edu/~rwh/papers/lctotm/cs50.pdf
https://www.cs.cmu.edu/~rwh/papers/lctotm/cs50.pdf
https://www.cs.cmu.edu/~rwh/papers/lctotm/cs50.pdf
https://www.sciencedirect.com/science/article/pii/S0890540183710448
https://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf
https://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf
https://www.cs.bham.ac.uk/
https://www.sciencedirect.com/science/article/pii/016800729190065T

FACS FACTS Issue 2021-2 July 2021

[12] J.A.Goguen, J.W.Thatcher, E.G.Wagner, E.B.Wright, Initial Algebra Semantics and
Continuous Algebras, JACM, Vol 24, Issue 1, Jan. 1977 pp 68-95

[13] J. Roger Hindley, Jonathan Seldin, Introduction to Combinators and A-Calculus, London
Mathematical Society Student Texts 1, Cambridge, 1986

[14] Graham Hutton, Introduction to Domain Theory, 5 lectures, 1994
http://www.cs.nott.ac.uk/-pszgmh/domains.html

[15] Dexter Kozen, Church-Rosser Made Easy, Fundamenta Informaticae 105 1-8, DOI
10.3233/FI-2010-306 10S Press, 2010
https://www.researchgate.net/publication/220444851_..._Made_Eas

[16] Lukasz Lachowski, On the Complexity of the Standard Translation of Lambda Calculus
into Combinatory Logic. REPORTS ON MATHEMATICAL LOGIC 53 (2018), 19-42 doi:
10.4467/20842589RM.18.002.8835
https.//www.ejournals.eu/rml/2018/Number-53/art/12285/

[17] Kristen Nygaard and Ole-Johan Dahl The Development of the SIMULA Languages ACM
SIGPLAN Notices. Vol. 13. No. 8. August 1978
https.//phobos.ramapo.edu/-ldant/datascope/simulahistory.pd,

[18] David A. Schmidt, Denotational Semantics, Allyn and Bacon, 1986
https://people.cs.ksu.edu/-schmidt/text/DenSem-full-book.pd

[19] Dana Scott, Outline of a Methematical Theory of Computation, (1977), Kiberneticheskij
Sbornik. Novaya Seriya. 14. Also: PRG-02, Monograph, Oxford University Computing
Laboratory, November 1970. https:.//www.cs.ox.ac.uk/files/3222/PRG02.pd

[20] Dana Scott, Christopher Strachey, Towards a Mathematical Semantics for Computer
Languages, PRG-06, Monograph, Oxford University Computing Laboratory, August
1971, https://www.cs.ox.ac.uk/files/3228/PRG06.pd

[21] Dana Scott, Data Types as Lattices, SIAM J. Computing, Vol 5, pp522-587, 1976
https://www.researchgate.net/publication/213877138_...s_Lattices

[22] Dana Scott, Domains for Denotational Semantics, January 1982, Conference: Automata,
Languages and Programming, 9th Colloquium, Aarhus, Denmark, July 12-16, 1982,
Proceedings July 12-16, 1982, DOI:10.1007/BFb0012801
https://www.researchgate.net/publication/220897586_...nal_Semantics

[23] Dana Scott, A calculus: Then and Now, Turing Centennial Celebration, Princeton

University, May 10-12, 2012 https.//turing100.acm.org/lambda_calculus_timeline.pdf
[24] M.B.Smyth, Effectively given domains, Theoretical Computer Science, 5:257-274, 1977

[25] Mike Smyth and Gordon Plotkin, The category-theoretic solution of recursive domain
equat:ons SIAM J. Computmg, 11:761- 783 1982

[26] Gordon D. Plotkin, Domams Dept. of Computer Science, University of Edinburgh, 1983

28

https://homepages.inf.ed.ac.uk/gdp/publications/Domains_a4.ps
https://homepages.inf.ed.ac.uk/gdp/publications/Category_Theoretic_Solution.pdf
https://turing100.acm.org/lambda_calculus_timeline.pdf
https://www.researchgate.net/publication/220897586_Domains_for_Denotational_Semantics
https://www.researchgate.net/publication/213877138_Data_Types_as_Lattices
https://www.cs.ox.ac.uk/files/3228/PRG06.pdf
https://www.cs.ox.ac.uk/files/3222/PRG02.pdf
https://people.cs.ksu.edu/~schmidt/text/DenSem-full-book.pdf
https://people.cs.ksu.edu/~schmidt/text/DenSem-full-book.pdf
https://people.cs.ksu.edu/
https://phobos.ramapo.edu/~ldant/datascope/simula%20history.pdf
https://phobos.ramapo.edu/~ldant/datascope/simula%20history.pdf
https://phobos.ramapo.edu/~ldant/datascope/simula%20history.pdf
https://www.ejournals.eu/rml/2018/Number-53/art/12285/
https://www.researchgate.net/publication/220444851_Church-Rosser_Made_Easy
http://www.cs.nott.ac.uk/~pszgmh/domains.html
http://www.cs.nott.ac.uk/~pszgmh/domains.html
http://www.cs.nott.ac.uk/~pszgmh/domains.html

FACS FACTS Issue 2021-2 July 2021

[27] Gordon D.Plotkin, A Structural Approach to Operational Semantics, University of
Aarhus, Denmark, DAIMI FN-19, September 1981
https.//www.cs.cmu.edu/-crary/819-f09/Plotkin81.pdf

[28] Raymond Smullyan, To Mock a Mockingbird And Other Logic Puzzles, Oxford, 1985
[29] R.D.Tennent, Semantics of Programming Languages, Prentice-Hall, 1991

[30] John Tromp, Binary Lambda Calculus and Combinatory Logic,
10.1142/9789812770837 0014, 2006,
https://www.researchgate.net/publication/30815197_Bin...tory_Logic

[31] A.M. Turing, On Computable Numbers, with an Application to the
Entscheidungsproblem, Proceedings of the London Mathematical Society (Series 2),
42 (1936-37): 230-265
(Also in: The Essential Turing, B.Jack Copeland (Ed.), Oxford, 2004)

[32] A.M. Turing, Computability and A-definability,). Symbolic Logic, vol. 2 (1937), pp. 153-
163

[33] Glynn Winskel, The Formal Semantics of Programming Languages. An
Introduction, MIT Press, 1993

[34] Glynn Winskel, An introduction to event structures April 2006, Lecture Notes in
Computer Science Vol 354, pp364-397 DOI:10.1007/BFb0013026
https://www.researchgate.net/publication/225207108_...uctures

29

https://www.researchgate.net/publication/225207108_An_introduction_to_event_structures
https://www.researchgate.net/publication/30815197_Binary_Lambda_Calculus_and_Combinatory_Logic
https://www.cs.cmu.edu/~crary/819-f09/Plotkin81.pdf
https://www.cs.cmu.edu/~crary/819-f09/Plotkin81.pdf
https://www.cs.cmu.edu/

FACS FACTS Issue 2021-2 July 2021

History of Computing Collection at Swansea University

The History of Computing Collection specialises in computing
before computers, formal methods, and local histories of
computing. An introduction to the Collection appeared in the last
issue of FACS FACTS (2021-1 February 2021, pp.10-17). The
Collection is located on the Singleton Campus of Swansea
University; it can be visited by appointment. A small nhumber of
items from the Collection are on display in the Computational
Foundry, Bay Campus, which is the home of the Computer Science
Department. All enquires welcome.

From the History of Computing Collection, Swansea University:

Haskell B Curry at War

Haskell B Curry (1900-1982) is known to computing students as the namesake of the
functional programming language Haskell. In logic he is known for his work on
combinatory logic which has influenced the design of modern functional programming
languages (e.g., Turner’s SASL, Ken Iversons APL). Combinatory logic is built on the
idea of operations for building definitions of functions called combinators. Moses
Schonfinkel (1888-1942), at Gottingen, had introduced the idea in 1924. Curry went
to Gottingen where he gained a PhD in 1929. Curry solved the problem of
completeness for a set of combinators. Over decades, starting in the 1930s, Curry
developed their theory that became combinatory logic. Curry was very rigorous in
matters of logic, like many founders of mathematical logic in the early Twentieth
Century. He was interested in ‘philosophical’ questions about mathematical ideas
commonly taken for granted and for which radical and primitive idealisations are
necessary.

In the previous issue of FACS FACTS (2021-1 February 2021, pp.23-25), Jonathan
Bowen wrote about Moses Schonfinkel and combinatory logic. It was in celebration of a
century old pure mathematical idea with unforeseen but significant applications.
Combinatory logic is yet one more example of our debt in computer science to early
and (very) abstract speculations of logicians.

30

FACS FACTS Issue 2021-2 July 2021

Curry on Programming

Curry deserves to be better known for his theorising about programming. This belongs
to his war work for the United States Army's Ballistic Research Laboratory, which he
moved to in 1944. In the History of Computing Collection, we have items that bring to
life computing between and during in the world wars. The image (Figure 1) shows our
copy of a report on programming the ENIAC by Haskell B Curry, written together Willa
A Wyatt and finished in August 1946; it was declassified in 1999.

They begin on page 6 of their report with these clear explanations:

1.1 The problem of inverse
interpolation may be stated as
follows. Suppose we have a table
giving values of a function x(t),
and possibly some additional
functions, for equally spaced
values of the argument t. It is
required to tabulate t and the
additional quantities for equally
spaced values of x.

1.2 This problem is important in
the calculation of firing tables.
Suppose the trajectory
calculations have given us the
coordinates (x,y) of the projectile
as functions of t (time) and ¢
(angle of departure.) For the
tables we want t and ¢ as
functions of x and y; indeed we
Figure 1 wish to determine ¢ so as to hit
a target whose position (x,y) is
known, and t is needed for the fuze setting or other purposes. This is a
problem of inverse interpolation in two variables; it can be solved by two
successive inverse interpolations on one variable.

31

FACS FACTS Issue 2021-2

Such computational work is core business
for the Ballistic Research Laboratory of the
Ordnance Department! The Laboratory was
established in 1938 from the Research
Division at the Aberdeen Proving Ground in
Maryland. The production of ballistic tables
for guns was a central problem for the

army.

ranin BV~ Snku Feaeermp

iy s woori ey Shere gy —
. iy Hie ol righ! thywma dnsi & i ja

i :Illl"l"'h:"'..ﬂ,..,."_-‘-m-ubll. ey
retibimg b L LA inbergind by e dlida wine, Shioh s apggy,

i T "u-w“"”" i sameldy |0 Exrmw tha s b o I-a--::"
e thaf Kl PR i, o, D e e
lJ‘*""’"""';HIM ety 0 i appFlabE dbds e T G |..._."
"""""""n__, B] by LW0 ol | [EEeie e Bl jis g ___5'I'
I el e e ot s, Sh, el th: Wkars fri (1
P e puuhfies e : ’

The cabds girs Fampoidal divisnees wel Sldemwens o elerugy, - .

"J_,._ s]) o i wl abewwilun From O i 00 T b g,
:T,..._.‘h., Woan anlme ler O bhe vides § BBl dapesls sjann e I" o
Y rhples e ira hmeeenls fes el woole gy,

o hakore
J.El'l-u'-- T pypaiiong b B2 el me=d mogis of Bl ety [T

shalimpi Ol B0
Tk ind ol oo we PR 2 0 S L S REEE G frmi,
P of b e sk =058 0 5 R — LA

L Mimli delasclan dorreilas. The Pellendey Foste e mee oo b sep g,
o . el) i
[T P T e e T A =,
Nertied Mslasce= Hadn 3 ety
Awlnme Frern
= Pl ol g 52 0k, A T Rl b
iy ANLira (o] wrpay ciow BRI =1
O Dolagon [} Tremi clfedd plose bo feidr S+ i sas
Al ghee e cnuiar & laeiriumel e M C
e '-I:II-IJ- ol cieryikn far Wil mading.
Wl 0 Smy AR gl Y
L Pl e B mler fogte b pgual L P dsceie- o

.

32

July 2021

Flgura 2

These were complex tables that, ideally,
gave the angle of elevation required for a
particular type of shell to hit a target at a
given range with a given propellant. The
tables gave variations to account for:
atmospheric temperature; air density;
wind; angle of sight; weight of projectile;
muzzle velocity; and drift. Calibrating a
gun was a massive computational job. See
Bergin (1996).

The images show the cover and a page
from our copy of a table book for gunnery
calculation (Figures 2 and 3).

FACS FACTS Issue 2021-2 July 2021

ENIAC

n
o 1

¥
3
|

u-mFE
EHI I
EH)ims

S R P

A

mnan

Left: Betty Jennings Right: Frances Bilas
Operating ENIAC (Photo: US Army).

It was the Ballistic Research Laboratory that commissioned a hugely expensive project
to mechanise these tasks of table making. (Reminding us today of Babbage’s first steps
in mechanising table-making using the Difference Engine.) Thus, the Electronic
Numerical Integrator and Computer - ENIAC - was designed and built in order to
calculate gunnery firing tables. The project was conceived in 1943 and completed in
1945 at the University of Pennsylvania led by John Mauchly and J Presper Eckert. It was
reconfigured 1947-48 and decommissioned in 1955. ENIAC was destined to be
celebrated as the first programmable electronic computer in the USA.

ENIAC was indeed programmable, electronic, and a general-purpose digital computer.
It was programmed by rewiring the machine: the positions of the wires and switches
was a program! Curry’s co-author Willa Wyatt was a mathematician who programmed
ENIAC.

The report describes general schemes for programming inverse problems that can also
be adapted to related programmes. In the 1940s and early 1950s, computer
programmers were intimate with the hardware: programming was specific to individual

33

FACS FACTS Issue 2021-2 July 2021

machines. Curry and Wyatt’s concept of programming the ENIAC introduced a symbolic
abstraction of the logic of the ENIAC hardware.

Curry went on to write companion reports that are noteworthy milestones for us:

o On the composition of programs for automatic computing (1949)
o A program composition technique as applied to inverse interpolation (1950)

For a fuller account of Curry’s three papers on programming | recommend de Moll,
Bullynck and Carle (2010). For an account of ENIAC, its history and legacy, |
recommend Haigh, Priestley, and Rope (2016).

Willa Wyatt (1917-2011) was a practical ENIAC programmer. The programmers of the
ENIAC were women, celebrated in Fritz (1996). She was born in in Portsmouth, New
Hampshire. A graduate of New Hampshire University in 1939, she was recruited by the
Moore School of Electrical Engineering at the University of Pennsylvania to work on the
differential analyzer and computer sections for the ENIAC. When the ENIAC was moved
to the Aberdeen Proving Grounds, Maryland, in 1946, she moved with it. There she met
her husband Bill Sigmund; in 1957 they moved to Tampa, Florida where they remained:
war work behind them and, as car enthusiasts, the open road ahead. Wyatt died aged
94.

References

Thomas J. Bergin (editor), 50 Years of Army Computing, From ENIAC to MSRC, Army
Research Laboratory 1996

Available at: https.//www.arl.army.mil/wp-content/uploads/2019/11/ARL-SR-93-50-Years-

of-Computing.pdf

Haskell B Curry and Willa A Wyatt, A Study of Inverse Interpolation of the ENIAC, Army
Ballistic Research Laboratory, Aberdeen Proving Ground, 1946.

Available at: https.//apps.dtic. mil/sti/citations/AD0640621

W. Barkley Fritz, The Women of ENIAC, IEEE Annals of the History of Computing, 18: 3,
(1996) 13-28.

Thomas Haigh, Mark Priestley, and Crispin Rope, ENIAC in Action: Making and Remaking
the Modern Computer, MIT Press, 2016.

L. De Mol, M. Bullynck, M. Carle, Haskell before Haskell. Curry’s contribution to
programming (1946- 1950), In: F. Ferreira, B. Lo'we, E. Mayordomo, L.-M. Gomze (eds.),
Computability in Europe 2010, Lecture Notes in Computer science, vol. 6158, Springer,
108-117. Available at: https://biblio.ugent.be/publication/1041602 /file/6742990.pdf

John V Tucker
Department of Computer Science and History of Computing Collection
Swansea University

34

https://biblio.ugent.be/publication/1041602/file/6742990.pdf
https://apps.dtic.mil/sti/citations/AD0640621
https://www.arl.army.mil/wp-content/uploads/2019/11/ARL-SR-93-50-Years-of-Computing.pdf
https://www.arl.army.mil/wp-content/uploads/2019/11/ARL-SR-93-50-Years-of-Computing.pdf

FACS FACTS Issue 2021-2 July 2021

Domain Theory and Interaction*

Glvnn Winske|

Computer & Information Sciences, Strathelvde University,
Scotland

Abstract

Thia article traces domain theory from its beginnings as a theory of
comgautabie functions to recent connections with interactive computation,
In partwudar, it i shown how concurrent games and stralegies specialise
to domain models of geometry of interaction. dialectica categories ancd
contalmer Tyjues,

1 Introduction

After more than 50 vears of development, domain theory permeates computer
science. While it has its Hmitations it has set a compelling paradigm in the
formalisation and analysis of computation. In many contexts its models are the
simplest we could hope for, If alone for this reason, it is here to stay, It grew
up alongside the methodology of denotational semantics. The methodology
of giving meaning to programiming languages and systems in a compositional
fashion is the only way to manage their complexity: its achievement tests our
inderstanding and the obustness of our models,

Domain theory grew ont of a functional way of understanding computation.
It i no surprise that it began to meet its lunits with the shift to & more inber-
active form of computation. While the funclional paradigm has a long history,
theories of interactive computation have heen more imsettled

Here Ul try to explain bow recent developments in understanding interae-
tive computation in terms of concurrent strategies feed back and inform fone-
tiomal and domain-theoretic ways to understand computation. Several ditterent
paradigms [or interaction within functional languages, logic and domain theory
come abont as special cases,

I have tred to be os informal as [ean be in writing this article. Where e
added techrioal or additional parts for more preciston they are sndicated by being
in dlalic fonl, so they can be shipped more cosily.

"Dediceted to the momery of my father, Thomaes Francis Winshel, 1925-3021.

FACS FACTS Issue 2021-2 July 2021

2 Early beginnings

The bistory of domain theory is fairly well koown. In the mid 1960's Chiristopher
Strachey realised he needed new techmogues to understand the sephisticatod pro-
gratnming lenguages he was desvelopiog; that be pesded o matbemestical puodel
with which to give semantics of programming languages. How else was he 1o be
convinced of the correctoness of his proprams? Cher lunch, in Welfson College,
Oxford, Roger Penrose sugmested he investigate the lambda calealus, a tool
of logicians for describing and ressoning abont computable fupctions, Meso-
while Dhoa Scott, ol Prineeton, was lighly critical of the unbyped patare of e
larnbda calenlis, that it allowed snch paradoical phenomena as the application
of a funetion to itself, something forbidden in traditional eot theory. When Stra-
chey and Scott met there wore soing te be fireworks, of one kind or another, At
Ehedr first ecting they got on wvery well, marking the beginping of their famoas
-|;:-|:|-||.H|,a-|::-|'a-|[.i|:||1-

Scott persuaded Strachey fo move to the safe typed lambda caleulus and for-
malised & Logic of Computable Functions, LOF, as a foundation for Strachey’s
ambitions, A lopcisn, Scott was concerped with mathematioul fondations rght
froan ehe =tare, Seobt iotvodoeed Che idea that iy pes denoted domainz, simple
forms of topological apaces, bailt on an order of approsimation. Although a
computable function cin act on an infinite input, for instance a function on
the natursl mumbers, it can onby do =0 vis finite approximetions to the input,
Accordingly Seott proaooted the idea that o compotalde fupetion be amderstood
as a continuons fncticn from the domain of 1ts pat co the domain of its ont-
put. On dornaing the nsosl topological definition of continnity amounted to bl
function preserving the approximation orcder and least upper bounds of chains.

Tlee .-n;r.'rpﬂr:n'! 1,l"r.l:'r.'il -|'.ll|r T R AT r!r.r1'h.]'.lh'.h" jn‘i;'l':fr:lf r.lr'r.l!f:r', Mol i o i
find order (I} Cph of approrieation witlh g least element Lo oand leest sppes
bowrds |, dp. 0 form of EmiE poind, of chaina of dy € dy =5 v Ep dy, Ep oo
i 0. A fuanction F from o domain (Dhep) to a domain (E.2g) s contfinu-
ouws if Fld) cp fld) when dep ', and L, F{d,) = FlU,d,) for any chain
dgCpdy En-Cnddy, S --oam £, Based o earlier adeas of Kleemne, a eontinions
Junetion F from o domam to stself hos a least fized point B(F) constructed as
the least wpper bouwnd, [, F"(1) = fx(F).

O rermarkalle feature of domains aod conthmogs fumetions §s that, wnlike
topological spaces in general, under the pointwise, or Scott arder on Danctions
the set of coptinnous functions from a domain £ to a domain B icself formed a
domain, the function space [D — E|. More obviously the product of domains
D e B, consisting of pairs of elements, formed s domasin when ordersd coordi-
pkewise. Then, in particular, o recursively defined function from I 1o E coulid
b veadily anderstood as n least Bxed paoint. of the contivaous fanetion F on
[L} - £ associated with the body of its recursive definition. LCF included a
il fnecpuadional loglie for ressoning abasat recarsive programes with tools such
ns Scott mduction for establishing properties of Iesst fixed points,

36

FACS FACTS Issue 2021-2 July 2021

Seott’s 1969 article on LOF was circulated widely and very infiuential, Bt
it was oply published relatively much kater o 19493 ||.I Thee resson: Sentt g
stddenly seen that the technigues for nuderstanding recarsive functions as least
fixewl points could be pushed to the level of types, thus providing & nontrivial
domain D isomorphic to its domain of continuous functions (D - D), so &
model of the {untypsesd) lambda calenlns, His objections to the lambda ealeulus
Lad vamshed, Seott's discovery led 1o & furey of activity,

3 The word spreads

Resenrehiers outside Oxlord joined in the effort, David Park, st Warwick, showed
that m Scott’s mode] the paradosical combimastor of the hunbda caloulus denoted
e leaat fised point operator. A voung Gordon Plotkin, ot Edinbuargh, aod Scott
imld_-r:-ljml.l.':htl_\r iliseovrered] upiversal domains, within which all mooner of by s
cotldid bre defines] recursively by deseribing them as certain finctions on the
domrain, Plotkin and Mike Soovth, then a postdoe at Warwick, extended Seott’s
ideas to w categorical {reatment of recursively defined domains, This provided
au understanding of & very broad rasee of recursive tvpes, The mathematicl
foundations of anctional programming were sel.,

Meanwhile, at Stanford, Rolin Miloer, Maleolm Newey and Richard Weyraoch
Liad forged alead with the mwechandsatbon of proofs [LCF, In the process Mil-
per ipvenbed the functional Janguage ML as o MetaLangoage to support assisted
proofs securely. ML was inspived both by the functional nature of LOF itself and
Peter Landin's ISWIM. With itz watertight type discipline, ML ensured that
only programes vielding legitimete LOF proofs would receive the type “Theo-
remn,” At Stanford, Milner began the push into the semantics of coneurrent
eoraputation through “oracles” to settle nondeterminstic choices, These roots
conbins] at Stanford with the work of Zobar Maong aod his stodent Jean
Vistllemin on reasoning aboul recursively defined programs.

Domain theory forged new links bebween computer science amnd logic. Pro-
gramming languages and computing systems were amenahle to mathematical
analysis. Computer scientists approschod programming lanpuages with a new
confidence born out of a belief that sensible language constructs could be given &
mathematical definiticn, The guidelines of domain theory infuenced the design
of programuming lapgusges and provided o foundation for luoctional progriaam-
T,

By the mid 1970°% it seemed only a matter of ime hefore domain theory could
tackle all features of programming languages. Through continuations Strachey
and Antoni Magnrkiewice had shown bow (o provide semantics to jomps in im-
perative languages: boilding on earlier idess of Egli and Milser, Plotkin had
extended dowain theory to a treatment of pondeterministic and parallel pro-
grams through his powerdommn—his treatment avoided the pon-associativity
and pot-commutativity of parallel composition Milper bad met through using
orachs; Nasser Sahieb-Dialiromi began constracting o probabilistic powerdo-
e, 80 enabling the denotational zemantics of probabilistie programs. Young

37

FACS FACTS Issue 2021-2 July 2021

researchers in France were Beginning o lend theiv own breilliant vision and math-
etnatical expertise,

4 Limitations—early signs

Domain theory has given us o lasting vision of a mathematical approach o
the semantics of progrommong langusges. [supported the method of denodo-
fronad sernorfies whersbw the semantics of a programoming langeiaee is defined
compositionally by structural induction on its svnta.

However, intimations of the limits of domain theory were preseot in sery
carly work. Gilles Bahn showed how dataflow Btied easily within the scheane;
it was i simple matter to represent dataflow processes as continuous functions
o atreams of input to streams of outpat, amd handle loops in the network
throwgh the fxed point treatment of recursion that domain theory providec.
But, the extension to nondetormimistic dataow was to be problomatic,. The
difficultics in giving a compositional semanties to nondeterministie detafoss
was stressed much Jater in 1981 by Brock and Ackerman [2], These are ways to
give denotational asmantics to nondeterministic dataflow but they lie outside
traditional domain theory—a point we shall come back 1o,

From LCF, Plotkin gol. the idea of studyving its core programming inguage
PCF, s tradition that continues in testing oew theories with some extra feature
or other in the presence of fnction spaces 3], He iovented the concept of
Sull whstrocton—the name i5 due to Miloer—a way to formadize full agreensemnt.
between the denotational and operational semantics of a language. Plotkin did
this through the vehicle of PCF, Traditional domain theory did ot provide
a fully abstract mode]l bocanse Scott’s domains contained “parasitc” olements
such as “pacallel or,” wodefinable in PCEF, on which operationally eguivalent
torms disagreed.

This sparked off the search for more operationally tuned domein theory,
o which eould capture the sequentinl cvalustion of PCF and Inmdsla-caleali,
Both Milner and YVwillemin gave carly, shghtly different, defimtions of what
it meant for a continuous fnetion F @ Dy = o= 0, —) = - 2 5, hetwesn
products of domains to be sgeguential for a particular inpat (ry. - x5,) where
Sl T) ™ (1.0 30) ANy increase in an output place ; had to depend
umfbermly on an increase in oo ccitical onpot place o0 A problem with such a
definition ks that it depends on the partienlar way one decomposes a domsin
into A prodoct.

This was remedied in 1975 by Kahn and Plotkin's definition of sequendiol
Junction between concrele domains in which there = san inbullt potion of place
{there called a cell) 4. Reughly, the elements of a conerete domain consist of
i set of events where an event s the flling of a cell with a particalar vadoe;
as events ocenr further cells become saccessible and able to be filled by at mosi
one of several values., According to Kahn and Plotkin's definition a sequential
function betwern conerete domsinzs 5 s continuous function for which st aoy
tmpiak the Blling of an accessitble output cell depends on the flbhog of & critical

38

FACS FACTS Issue 2021-2 July 2021

accessible input cell; there can be several critical cells, The proldem was that
space of sequential functions wasn't itself o concrete domwain, Concrete domains
didn't appear suitable for giving & denotational semantics to PCF.

Girard Berry suggestod two remedies, In his fisst, he proposed restricting
continunons Mpctions between domains to those which were stable—an approsx-
imation to being sequential G Technically, stable fonctions preserve meets of
compatible subsets of elements, but, more lntuitively, 1 a stable function any
phrt of the cutput depends on s minimoomm pact of the oput (reading “part of”
as below in the order), Significantly, oncee the domasins are axicmatised appro-
priately, as what Berry called di-domains, they have function spaces! the set of
all stable fonctions between dl-domaeins when ordered by & refinement of Scott's
orider, the sfable erder, themselves [orm s dl-domasan. Roughly, two fanctions
are in Lthe stabhle aeder 00 r.]]q-.l';' arie i the Seatt order aoed I"Iu'::u' ghre e smime
minimum inputs when producing common output. Berey went on to consider
bidomainsg which possessed both a Scott and stable order. Berry's stable domain
theory received an extre mnpetus in the mid 1980°= with Jean-Yves Girard's use
first of quadifobive domaens inomodels of polyimorphism ancd then with his path-
Lreaking «discovery of linsar logic through special Kinds of dl=domaing called
cofterenee speces related by stable functions.

Stable funetions have their own importance, but as 8 trestment of sequential-
ity they are just an approximation, With student Plerre-Lowks Cuarien, Berry
showed that there was a way to constroct o domain theory for sequentiality,
within which one conld give a denctational semantics to POF. Though it was
at the cost of departing from fupetions, They showed that concrete domains
did inddeed hiwwe 5 form of aoetion space D instead of segquential ooetions they
nace segieatiol afgorithms [I:'r| Sequential algorithms can be expressed in terms
of local decisions as to whether to output a value or inspect a eell for its value.
Berry amd Curien’s pioneering work is a precursor (o game semantics, and a
segquential alponthm o form of strategy and the decisions its woves, as was Lad
bare by Frapgois Lammacche [T, However, as Berry and Cuarien showed, a0 se-
cpuential algorithm can alse be viewed as a sequential function tegether with a
funetion which, given nput and s cell accessible at the ontpat, returns o specific
eritical cell accessible at the mmpuat. {This charscterisation anticipated maps of
condainers in unctional progeamming—see Sectlon 9.4,)

In seguential algorithms we begin to see a more interactive view of computa-
tion, not zimply as a the calculation of a fanction from input to output, but one
in which the algorithm actively gqueries and makes demands on the inpat, and
assigns vilues to cells, Without it being so obwvious s the thime, both sequential
algorithms and stable flunctions were part of a growing choruz suggesiing a view
of compitation based on interaction.

D Interaction

Concurrent processes can procece] independently bat seith points of interaction.,
Thedr treatment has long been o bughbear of traditional domain theory. While

39

FACS FACTS Issue 2021-2

40

special cases such as deterministic datallow were easily expressible within do-
manins, and Plotkin's powerdomains with o recorsively defined domeain of reswrmp-
tias supported parcallel composition theowgh the nondetermini=tle nferleaving
of actions [8], in general the denotational semantics of parallel programs conld
seprn convoluted, Indeed, after indtial excursions to domain models, chese
complications led Robin Miloer (o forsake domain theory and denotational =e-
mantics in favoir of a Calenlus of Communicating Syvstems (C05) bassd on 4
structural operational semantics and the process equivalence of bisimulation (9],
Tustend, Tooy Hoore, with Steve Brookes and Bill Boscoe, proposed o purpose-
built domain of failure sets for Communicating Sequential Processes (C5P) [10].
Both Heare and Miloer settled on synchronisation, possibly with the exchange of
il o Bhetr primitive of commuonmication, For o nomber of yenrs conenrrenocy
becamie o rather separate field of stady and s still often rather syotax-driven.
Moanwhile sinee the early 1960 Carl Adam Poetri and othors had been
developing g radieslly vew model of computation, Pelei nels, Petrl uoks are
based on events making local changes to conditions epresenting local states. A
sgtate of a Petri net is captured by a marking which picks oot those conditions
which currently hold, The net's dynamics, bow ope marking changes to another,
5 ased on the Kes den that the ooounrpence of an event @nds Che holding of s
precouditions (those conditions with arrows leading to the event) and Degins
the holding of its posteonditions {those conditions with areows from the event).
The atructures af Petel were reanarkably similar to those Kahn and Plotlin
had uncovered as representations of concrete domains in their investigations of
sequentiality. In fact. through the intermedinry concept of event structure, com-
prising o set of cvept occurrences with reladions of cansal dependency aed con-
fict, Mopens Mielsen, Gordon Plotkin and the anthor sere able to transler con-
copts across the two eonumunities, aroumnd Petri nets and domains; just as tran-
sitiom systems unfold to trees, so Petei nets unfold to event structures [11, 12].
Notably, Petri’s notion of confision freeness in Petri nets ooincided with the
reatrictions Kahn and Plotkin were making to localise nondeterministic choice
toocellz, A libtle laber it wos replised thet Berry’s dl-domains were exactly the
domains of confipurations of eventl stroctores oredered '|':|"_|.' tryclusicom]_l',’-.h]-I]

In ite strnplest form, an event structure s

(E.=#),

comprisizg o portiad oodee of canaal dependepey £ end o syrmgnetrae, rvefleripe
tenary relation of conflick # on events K. The relabion £ < ¢ expresses that
pvenit ¢ cousally depenids on the premous occurrence af event ¢, That edie’
means thal the occurrence of one cvent, ¢ or e, exctudes the occurvence of
the ather, Together the relafions satiefy twe exicms: the first amom seygs that
en evend eansally depends on ondy a findite number of cvends while the second
says Hhat evenls whiek cowselly depend on conflicting coents are themaolves in
panflict, The set of configurations C(F) consiste of sulisets of cvents alfocd

wre left-closed word 2 and conflict-free. Two evends e,¢" are consudered fo be

July 2021

FACS FACTS Issue 2021-2 July 2021

catanlly independent, oolfed cononrrent, & they wre wed i conflict and aeither
oite causally depereds on e olher,

I dhagrams, cvents are depreted as squores, smonediote cousal dependencics
by arvows and fmmediote conflicts by wigely Unes. For erample,

Cl

1™

o [~———0

represemds an evend struciure with five cvents. The coent to the forsright is in
smmediale comflict watle one coent—as showr, bad oo conflicd with all evends e
that on the lower far-left, with which it {5 concurrent,

But there was o curlons mismateh, Wheress Petrl nets were largely used to
mardel concurrent processes the coresponding structures In domain theory were
heing used as representations of domains, so types of processes. The reconcilia-
bion of Eleese two views caome moch later in generalisntions of domain theory o
which both types and processes depoted event. structures—as will be the ease
in concurrent games and strategios.

From the burgeoning world of richly structured models and their equivalences
in concurrency, it beesie clear thet concurrent computation wasn't golog to
fit neatly within traditional domain theory. A Petri pet carried moch more
structure than could be supported by @ point in g poset of information.

Fortumately category theory helped organise models for cononrrency: an in-
clividunl maodel, say Petrl nets, ovent stractiures or o transition systems, cnered
itg own gtyle of map to form a category: relations botween the different cate-
goties of models could be sxprossed s adjunctions: and helped systematize the
equivalences on concurrent processes (15, 18], This helped separate models of
copcwrreney from the svpfax aod operational semantics in which they were so
efbem ernbeclided,

For example, a map of cvent stractures from £ fo B ts o porfial function
T oon evends wlicll respects eopfigumions ad events o sends @ conflgarabion
® of B, by divect smage. lo a configuration f2 of B such thal no boo distinet
events mox go fo the same evend tn Fo. While cousal dependency need not e
preserved by [l is veflected focally: of the e,¢ € o0 and f{e) < F{e") then e <6’
Clommeguently woaps of evend gleactures outomabicolly preseeoe e coneurrency
redalion o eventa.

This taxomomy was based on existiog models, bl B suggested & more gen-
eral class of models with the versatility to be adapted in the same way as domain
theory—a form of generalised domain theory [17, 18], In several early domain
mesiels of processes, a process had been identified with the set of computation
Ir{ul.h.h; i1 coneld ||1-|:'|::}|'|||. e well-known model of this kind b= Hoaee"s “irace”
merlel of U5 in which a process denotes the set of segquences of visible actions
it can performn, The generalised domain theory was similar, but instead of a

41

FACS FACTS Issue 2021-2 July 2021

process being o st of compuitation paths it took o process o be a presfienf of
computation paths, Roughly a presheaf iz like a seneralised characteristic func-
tion bt where the usual truth velues are replaced by sets, to be thought of sets
of waps of realising truth,. By medelling o process as o presheal one allowsed
for the process possibly following several computation paths of the same shape
antd kept track of how the paths of the process branched nondeterministicallv.
Presheaf models [or coneurroney councctod concurrent computation with a rich
mathematios, in particular the mathematios of species, but ther operational
repding could be challenging. Sometimmes though, & depotations] semantics o
terms of presheaves could be represented by event structures; techuically the
catesory of elements of the presheal denotation took the form of the confisura-
tiones af an event structure, By brinmng the role of event strmictures to the fore
this eventnally led toa game semant ics based on ovenit strictiures—see Secthon 8,

6 French logic

Jean-Yves Girard bas been an imposing figure in Freoch logic and computation.
Ho has o dbistrast of what he sees as too simple sod over-arching wse of algebea
by struciure aod apaldyse logie, He has Deen exaggeratedly rude about Alfeesd
Tarakis delinition of truth in a model for first-ovder logic, and abowt indesd
denstational semantics, to which his work has oevertheless contribnted enore-
mously!. Girard’s work emphasises an operational understanding of proof and
compitation. This = far from saving it forsakes mathematical models, or cone
cenitrates on syntax in the way of traditional proof theory. On the contrary, the
mondels he has developed and inspived have comsiderable ingennity and depth,
and have shifted interest to new ways of understanding proof and compuatation.

Throuegh his reinvention of stable dowain theory o the more pestricted set-
'_i.lll'.:"' 1_:-r f:q'&-]lq_:n!rll._:l: !{-J::Ii-'l.ll"'{f_'e-l Girzu'q_[LTTH TS ||_‘:|ﬂ 14 l|'|1: '|:||||_:||;:||:'Lan.r. riisl.:'l'_ﬁ'.'::-r_}' -:_lnr {zrl:r'.rn'
togic in the mid 1980°s [20], This gave a deconstruction of traditional logic
inte g more fundamental resource-conscious logic, That work helped furn the
crnphasis of domaim theory sway rom function spaces supporting . “corrving”
worte & product; to werot, more general tensor products, In technical jargon, it
shifteel the emphasis from cartesian-closed to monoidal-closed eategories. Now
in semantics of computation we see models of linear logic everywhere, Girard's
coberence spaces correspot] Lo s very special form of event strociure o which
causal dependency Is the teivial identity refation, This won™ be the st cime
we see nontrivial structure associated with what at fivst sight seems a trivial
degenorate case.

In studving the proofs of lincar logie, Girard discovered geomctry of inter-
action [Gol) [21]. Although originally explamed in terms of the mathematical
structurs of guantwn mechanics, (ol was shown by Samson Abramsky sl
Hadha Jagadeesan to have a more traditional, domain-theoretic reading in which
the mechanism of interaction was that of least Axed points of domains [22] @ Gaol

Yor instanco ln domain models of polymerphiam tveluding Svetem F L), usesd i Sec-
Elasn Bl

42

FACS FACTS Issue 2021-2 July 2021

was related to Jean-Jacques Livy's optimal reduction of the lambda-calenlus by
Martin Abadi, George Gonthier and Lévy amd bas imfluenced the implemen-
tation of programming languages, notably via token-based computation |23
Today Gol 15 perhaps most often viewed a2 an carly form of gome semanties
see Section 3,2, where s model of Gol emwerges from o simple form of eopeourrent
[N

7T Game semantics

There was some vagueness about what s solution to the full-abstraction problemn
for PCF eotailed

The 1980%°s had seen several technical suecesses, throngh the use of repre-
sentations of domains: concrete data structures [4] and event structures [14] to
eive an operational description of bow unctions compute; mformation systems
dle Lo Beott aod the suthor to give a logical preseptation, and considecably sio-
plify the recursive definition of domains and their logical relations [24. 25, 26|
Girard’s work too, often exploited the Boe strocture such representations,

Given this history, it 8 not sueprising that several early attempts to con-
struct a llv-alsiract maedel for PCF were based on adjoining exira stenctice
to domaing or their representations; for example using both the Seatt order
anil stable order oo functions in bidomains and bistructures [27], via Elrhard’s
bypercolerences [28] or (O'Hearn and Riecke's powerful logical relations [20].
These attempts were put paid to, or at least compromised, by Ralpk Loader.
In a tour de force Loader showed that the full-abstraction problem for PCF,
as originally nnderstood. couldn't be achieved effoctively: the presentation of a
fully abstract domain maodel for PCF would be non-computable [34].

This left open the intermediate question of whether there were other more in-
dependently motivated models in which all the fnite elements wore definable by
PCF terms; from which then a (non-effectve) domain maodel could be obtained
b quotienting. To this question, ealled Sintensional ull-abstraction,” two dif-
ferent afirmative answors wore given and pioneered the highly infermative use of
mames in Ehe semantics of programming languages. Samnzon Abransky, Radhbea
Jugadersan and Pasquale Malacaria invented AJM sames [31], while Martin Hy-
landd, Luake Ong, and independently Hauno Nickan, discoversl HO games [33].
In many ways game semantics ltted the bill for a more operationally tuned do-
main theory: the role of domaing was replaced by games and that of continuons
functions Ty strategies, The role of games was extended bevond fupcetional (o
i;|l||}|}r.'.,'|..1_i1."|:-: lll'l_:lEI'H L

But the story was far from complete. For one thing, it wasn't clear, at least
imitiatly, how to reconcile the two different versioos, AN and HO, of game
aemantics. For another. the games were based om serquential plavs in which
Plaver and Opponent moves aliermated.

The bias towards sequrentialicy has handicapped the theories of games in
eneral. In geme theory it has led to 8 menagerie of different kinds of games.
each kind specialised to cope with one feature or another. There concurrency

43

FACS FACTS Issue 2021-2 July 2021

im handled in a piccemeal fashion, often throngh extra structore to capture
imperfect informeation. This limits the wayvs that the games and strategies of
game theory can be composed, While game semmantics is very mach concerned
with structure smd composition, its gumes are predominaotly scqguentisl; in
most Cased conenrrency ia représented indirectly via the interleaving of atomie
actions of the participants. This rarely does justice to the distritnted natire of
the systom deseribed, inhibits aoalvsie of s causal depondencies, snd s often
aceonnpanied by compeosatory, ad boe firness sssamptions,

What was lacking wis o rich algebraie theory of distributed feoncurrent
pames in which Player and Opponent are more accurately. thought of as teams
of players, distributed over different locations, able to move snd communicate
Although there are glimpses of such a theory in carlier work [33, 34, 35, 36, 37,
a conglderable unification occurs with the systematic wse of event stroetures to
frrmalise conenrrent games and strategies through their cansal stroeturee [38, 39].

8 Concurrent strategies

Distributod / Concarront - gaanes answer the nesd to rethonk the fonodations of
Eastnes, Lo eere Hexible groumdbiog where they more fealy beloag, in the models
alud theorics of interaction of eompitor seiemco.

A eoncwrrent gome s represented by an event strocture together with a
podarity marking its events to sy whether they are moves of Plaver (marked
+) v Olpponent {marked =} Games often bove extea features such as winping
cotiditions, deseribing those confignritions at. which Plaver wins, or a payoff
functions assigning a reward to each confipuration. For simplicity, here we
assmme A is race-free, 100 that there & no immediate confict. between a Player
and an Oppovent move; there may be conflict betveen Playver and Oppopent
imenves bk it st be inherited from conflict belbween earlier moves, either both
of Plaver, or both of Opponent.

With pames ss event structures the history of s play of & game s o longer
described by sequence of moves, bat by g partinl order expresing their cansal
dependency. The transitien from tetal to partial order brings in its wakeo tech-
nical difficnlties and potential for undie complexity nnless s done avtfully.
Fortunately one can harmess the mathematical tools developed for interacting
provesses, specifeally on event strictures [14, 15],

Thesre: ares fw fandamental by important operations on two-party games, Oy
is that of forming the dual game in which the roles of Player and Opponent are
interchanged. On an event structure with polarity 4 this amounts to reversing
the polaritics of events to produce the dual A, By o strateey o a goome we
nnplicitly mwean 8 stratogy for Plaver. A stratepy for Oppooent, or cownterstrat-
ppy, in oA game A B identified with o strategy in A5, The other operation is a
paredlel compozition of pames, achioved on event structures A and B by simply
juxtaposing them, with events from diferent components, wt in conflict, to
form AJH.

Followlng Ideas of Conway and Joval [40, 41], a strategy o from a game A fe

44

FACS FACTS Issue 2021-2

45

a Eame 03 18 teken to bo a strateoy an the compound game A5 2. Given wnotbier
strategy T from the game # to a game O the composifion 7@ I8 given essent ially
by plaving che two strategios against each other over the comuon game &, and
then hidiog that Intersction, But sehat 5 o strategy Inoa coneurrent gaane?

First. an example of a stratepy, consider the copyonl strateey m the gaooe
At A which, tollowing the spirit of a copyeat. has Player copy the corresponding
Upponent moves in the other component. The copyveat strategy (84 is obtained
by adding extra cansal dependencies to At || A so that any Player move in cither
component causally depends on its copy, an Opponent move, in the other com-
ponent. Tk s ilhstrated below when A s the stmple game comprsing a Player
move causally dependent on a single Opponent mowve:

-
At] @a T A
B4~ -8
Strategies are not always obtained by simply adding extra cansal dependen-

cies to the game, In gemeral, a strategy in a game A is expressed as a map
of evenl structures o @ 5 - A deseribing the cholees of Plaver moves by the
event structure 5. For exsuple, consider the gaone cotprising two Opponent
mewves in paralle]l with a Plaver move, and the [noodeterministic] strategy (for
Plager) in which Plaver makes their move if Opponent makes one of theirs. It
is represented by the map

i~ © il

=] 8.

=] B,

Mot all maps of event structures o © § = A are strategies. Thoere are two
further axioms on maps for them to be desmed strategies, receptivity and (lin-
ear) innocence. Intuitively, they prevent Plaver from constraining Opponent’s
rebaviour further than 15 allowed by the gome, Heceptividy expresses thal any
Opponent move allowed from A reachable position of the game s present ns a
poasible move in the stratepy. Innocenee says a strategy can only adjoin new
caiisal dependencies of the form B — B, where Player awaits moves of Oppo-
vk, beyond those inherited froem the gome, Silvain Rideao and the author
Bawve shown that the axioms are precisely those that malke copyoat Lhe denticy
for the composition of stratogios [38).

A strategy from a game A to e game iz a strodegy in e compond game
A B: s0 a0 map o : § + A*||B. Given another strategy 2 T = B*||C frum
B to g gome O, the composition 7@&c 15 got by playimg off the bwo strafegics
againat eack other over the gome 8. To do thia precisely o 10 usefild fo horness
o operations associnfed uith maeps of event structiures: pullback, to prodices
the interaction r@ o T &5 - A || B|C, which “synchronises” matching moves
pf & and T over the gamme B then, o partiad-total factorisation property of poe-
tial woaps of event structares, to ade the symchronisations ond produce, as #s
defined poart, the strateqy composition t@s : T8 - A C.

July 2021

FACS FACTS Issue 2021-2

46

A strategy o2 8 — A 8 deterministic if all conflict in 5 is inherited through
cansal dependency on conflicting Opponent moves, That copyeat is determinis-
tic is due precisely to the game being raee-free. (The strategy illuztrated above
is not deterministic. |

We shall shortly have use for two extensions to conearrent games: with win-
ning conditions and with imperfect information.

The amoms on strafeqies endad a formal comnection wath presheaf models
meerdioned earlier in Seclion 5 and throwgh them with Scolt domains [{2], In
characierising the confiqurations of the copyeat strafegy (€4, for a gome A,
e inpordent parlead order on configuretions appeavs: confururalions of copyent
covrespond o those configumtions 2l|ly of A A which are m the Scott order
iy Ea &, associated with wndoing Opponent moves from y then executing Player
wmoves to arrwe at w. The Seolt order of gomes exfends and conrects wnth Dona
Scaft's information order on domains.

The Scobt erder of games & surprnsingly smportant. In parficelar, o stmtegy
in @ game 5 o (spectal) presheal over i configurations under the Seotd order;
pssentially eeouse the dual game reverses the Scoft onder, o strutegy between
garmes i o (special) profunctor —thowek @n oo way thol ondy respects compesition
tarly, A profunclor directly reduces 1o o Seotl approcimable mapping so relating
stralegies to o demain-teorelic model,

8.1 Winning conditions

Winning conditions of a game A specity s subset of its wimning configuralions
W. An outcome in W is a win for Plaver. A strategy (for Player] is winning if
it always presoribes moves for Player to end up in s winning configuration. no
matter what the activity or inactivity of Opponent [43].

Formally, o strafegn o 0 8 =+ A g winning if e is e W for all +-marivial
conifigurntions » of 5; o configuralion is +-marimal i no additional Plager
wmopes con accnr from of, This cen be showsn eguivalent o all plags of o againat
oounterstrategies of Opporent resulting in a win for Ploger.

As the dual of o game A with winning conditions W we again reverse the
rodes of Player and Opponent to get A and take its winning conditions to
be the set-complement of W, In a simple parallel composition of games with
winning conditions, A||B, Player wins if they win in either component. With
these extonsions we can take o winmning scrategy from o gaomo A to 6 game 5,
where both games have winning conditions, to be a winning strategy in the
pame A B, The choices ensure that the composition of winning strategies is
winning. Becanse games are race-free, copyeat will alwayvs be a winning stratogy.

July 2021

FACS FACTS Issue 2021-2

47

5.2 Imperfect information

I o gaine of wvaperfect afermaleen soine moves are maskid, or inaccessabile,
and sirplegies with dependencies on anseen moves are ruled oot Coe can ex-
tened gammes with imperfect nformation in a way that respects the operations of
concurrent games awd strategies [44]. Each move of o game s assigned a level
i glodwal ocder of pocess Tevels: moves of Lhe game or s stralegies can only
{‘i1||$;'|i'|l'.-' ql{!pl:_-.l'ul il fndAAes b |_‘:r_:|'|_|.;'u| il |-d_‘w.-'v|jr h-:'.-'tﬂrs.

I e detndl, o ficed precrder of levels I{.I"l.. =) is pre-supposed, A A-gamee,
comprises a game A with a level function [A —= A such that if o <4 o then
) = .!I::r":] for alf moves a.a6” in A, A4 A-st rateEy i e A-goine s sbeal ey
a5 = A Jor which if 8 g 8" then lo(s) = la(s') for all 5,8 i & The secess
levels af moves in a geme are left wndisturbed oo forming the dund and parmldlcl
composition of gomes, As before o A-strategy from a A-gome A to o A-game B
ia @ A-atrafeqy in the game A || B, 1 con be ghoum that A-strategics compose.

9 Special cases

The puelditional complexity of event stroctures over teees shoubdon't obseuare di-
rect connections between strategies on cobenrment games and the more familiae
notlons on games as trees, Evenl structurves sabsume trees, An event struaciore
is free-lke when sny bwoe events are either o conflict or causally depensdent, one
on apother; in this case it configurations forin a tree w.r.t lnclusion, with root
the: empty configuristion

A bree-like pame is one for which its underlyving event structure iz bree-like,
Because we are assuming games are race-Tree, al any Bnite conhguration of a
Ereseslike gaanes, the next moves, iF there are any, are either purely those of Player,
ar puraly those of Opponent; in this sense positions of a tree-like game eitfer
belong to Player or Oppooent. At each position belonging to Plaver a deter-
ihinistic strategy cither chooses a unique move or fo stay put. In contrast to
Ay presentations of games, in o copcurrent strategy Plaver o't orced to
make a move, though that can be enconuraged throngh suitable winning condi-
tions. Winning conditions apecify those configurations at which Plaver wines,
a0 in & tree-like game can be both finite and infivite branches in the teee of
confizurations.

Clearly the dual of a tree-like game is tree-like. A coumteérstrategy, as a
atrategy in thoe dual game, picks moves for Opponent at their configurations:
when the counterstrategy is deterministic at each Opponent configuration i
chiooses to stay or make one particular move. As expected, the interaction 7@
of a deterministic strategy 7 with a deterministic counterstratesy determines
i finite or infinite branch in the tree of configurations, which in the presence of
winning conditions will be designated a5 a win for ane of the two plavers.

O tree-like games we recover familiar notions. What 35 perhapa surpris-
ing is that by exploiting the richer structure eoncurrent games we can TeCOVeT

July 2021

FACS FACTS Issue 2021-2 July 2021

other familiar paradigms, not traditionally tied o games, or if 80 only ot
what informally. We start by recovering Berry's stable domain theory. The
other examples, froan leeie and fanctional programming, aee toodo with ways of
handling interaction within a functemal approasch,

Central to any compositional theory of interaction 15 the dichotomy betaseen
a svebem and ita enviromment. Concurrent games and strategies address the
dichotomy in fine detail, very locally, in a distributed fashion, through polarities
om events, A functional approach hes to haodle the dichotomy moch more
inpeniously, through its cruder distimction betwoen inpat and catpat: with Iaesic
interaction treated through the application of a function to its srpument. Within
concurrent games we can more clearly see whatl separates and connects the
differing paradigms.

9.1 Stable spans and stable functions

They might sesm stupid as games, bt let™s consider gaines in which all the
moves mee Plaver moves,

Clonsicder s strategy o from frome one such purely Player game A to another
£ in other words a strategy in the game A° 5. This i a map 7 5 = A5
which is receptive and innocent. Notice that in AY|| 8 all the Opponent moves
are in A= and all the Player moves are in B, The culy pew inmediate cansal
conpecbions, bevond those o A* apd B, thet can be ntroduced aee those from
what is now an Opponent move of 4 to a Playver move in B, Beyvond the
causal dependencies of the games, a strategy o can only make a Plaver move in
£ cansally depend on a finite subset of Opponent moves in A*,

When & is deterministic, all conflicts are inherited from conflicts bedween
Opponent moves, Then, deterministic strptegies correspomd exactly to Berey's
stable functions from the domain of configurations of 4 to the domain of confis-
urations of B, Moreover this correspondence respects composition. We recover
Berrv's atable functions a4 the subeategory of deterministic strategies hotween
concurrent paines comprising purcly Plaver moves, o the case where the gaones
arc further restricted o have trivial identity causal dependency we recover G-
rard s coberence spaces and 1heir maps. {We obtain all of Berry's dl-domams
when we allow slightly more general event structures than those here, which for
simplicity we have based on a hinary contlict; the more general event striactires
include Girard’s gualifalive domains,)

When & may be nondeberministio, i comrespouds to a stable span, a form
of many-valued stable function which has been discovered. and rediscovered,
in giving semantics to nondeterministic datafow [45, 2, 46). Recall from See-
tion 4 that nondeterministic dataflow is probletnatic as far as traditional domain
theory is copeermwsd, Concurpent strotegies support s brace operation wiich oo
stalile spans coincides with the once-tricky feedback operation of sondetermin-
istic dataflow [16].

If we were to extend purely Plaver games with winning conditions, to specify
a Anbset of winning configurations, the stable spans amd functiops that woukd

48

FACS FACTS Issue 2021-2 July 2021

eosue from winning strategies would send winning confisurations to winning
configuralions

Seweral important calegovies of domains have arizen as subceategories of con-
current games, We show that in & similar way, we obtain geometry of interaction,
dialectica categories, contalners, lenses, open games and leamers; and optics by
moving to glightly more complicated suboaterories of concurrent games, sole
tirnes with winning conditions and imperfect informstion.

9.2 Geometry of Interaction

Let's pow consider =lightly more comples ganes, A Gol gome comprises a
parallel composition A = Ay ||A: of a purely-Player game A; with a purely-
Opponent game Ay, Consider a strategy o from a Gol game 4 = 4045 to a
ol game B = 7 || Ba. Rearranging the parallel compositions,

A B =A7 Az B | B2 = (A | Bz} [{AZ || By) -

bo oL as a strategy in A0 |8, correspoacds tooa strategy frome the parely-Plaver
game Ay || By to the purely-Player game A5 || 3. We are back to the simple situ-
pbion eonsidered i the previons section, where we considered strnbeghes betwsen
parely=-Flaver gaimes,

Strategies between Gol games, from A to & correspond to stable spans from
S{ABBLY 1w CLAZ|| B), and to stable functions when deterministic, Noting
that a configuration of a parallel composition of games splits into & pair of
comfigurations,

ClA ||lBF)=C{A))= C(By) and
CCAz B) =C{Ag) = C(By)

Thua deterministic -.-iT.I_'alll-git-.f-: fronmn A to B |:'-:||'|_'|::.-:|:|-:|||1|_ Lo stiahle fiinetions
S=(fg): ClA) = C{Ba) = C(Az) = C(8y).

associated with a pair of stable functions F@ O0A4) = COH2) - C(A) and g
C{AY=C[8y =C{Hy). Sach maps are obtained by Abramsky and Jagadeessan's
Gol constroction, though now starting from stable domain theory [22].

The composition of deterministic stratesies between Gol games, o From A to
B oand v froo B oto O coineides with the compeosition of Gol given by “fracing
out”™ By and Ha. Precisely, suppose @ corresponds to the stable funetion

S:C(A) % C(Ba) = ClAz) x C()
and T o the stable function
=008) = C{C%) =+ OBy} = L(C).

Then their composition T&s corresponds to the stable ioction taking {r,w) €
C{AD) = C{C) to (&, w') e C{Az) = C{C1) in the least solutions to the equations

(', 2y =8{z,¢) and [pw")=T(zu)

49

FACS FACTS Issue 2021-2 July 2021

wiven, as in Wahn datafow networks, by teking a least fised point.

It i= straightforward to extend Gol gamnmes with winoing conditions. The
winming conditions on & Gol game A = Ay 4y pick ont a sahset of the config-
urations C0A) so amount to specifying a property Waleg, x2) of paims (xy, 03]
in &A= C(Az). That a deterministic strategy from Gol game A to Gol game
B s winnipg sipounls to

Wale, gle.u)) = Walflx)y,

for all x e (A), v e C{ 8y). when expressed in terms of the pair of stable fine-
tions the strategy determines. In particular, a deterministic winning strategy in
an individoal Gol game [# =) |72 with winning conditions Wy corresponds
to a stable function f:C(8#) - C(8) such that Yy e C(H). Wal flu).v)-

Unlike dl-domains with stable functions, with stable spans, the operation of
paralle] composition || s no longer a product; stable spans form a monoidal-
closed and not a cartesian-closed category, For this reason, general, not just de-
terministic, strategies betwern Gol sames cannct be expressed simply as lenses
but instesd are a form of epfics [47).

9.3 Dialectica games

Dialectica catogories woere doviasd i the late 198005 by Valevia de Paiva in her
Cambridge PhD) work with Martin Hyland [48]. The motivation then was that
they provided a model of linear logic underlyving Kurt Godel's dialection interpro-
fadingr of first-order logic. They have come to prominence again recently because
of A renewed interest in their maps, in s variety of contexts from formalisations
of reverse differentiation and hack propagation, open games and learners, and
as an early oconrrenee of maps as lonses.

We obtain a particular dislectics category. based on Berry's stable functions,
as a full subeategory of deterministic strategies on dialectica games, Dialectica
wames are obtaimed as Gol games of inperfect information, intuitively by not
allowing Player to see the moves of Opponent,

A dindectice gome 15 o Gol paane A = A | Az with winning conditions, and
with imperfect information given as follows, The imperfect informeation i de-
termined by particulacly simple order of aceess levels: L= 20 All Player moves,
those in Ay, are assigned to 1 and sll Opponent moves, are assigned to 20 Tt is
hielpful to think of the access levels 1and 2 as representing fwo roonns separstod
Ty a onesway micror allowing anyone o room 2 to see through o room 1 In
a dislectics gaane, Player is in roomm 1 and Opponent o eootn 2, Wheress O
ponent cam see the moves of Plaver, and in o countersteategy mmake their moves
dependent on those of Playver, the moves of Playver are macke Dlindly, o that
they canpot depend on Opponent’s moves,

Although we are malnly interested in strategies between dialicticn games i
is worth pansing to think about strategies inoa gingle dislectica game A = Ay || Aa
with winning conditions Wy, Because Player moves cannot cansally depend on
'lf_]l_:;*u'umul_ moves, o deberministic strategy in A 1,'tl'|-|'!'v|"':-:|:|-:'||'|,|l.=: g comdiguration

50

FACS FACTS Issue 2021-2 July 2021

we (A) that it is winning means Yy e C(Az). Wale, v). So to have & winning
strategy for the dialectics pame mesns

dr € C{A) ¥reClAz) Walz).

[Winning strategics in general are a little more complicated to describe becausc
thiey can branch poodeterministically,)

Consider now a detorministie winping strategy o from o dialectica game
A = Ay ||A: with winning conditions Wy to another 8 = 1) |[B: with winning
conditions W, Ienoving aceess levels, 7 i8 al=o a deterministic strategy between
Gol games, so corresponds toos pair of stable lonctions

F:ClA)= Q(B:) = C(B)) and g:C{A))« C{By) —~ C{Ag).

But mowves i By have access level 20 moves of B3 access level 1 a cansal de-
'|:-|'I11:||3I4-|3'.J' i §he stl:}h}m- o af & mose in .ﬁ-"[O e 1 H;_p wottled siolate the
access order 1 <= 20 That o move in By can causally depend on a move in Hs
is reflected in the functional independence of f on ite second argument. As a
deterministic strategy between dislecticn catepories, & correspomds to o pair of
stable functions

FiC(A) = CiH) ol g ClAL) = C(B2) = C(Axa).
That & s winning menns

Wale.glr.u)) — Wal(f{xr)u},

for all @ & C{Ay),w & C{Hy). Lenses f. g satisfying this winning condition
are precisely the maps of de Paiva’s construction of a dialectica catesory from
Berry's stable functions.

Such pairs of fanctions are the lerses of functional programming where they
were invented to make composable local changes on data-stroctores [49, 50]. We
recover their at-first puzsling composition from the composition of sirategies.
Let o be a deterministic strategy from dialectica game A to dialectica pame
and 7 a deterministic stratesy from 2 to another dialectica game ' Assiume o
corresponds to a pair of stable lunctions S and g, as above, snd anslogously that
T correponds to stable mnctions £ and ', Then, the composition of strategies
TEur correspotids o the compogition of lenaes: with frst component ' o ol
gecond component taking » & C(Ay) and ye C{C%) to gl 0 [flx). v

The characterization of nondeterministic strategies between dialectics games
is more complicated to describe; they are optics based on stable spans [47].

Cirard's variant

In the first balf of de Paiva's thesis she concentrates on the eonstruction of
dialectica categories. In the second half she follows up on a suggestion of Girard
tor explore & variant, This too 15 easily understood o the context of concurrent
gamess frnitate Lhe work of this sectioem, with Gol games extendoed with tmperiect

51

FACS FACTS Issue 2021-2 July 2021

information, bl now with acoess bevels modified o the discrete order on 1,2
Then the cansal dependencies of strategies are further reduced and deterministic
strategivs from A = A0 Ay to T = By | By correspond to pairs of stable functions

(A1) = C(B1) and g : C(Ba) = C(As) .

Clombs

Through ancther sariation we obiain the generalisation of lonses to comdbis t5e-
ful in guantum architecture and information [51, 52]. Comhbs arise as strategies
between comb games which, st least formally, are an obvious generalisation of
ilialeetics games; their name comes from their graphical representation as strme-
tures that ook like {hair) combs, with each tooth representing o transformation
from input to output. An n-comb game. for a natural number . is an »-fold par-
allel composition A || Azl || An of purelv-Playver or purely-Opponent games A;
of alternatimg polarity, so the polaritics of Ay and A, ace different; 1§ 5 & gooee
of imperfect nformation asociatel with access Ievels | = 2 < - = 0 with moves
of component A4, having access level §, Dialectica games are 2-comb games. s-
cussions of causality in science, and guantiun information in pacticular, are often
concernel with what causal dependencies ace feasible; then structures sumilar
to crders of access levels are weed to capture one-way signedling, as in dialectica
games, amd non-sgnalling, as in Girard's variant.

0.4 Containers

A conteirer govme is a gate of imperfect information A st access levels | < 2;
each Player move of A is sont to 1 and each Opponent move to 2. Thos within
A thore can be all manner of cansal dependencies but aerer of the form B <@
i which & Plaver move causally depends an an Opponent move,

The o |riﬁ;-l,l:|]'.|'|.‘t.|_|_||_|.-. of o eantal e AR TITE A have a |:|_|_:|'|1"||||r'||T-1‘..'9."|‘:||' SLFeTRITE,
Opponent moves can cansally depend on Playver moves, but not converscly. Let
Ay denote the subgame comprising the substructure of A consisting of purcly-
Plaver moves, A configaration @ e (A) determines a subgame Ag /e comprising
the substructure of A consisting of all those Opponent moves. for which all the
Plaver moves on which they depond appear im e. A configuration of A breals
down uniguely into s union oy where 2 € CUAp) and g ¢ C(A 7). We can
ace the configurations of a coptainer gane A a8 formlog o dependent-sum ty s
:':rﬁffl.l.]'d!fl'r'u: In this wav a container game corresponds bo a container Ty,
familiar from funetional programming [G4].

We ean of course extend a container game A with winning conditions which
we identify with a property Wy of the dependent-sum type S04, 942/ A
determainiatic winning strategy in the contaner game corpesponds to o configi-
ration » & C{A) such that ¥y e C{dg/x). Walz,)

Tl this section we roly on the fact that dl-demains and stablo Posetions sappost the
sanstruckiom of dependont typos—ahown by Coguoanad, Gunter and the sathor, fellowing idees

of Ciirard [53)

52

FACS FACTS Issue 2021-2 July 2021

A detorministic strabtegy & from s container gpme A to o container samoe
Hoean be shown to correspond 0 o map of container types: o pair of stable
functions

FiC(A) = €(BY) and g: Weecea [C{Bal f()) = € Azfr)],

where we have relied on the et thal di-domains ad stable functions suppor
Tunction spaces and dependent. product types [!;.3-|. For container games A and
£, with winning conditions W4 and W reapectively, the strategy from A o &
would be winping if, and only if,

Wale galy)) == We{f{x) o),

for all @ ¢ C(Ay). pe CO(8 flx)) The correspondence reapects compaosition.
Clontainer types built on dl-domains and stable functions arise as & full subeat-
erory of concurrent smmes,

What abwoat general, possibly nondeterministie, strategies between eontaines
gamesT Buch strategies are o form of opties, extended to contaiper bypas,

We won't freatl symmetry in conourreld gammes at all here, ot extending
games with symmetry is important in many applications; with the addition of
symmetry to a game configurations form a nontrivial category. not merefy a
partial crder based on inclusion [35]

10 Enrichment

Cotienrrent strategies have been extended with probability, alzo with contin-
nous probaldlity distobotions, fuoctions on real oombers, as well oz gquanbom
.*-.'l"l'm"r.'l||_'|.ﬂ.'1

The enrichments specialise to the cases congidered in the last section. For
sxample. probabilistic strategies specialise to optice based on Markov kernels
when betwoen dialectica games, 5o work on concurrent strategies con transfer
tor situsations of interest in functionsd programming and domain theory, and thedr
cxtensions into probabilistic and gquaptum progromming, Thas 15 also relevant
Lo enrichments of open games and learpers [56, 57]. which can be siewed as
parameterised dialectica categories. (O course there are lots of guestions. How
do enrichments from concurrent strategies compare with existing attempts? And
when they don't alresdy exist, how can the specialisstions be charseterised and
sipplifie]?

Chyet awen neglected in this acticle is the theory of effects in programoming
languages which uses the techoology of monads and algebraic theories e refine
the influential work of Bugenio Mogei amwd, roughly, describe compotation in
terma of enriched computation treea [B8, 500 1 don’t presently understand to
what extent enrichment of concurrent strategies relates (o affects.

SAN Gl within a general way 1o suppart enrichoment of concorrent steabegios, basod on
ilens developad with Mare de Vieme amd Pieree Cladrambaol .

53

FACS FACTS Issue 2021-2 July 2021

11 Conclusion

T Leligsqe: this artiele demonstrates the lasting power of domaln theory, Cone
current games and strategies provide s general model of intersetion. Their
generadity can provide goidanee i the form aomode] or its enrichanent shoalsd
take, In special cases they simplify to easier dompaino models. In one direction
concurrent strategies help build domain models. In the other, when domeain
muwlels are available they simplify conenrrent strategies. COnly a fool woald ose
a comnplicated model when s simpler one is available! In many contexts domain
theory provides the sioplest models we know,

Acknowledgments

A big thank you to Jonathan Bowen snd Brisn Monshan for inviting the sr-
tiole, to Brian and Tlm Deovie for help with lts preparation. Tme geateful
for discussions with Fredrik Nordwvall Forsberg, Bruno Gavranovie, Neil Ghani,
D Ghics, Saomue] Ben Heaanoa, Jules Hedges, aod Jorémy Ledent, Saomnel Ben
Haion, EMNS Paris Saclay, tackled the verification of the early dialectica-gaines
spetion for his student-internship,

References

[1] Seote, [D.5.: A type-theoretical alternative to Bwim, cuch, OWHY. Theor.
Cloanput, Sel, 210182 (19093) 411-440

[2] Winskel, (z.: Events, causality and symmetry., Comput. 1. G4(1) (2011)
1257

[3] Plotkin, G.D.: LCF considersd as a programming langmage. Theor. Com-
put, Sci. SC3) (1077) 223255

[4] Kabm, ., Plotkin, G.D.: Conerete domains. Theor. Comput. Sei,
121(1E:2) (1993) 187277

[3] Berry, 3.: Stable models of typed lambda-caleali. In: ICALP. Volume 62
of Lecture Notes in Comwpuber Science., Springer (1978 72-80

(6] DBerry, G., Curien, P Sequential algorithms on concrete data structures,
Theswwe. Comput. Scio 200 (1952 265-321

[7] Curien. P.: On the symmetry of sequentiality. In Brookes, 5.0, Main,
ALGL, DWelton, AL, Bistove, MW, Schinidt, TLAL, el Mathemiatical
Foundations of Programming Semantics, 9th Internationsl Conference,
Mew Orleans, LA, USA, April 7-10, 1993, Procecdings, Volume 802 of Lo
tnre Motes in Computer Science., Springer {1993} 29-71

(8] Plotkin, G.D.: A powerdomsin constriction, SIAM J. Comput., 5{3) (1976)
152487

54

FACS FACTS Issue 2021-2 July 2021

@ Milner, R A Caleulus of Communieating Systems. Volume 32 of Lecture
MNotes in Compater Seience. Springer | 1980

I_]H: E‘rl:ll’_1|;-:,|:_'h._ H,, Hl":n.l'vl"., {_‘..A-F,, HI’_H{'I:I:'.l ,'1|,."I.:'i.-,: ,'\, |]!||:'|:|l:‘_',.' |_:|f |'r:|tt:|]|_|_'|'|_l‘]ig|:'.|.til]£
aeguentinl processes, B, ACK 31 (1954} H60-5049

[11] Wielsen, M., Plotkin, G., Winskel, G0 Petri nets, event atructures and
domains, TOS 13 (1951} 85-108

(12] Winskel, G.: Events in computation. PhD thesis, University of Edinburgh
{ 1080

[13] Winskel. GG Event structure semantics for OCS and related langnages. T
ICALP'S2. Volume TA0 of LNCS., Springer, A full version is available from
Winskel’s Cambridge homepage [1952)

[14] Winskel, G.: Event structures. In: Advances in Petri Nets. Volume 255 of
LNCS., Springer {1986 325-392

[15] Winskel, G., Nielsen, M Models for Concurrency. In; Handbook of Logic
in Compuber Science 4, OTF {195) 1-148

[16] Jayal, A.. Nielsen, M., Winskel, G.; Bisimulation fromn open maps, Inf
Corogail, T2702) (1996) 16d-185

[17] Hvland, M.: Some reasons for generalising domain theory. Mathematioal
structures in Compuoter Seience 20033 (3000} 23%-265

[18] Cattani, G.L., Winskel, G2 Profunctors, open maps and bisimolation
Mathematical Structures in Computer Science 15[3) (2005] 553614

|19} Girard, J: The system F of wariable types, fifteen years later. Theor.
Comput. Sci. 45(2) (1986) 159-192

[20] Girard. J.: Linear logic. Theor, Comput. Sei. 50 (1987 1-102

[21] Girard, J.: Towards n geometry of interaction, Conternporary Mathematios
92 [1959) 69-108

[22] Abrinsky, 5., Jagadeesan, R.: New foundations for the geometry of inter-
action, Inf, Compat, T11(1) (1954) 53-11%

(23] Gouthier, G., Abadi, M., Lévy, 1.J: The geometry of optimal lambda
reduction, In: POPL "92, (1992)

[24] Seatt, 0.5 Domains for denotational semantics. In Nielsen, M., Schmicdt,
E.M., edes Automats, Languages and Progroonming, 9ih Colleguim,
Aarhs, Demmark, July 12-16, 1982, Proceedings. Volume 140 of Lecture
MNotes in Computer Seience., Bpringer {1982 577614

55

FACS FACTS Issue 2021-2 July 2021

[25] Winskel, (3., Larsen, K.G.: Using information systems to solve recur-
sive domain equations cffectively, Tn Kabn, G, MaceOueen, TOB,, Plotkin,
GO eds: Semantics of Data Types, Internst ional Sywiposion, Sophiae
Antipolis, Franoe, June 27-20, 1954, Proceedings. Volume 173 of Lecture
MNotes in Computer Seience,, Springer (1954) 1094-120

[26] Abramsky. 5 Domain theory in Ingical form. Int Proceedings of the
Svmposium on Logic in Computer Science |[LICS "87), Itheea, New York,
USA, June 22-25, 1987, IEEE Computer Soclety [1987T) 47-53

[27

Plotkin, G0, Winskel, G DBistructures, bidomsins mad linear logie, In
Abiteboul, 5., Shamirv, E., eds; Auwtomata. Langoages and Programaming,
MNat International Colloquinm, ECALPM, Jerusalem, [srael. July 11-14,
15, Procesdings, Volume 520 of Lecture Notes in Computer Sciemee.
Springer [1994) 352-363

|25

Ehrbiard, T.: Hwypercohercoees: A strongly stable model of linear loge,
Math. Struct, Comput. Sci. 304} (1993) 365-385

[29] O'Hearn, W, Riecke, J.G.: Krple logical relations and PCF, Inf. Come
put. 12001] (1995) 107-116

[JU| Loader, R.: Finitary PCF iz not decidable. Theor, Comput. Sci. 266(1-2)
(2001 3413464

[31] Abramsky, 5., Jagadeesan, R., Malacaria, T Full abstraction for POCF,
Inf. Comput. 16302} 409-470 [20060)

[32] Hvland, J.M.E., Ong, C_H.L: On full abstraction for POF: 1. 11, and 111
Inf, Comput. 163(2}: ZE5-L0S [Z000)

[33] Abramsky, 5., Melliés, P.AL: Concurrent games and full completeness. Tn:
LICS "1, IEEE Computer Society {18961

[34] Laird, J.: Game semantics for higher-ovder conenrrency. In Arun-Kumar,
S Garg, N eds: FSTTOS 2006; Foundstions of Software Technology
ane]l Theoretheal Computer Science, 2600 International Conference, Tvolkatn,
Tudia. December 13-05, 20006, Proceedings, Volbume 4337 of Lecture Notes
in Computer Science., Springer {246} 417 428

[35] Mellits, P.A., Mimram, 5: Asynchronouns games @ innocence withont
alternation. In: CONCUR 07, Volumse 4703 of LNCS., Springer (2007

[36] Ghica, D.R., Murawski, A8 Angelic semantics of fine-grained comcur-
repcy. In POSSACS'DY, LNCS MET, Springer {204k)

(47 Faggian, C., Piccolo, M. Partial orders, event structures and linear strate-
gies, Inc TLCA 09, Volume 5608 of LNCS., Springer (3009%]

[35] Rideau, 5., Winskel, G.: Concurrent strategios, In: LICS M011, [2011)

56

FACS FACTS Issue 2021-2 July 2021

[#9] Winskel, G.: ECSYM Notes: Event Stroctores, Stable Families and Clon-
current Games. hittpe S fwww . cLeameac. uk f~gw 1M fecsyvi-notes. podf (2006)

[0 Conway, 1.0 On Numbers and Games:. Wellesley, MA: A K Poetors (2000]

[41] Joval. A Remargues sur ln théorie des jenx i denx personnes. Goaette
dey sejonees mathdmatioues du Quédbec, 1{4) (1997

[42] Winskel, G.; Strategies as profunctors. In: FOSSACS 2013, Lecture Notes
in Clomputer Science. Springer {2113

[43] Clairambanlt, P.. Gutierrez, J_, Winskel, 5.t The winning ways of concur-
rent games, o LICS H)12: 235244, (2012)

[14] Winskel, G3.: Winning, losing and drawing in conearrent games with porfect
or imperfect informstion. Inc Festschrife for Dester Kogen. Volome 7230
of LIS, Sprnger (2012)

[45] Mymaned, M.: Dotmain theory for eonourrency, PID Thests, Aarhus Uni-
viersity (2003)

[46] Saunders-Evans, L., Winskel, G.: Event strocture spans for nondetermin-
ztic dataffow. Electr. Notes Theor, Comput. Sei. 173031 1081259 (20807

[47] Pickertng, M., Gibbons, J., Wo, N Profunctor optics: Modilar data
acvessord. Art S3ci. Eng. Program, 1(2) (2017) 7

[48] de Paiva, V.: The Dialectica categories. PhD Thesis, University of Cam-
bridge [1985)

[49] Nes, F.I: A category thearetic approach to the semantics of programming
languages. Phl} Thesis, University of Ssyracnuse | 1952}

{50 Foster, J.N., Greenwald, M.B., Moore, 1.T., Pierce; B.C., Schmitt, A.:
Combinators for bidirectional tree transformations; A linguistic approach
to the view-update problem, ACM Trans. Program. Lang, Syst, 28903
[11 I

[51] Chiribetla, G., D'Ariane, G.M,, Perinotti. P Quantium cireuit architee-
ture. Phivaical Review Letters 100 (6) { Aag 2008

[52] Kissinger, A., Uijlen, 5. A categorical semantics for eausal structure, T
Fnd Annual ACMTEEE Symposium on Logic in Computer Science, LICS
2017, Revkjavik. [celand, June 20-23, 20017, IEEE Computer Society {2007
1-12

[33] Coquand, T., Gunter, C.A., Winskel, G.: Di-domains as a model of poly-
morphism,. I Main, NG Melton, AL Mislove, MW, Schmadt, TLAL,
el Mathematieal Foundations of Progeaoming Language Semant jes, 3rd
1|.'|.'_|:'E|I']-::_t_|'|{.||,|.| "|'l|:|'|ill'|r_' l_-'l'niw_'h-lily.'.. NI_‘“‘ {_J1'|-E'."|1|:-:=_ [.-:’Jili:ii:um- T_:'E_.'!';I _.'!'njrl'ﬂ R-lfﬂ.
1987, Proceadings. Volume 298 of Lecture Notes in Computer Science..
Springer { 14sT) 344- 363

57

FACS FACTS Issue 2021-2

58

[p4]

(5

|56

[59]

Abbott, NG, Altenkirch, T., Ghani, N.© Containers: Constructing strictly
positive types, Theor, Comput, Sci, 342{1) (2005) 3-27

Castellan, 5., Clairambault, P, Winskel, G Syvmmetry i conearrent
games. In: Joint Meeting of the Twenty-Thivd EACSL Annual Confer-
ence on Computer Science Logie (CSL) and the Twenty-Nioth Annual
ACMEEE Symposium on Logic in Computer Science {LICS), CSL-LICS
14, Vienna, Austra, July 14 - 18, 2014, ACM (2014)

Cihani, N., Hedges, J., Winschel, V.. Zaln, P.; Compositional game theory.
In Dawar, A, Gridel, E., eds.: Proceedings of the 33rd Annual ACM/IEEE
Symposinm on Logic in Computer Science, LICS 2008, Oxford, UK, July
(-12, 201=, ACM (2015) 472-451

Fong. B., Spavalk, TV, Tayerms, R Backprop as functors A compositional
perspective on supervissd leaming. Int 3dth Anmnal ACM/IEEE Sympo-
sitm on Logic in Computer Science, LICS 2009, Vaneouver, BC, Canada,
June 24-27, 2019, 1EEE (2019} 1-13

Moggt, E.: Computational luobda-caloulus amd monads, Trs Procesdings of
the Fourth Annual Symposinm on Logie in Computer Science {LICS 'S89),
Pacific Grove, California, USA. June G-8 1989, IEEE Computer Saciety
{1989) 14-23

Phitkin, G.I0, Power, A Computational offects and operations: An
overview, Electron. Notes Theor, Comput. Sc T3 (2004 149-163

July 2021

FACS FACTS Issue 2021-2 July 2021

Understanding Programming Languages
By Cliff Jones, Springer 2020

Reviewed by: Adrian Johnstone

Royal Holloway and New College
University of London

July 2021

Cliff’s new book on programming language semantics is a distillation of the material
he has taught at Newcastle for over a decade now, using VDM-like notation to develop
(mostly) operational descriptions of (mostly) imperative programming languages.
Anybody who knows Cliff or has heard him speak will know what style to expect here -
confident, authoritative and challenging in the best way, so that good students are
encouraged to pursue their own ideas within a formal framework.

A particular strength is the emphasis on the semantics of concurrency. We all know
that reasoning informally about concurrency is very hard, and of course reasoning
about meta-concurrency (i.e. notations for expressing concurrent programs) is a whole
other level of challenge. This presents an educational opportunity. From the
perspective of folk who want to increase the formal content in undergraduate courses,
Cliff’s advanced chapters on concurrency are particularly helpful, since many
elementary books on programming language design and implementation struggle to
get past toy examples. Students thus become demotivated since they perceive the
entry price for formal methods as being high, but they then never get to see hard
problems being solved. Cliff does a fine job of showing how formal semantics can save
language designers from themselves, and in the process strengthens the case for
formal methods on undergraduate courses.

Before looking in detail at the contents, | should do that full-disclosure thing. This
cannot be an entirely objective review since I’ve known Cliff for many years, and some
time ago he sent me a signed copy of the book... In addition, Cliff solicited my review
comments on a draft, and was kind enough to mention me in the acknowledgements.
So, | have seen the work in progress and when Jonathan Bowen asked me if | would
review it, my inclination was to demure through lack of independence. On the other
hand, | teach semantics at undergraduate level too (though in a very different style)
and | want to see more mainstream courses and publicise the usefulness of this new
book. As a result, here is an unsurprisingly positive review that you might want to
leaven with an independent reading.

59

FACS FACTS Issue 2021-2 July 2021

The first thing to say to this BCS-FACS audience is that this is not a book about VDM.
Notationally, Cliff uses essentially a subset of VDM but since much of that comprises
standard mathematical notation for sets, first order predicate logic and partial
functions, supplemented with familiar square bracket notation for lists, sets of
bindings for maps and conventional notation for function signatures, | think that most
undergraduate finalists will be able to read these clauses easily. The notation is
introduced early on in digestible lumps, and there is an appendix that enumerates all
of the forms used in the book, with very useful pictorial representations of their
signatures. Thus the text stands alone and is self-contained.

Cliff’s first three chapters are scene-setters covering (1) the need for small meta-
languages with which we can reason about programming languages, (2) the
specification of and translation from concrete to abstract syntax and (3) operational
semantics, and in particular Structural Operational Semantics. This marks the real shift
in Cliff’s pedagogic approach: whereas his teaching at Manchester was based on VDM
and denotational semantics, this book is firmly SOS-oriented.

Cliff then looks at the core requirements of a sequential imperative language, with
chapters on: (4) types, data and representations of the store; (5) block structure,
control flow and procedures with parameter passing; and (6) objects, records, the
heap and functions including higher order functions.

This material is completed with a chapter on other forms of semantic description:
specifically denotational and axiomatic semantics. Cliff writes eloquently of the
distinction between model oriented styles (including SOS) in which machine state is
explicitly modelled, and property oriented approaches in which the semantics is
defined using properties of the program text.

He goes on to give a summary of the development of denotational ideas, describes the
difficulties that arise when procedures are passed to procedures, and their resolution
through Scott’s development of domain theory, wrapping up with a sequence of
pointers into the historical literature of denotational semantics.

Axiomatic semantics, refinement calculus and VDM as an aid to formal software
development and verification are discussed at some length, with a link to programming
language semantics. As might be expected, Cliff gives useful insights into the history
of these ideas that will motivate students’ reading.

For me, the most useful material is in the final three main chapters which look at (8)
shared variable concurrency, (9) concurrent object orientated languages and (10)
exceptions and continuations. Our students have grown up with languages that offer
pragmatic support for all of these features, yet early books on semantics rarely provide
ideas on how to model them formally.

A summary of the challenges presented by interacting parallel threads of computation,
and of several abstractions that have been developed to allow programmers to manage

60

FACS FACTS Issue 2021-2 July 2021

concurrency, is followed by an expansion of the SOS idea to cover nondeterministic small-
step rules which are used in the rest of the material to model concurrent programming
language structures. Recent research on Rely/Guarantee reasoning and Concurrent
Separation Logic is then described using these new tools.

The set piece of this book is an object-oriented language (COOL) that supports concurrency
via method calls, and which avoids data races by only allowing at most one method per
instance to be executing at a time. The motivation for the language, and the techniques
used to formally specify the constructs are laid out in detail, and an appendix summarises
the full semantics. The language would need some fleshing out to become general
purpose: the intention is to illustrate core concurrency issues in a few pages.

The section on exceptions and continuations mostly focusses on approaches to
generalising, and capturing formally, unstructured control flow. In just a few pages it is
hard to give more than an overview and pointers into the literature, which good students
will use as a springboard. Perhaps not surprisingly, Cliff labels this material optional.

I’ll conclude with some remarks on the pedagogic style, and the place that such a book
would find in the curriculum context | work in. A feature of the book is the identification of
some 46 Language issues and eight Challenges. These are sprinkled throughout the text in
the form of boxed asides, and each makes an excellent talking point for an interactive style
of teaching. Each could be expanded into a reading or implementation assignment, and
together they present a seasoned overview of the many facets of programming language
design. All those who have written a few examples in some putative new programming
language and then moved straight to a first implementation before getting lost in the
swamp of complexity would do well to have figured out their approach to these language
issues on paper before they started writing code...

Throughout, the treatment is brisk and | think that my weaker students would need some
further reading. In particular, compared to 40 years ago our students often grow up in a
coding monoculture where median students never really advance beyond their first
language. A second-year course on informal comparative programming languages, or a
thorough reading of (say) David Watt’s Programming Language Design Concepts would be
helpful in expanding students’ consciousness away from Java. Another area where
supplementary reading might be needed is in developing some design-level facility with
SOS. Cliff presents many elegant examples, but the conciseness of the text does not allow
much exploration of alternative formulations of the same core formal idea. A cookbook of
ideas that covers a broad spectrum of language features might be a useful adjunct - | like
Hans Huttel’s Transitions and Trees.

One of the great strengths of this book, though, is the continual reference to the research
culture, both contemporary and historical. There are voluminous references, copious
footnotes and a light-touch set of asides on the history of ideas in this field which | think
will strongly motivate the best students to read and fully engage with the topic, and to
understand that there are open questions and opportunities to make their own future
contributions.

61

FACS FACTS Issue 2021-2 July 2021

Dimensionally correct by construction: Type systems for
programs

Fredrik Nordvall Forsberg and Conor McBride
Mathematically Structured Programming Group
University of Strathclyde

Webinar presented: 15/06/2021
https://www.youtube.com/watch?v=DVDvloz9vEQ

Reported by: Keith Lines, NPL

Introduction

The last FACS talk before a summer break was a webinar presented by Fredrik Nordvall
Forsberg and Conor McBride of the Mathematically Structured Programming Group at
the University of Strathclyde. Fredrik and Conor are also joint appointees with the
National Physical Laboratory, working on a project concerned with increasing the
trustworthiness of software used in measurement systems.

The webinar introduced the concept of dependent types. It explained how dependent
types can be used to define versions of linear algebra operations, such as matrix
multiplication, that check the dimensions [1] of measured quantities as well as
calculate numeric values. Further details are provided in [2].

Fredrik and Conor at the whiteboard.

Instead of the usual slides, Fredrik and Conor provided a whiteboard-based double-act
and included a physics demonstration. This approach was very entertaining and much
appreciated.

62

https://www.youtube.com/watch?v=DVDvIoz9vE0
https://www.bcs.org/events/2021/june/webinar-dimensionally-correct-by-construction-type-systems-for-programs/
https://www.bcs.org/events/2021/june/webinar-dimensionally-correct-by-construction-type-systems-for-programs/

FACS FACTS Issue 2021-2 July 2021

Summary

A simple example, using Haskell, demonstrated how the type checking most
programmers are familiar with often does not help with writing trustworthy software.
Treating all elements of a type equally, when type checking, is an approximation that
can have serious consequences. Dependent types increase trustworthiness by including
contextual information, e.g. whether a number is being used as the index of an
element in an array.

A type definition for lists demonstrated how much type and proof checkers can leave
the programmer to implement and prove. E.g. list appending is an associative
operation, but such basic properties are not always “built in”.

A matrix where rows represent students, columns represent tests results and cells
contain exam results provided a further example of context. Each cell contains
information specific to a particular student and a particular exam.

Attention then turned to physics, in particular dimensional analysis. Mass (M), length
(L) and time (T) are amongst these dimensions. A practical demonstration showed how
dimensions can be used derive an expression for calculating the period of a pendulum.
Dimensions helped derive the expression in a way analogous to how types help with
writing software. The next stage was to bring these two concepts together.

As Andrew Kennedy noted in the 1990s there are strong similarities between
dimensions in physics and types in programming languages. Fredrik and Conor’s
research presented in this section of the webinar builds on Kennedy’s [3] and George
Hart’s [4] work.

A free abelian group on the set of fundamental dimensions, contains the dimensions
that can be assigned to quantities. Type checkers that implement all this theory
obviously relieve the programmer of having to implement and prove these concepts,
making software more trustworthy.

Question and answers

Topics covered included:
e The theory outlined in this talk is not only applicable to functional languages.
E.g. type theory has been introduced to PHP [5].

e The was a discussion about possible areas of applications and similar work
undertaken the past.

63

FACS FACTS Issue 2021-2 July 2021

References
1 BS EN ISO 80000-1:2013, Quantities and units

2 McBride C., Nordvall-Forsberg F., Type systems for programs respecting dimensions
(Jan 2021)
Retrieved 27th June 2021 from University of Strathclyde
https://pureportal.strath.ac.uk/en/publications/type-systems-for-programs-

respecting-dimensions

3 Kennedy A. J., Programming languages and dimensions (April 1996)
Retrieved 27" June 2021 from Cambridge University
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-391.pdf

4 George W. Hart, "Multidimensional Analysis: Algebras and Systems for Science and
Engineering”, Springer, 1995

5 Hack, a dialect of PHP created for Facebook

Retrieved 27th June 2021 from hacklang.org
https://hacklang.or

64

https://hacklang.org/
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-391.pdf
https://pureportal.strath.ac.uk/en/publications/type-systems-for-programs-respecting-dimensions
https://pureportal.strath.ac.uk/en/publications/type-systems-for-programs-respecting-dimensions

FACS FACTS Issue 2021-2 July 2021

ABZ 2021 Conference Report

Jonathan P. Bowen
Chair, BCS-FACS, June 2021

Introduction

The ABZ 2021 8th International Conference on Rigorous State Based Methods was
held entirely virtually during June 2021. This incorporated presentations of papers
from the planned ABZ 2020 conference, postponed due to the COVID-19 pandemic. It
was held during 9-11 June 2021, preceded by a Colloquium on the Occasion of Egon
Borger's 75th Birthday with an associated Festschrift volume, on 7 June 2021 and the
9th Rodin User and Developer Workshop with other sessions on 8 June 2021, making
five days of related online presentations in all. Thus, there were three associated
Springer LNCS (Lecture Notes in Computer Science) volumes for the Festschrift
(Raschke et al., 2021), ABZ 2020 (Raschke et al., 2020), and ABZ 2021 (Raschke &
Méry, 2021). The events were organized by the University of Ulm in Germany, using
Zoom for sessions and wonder.me for breaks, allowing online networking. There was
no registration fee due to sponsorship.

[

Old school meets new school with a whiteboard presentation on Zoom,
presenting work by Jean-Raymond Abrial and Dominique Cansell during the Rodin Workshop.

Colloquium on the Occasion of Egon Borger’s 75" Birthday

On 7 June 2021, a one-day celebration of Egon Boérger’s 75" birthday with
presentations and an associated Festschrift volume (Raschke et al., 2021) was held
on Zoom. The event was organized through the University of Ulm in Germany by
Alexander Raschke, Elvinia Riccobene, and Klaus-Dieter Schewe. A previous

65

https://en.wikipedia.org/wiki/Egon_B%C3%B6rger
https://www.wonder.me/

FACS FACTS Issue 2021-2 July 2021

Festschrift celebration for Egon Borger’s 60" birthday was held in 2006 at Schloss
Dagstuhl in Germany (Abrial & Gldsser, 2009). Egon Bbdrger has been the leading
promulgator of the ASM (Abstract State Machines) formal method for much of his
career. He also has an interesting background in his academic advisor tree, leading
back to Hegel, Kant, and Leibniz, among others (Bowen, 2021).

¥
;
™ |
-yl) eRJiai¥
“ Ernanpaby Somng

Discussions on Zoom during Egon Bérger’s 75" Festschrift celebration.

66

FACS FACTS Issue 2021-2 July 2021

ABZ 10T 0 i

Or = Gt Wordder [

Egon Bérger speaking during his 75" Festschrift celebration.

ABZ 8th International Conference on Rigorous State Based Methods

The ABZ conference series was initiated in London during 2008, when the previous
ZB conference series on the Z notation and B-Method combined with the previous
ASM workshops to form “ABZ” (Borger et al., 2008). The series has gradually
expanded in its scope to include further state-based formal approaches such as
Alloy, TLA, and VDM. It is now open to any state-based formal (or “rigorous”) method.

During 9-11 June 2021, papers submitted for both the ABZ 2020 and ABZ 2021
conferences were presented, in short 15-minute and longer 30-minute formats on
Zoom. There were two keynote talks, each an hour in length, by Ana Cavalcanti

67

https://www.wonder.me/

FACS FACTS Issue 2021-2 July 2021

(Chair of FME, Formal Methods Europe) and Gilles Dowek of INRIA in France. It was
originally hoped to hold the first of these conferences in 2020 but due to the Covid-
19 pandemic this was delayed and eventually held completely online in combination
with ABZ 2021. The ABZ 2020 proceedings was edited by Alexander Raschke,
Dominique Méry, and Frank Houdek (Raschke et al.,, 2020) and the ABZ 2021
proceedings was edited by the first two of these editors (Raschke et al., 2021).

It is interesting to note the occurrence of various formal methods and tools in the
titles of papers in the two ABZ proceedings. Event-B tops the list with 14 papers. 11
papers mention the Rodin tool, providing Event-B tool support. Next there are nine
papers with ASM in the title (including two mentioning the ASMETA toolset). Alloy is
mentioned in three paper titles, as is the ProB tool providing tool support for B. The
Atelier B, UML-B, and UPPAAL tools are each mentioned in one title. Interestingly,
TLA, VDM, and Z are not mentioned in any paper titles. So, the “A” (ASM and Alloy)
and “B” (mainly Event-B with the associated Rodin and ProB tools) in “ABZ” live on,
especially strongly in the case of ASM and Event-B/Rodin. However, the “Z” part has
essentially disappeared and perhaps can now be considered as “the rest”. C’est la vie
(as we say in the UK!).

Cuarrently, we are hewving a break
Maeet usin wonderme [soe BT 2071 website)

Wi willl continge Im foom at 1330 (CEST)
with ihe Keyneds of Ans Cavalcam

e 4 .

ABZ 2021 | 9.6.2021

A break during ABZ 2021 before Ana Cavalcanti’s keynote talk.

s

e Tt
it ;
I ;i 1 m‘ |r ' 9 ‘" Al andder B
{ s |

Discussions on Zoom during ABZ 2021.

68

FACS FACTS Issue 2021-2 July 2021

ARE 2am O q e & [

[EE T

Discussions on “wonder.me’ during ABZ 2021, including an impromptu presentation.

Conclusion

The events all went very well in the circumstances, although online networking is not
the same as at a real conference of course. Swapping between Zoom for
presentations and wonder.me for breaks was not ideal. In the future, perhaps Zoom
will develop to include better facilities for breaks in meetings, but wonder.me does
allow participants to easily join discussion groups in a visual way. The next ABZ 2023
conference is planned to be at Nancy, France, organized by Dominique Méry et al. at
LORIA, University of Lorraine. We hope that this can be a physical conference again!
Meanwhile, for further information on ABZ 2021, see: https://abz2021.uni-ulm.de

Al parde B Al merpde B
Ihrmmens oy Damnmin By ibda o

Rigorous State-Based f Rigorous State-Based
Mathods E

N W
i, gy iy YL R
Re——

The three proceedings associated with the ABZ 2021 conference.

69

https://abz2021.uni-ulm.de/

FACS FACTS Issue 2021-2 July 2021

References

Abrial, J.-R. and Gladsser, U. (eds.) (2009). Rigorous Methods for Software
Construction and Analysis: Essays Dedicated to Egon Borger on the Occasion of His
60th Birthday. Springer, Lecture Notes in Computer Science, volume 5115. DOI:
10.1007/978-3-642-11447-2

Borger, E., Butler, M., Bowen, J.P., and Boca, P. (eds.) (2008). Abstract State Machines,
B and Z: First International Conference, ABZ 2008, London, UK, September 16-18,
2008, Proceedings. Springer, Lecture Notes in Computer Science, volume 5238. DOI:
10.1007/978-3-540-87603-8

Bowen, J.P. (2021). Communities and Ancestors Associated with Egon Borger and
ASM. In Raschke et al. (2021), pages 96-120. DOI: 10.1007/978-3-030-76020-5_6

Raschke, A. and Méry, D. (eds.) (2021). Rigorous State-Based Methods: 8th
International Conference, ABZ 2021, Ulm, Germany, June 9-11, 2021, Proceedings.
Springer, Lecture Notes in Computer Science, volume 12709. DOI: 10.1007/978-3-
030-77543-8

Raschke, A., Méry, D., and Houdek, F. (eds.) (2020). Rigorous State-Based Methods:
7th International Conference, ABZ 2020, Ulm, Germany, May 27-29, 2020,
Proceedings. Springer, Lecture Notes in Computer Science, volume 12071. DOI:

10.1007/978-3-030-48077-6

Raschke, A., Riccobene, E., and Schewe, K.-D. (eds.) (2021). Logic, Computation and
Rigorous Methods: Essays Dedicated to Egon Borger on the Occasion of His 75th
Birthday. Springer, Lecture Notes in Computer Science, volume 12750. DOI:

10.1007/978-3-030-76020-5

70

https://doi.org/10.1007/978-3-030-76020-5
https://doi.org/10.1007/978-3-030-48077-6
https://doi.org/10.1007/978-3-030-77543-8
https://doi.org/10.1007/978-3-030-77543-8
https://doi.org/10.1007/978-3-030-76020-5_6
https://doi.org/10.1007/978-3-540-87603-8
https://doi.org/10.1007/978-3-642-11447-2

FACS FACTS Issue 2021-2 July 2021

Meeting Reports

Jonathan P. Bowen
Chair, BCS-FACS, May 2021

Introduction

FACS has moved online for its meetings using the Zoom facilities of the BCS. This
makes recording of talks easier, as well as enabling a more geographically dispersed
audience. Of course, the networking opportunities are reduced, and we aim to resume
meetings at the BCS London office when this is possible. It is then likely that talks will
be hybrid in nature, with a real audience and an online audience, hopeful the best of
both worlds. | understand that the BCS plan facilities at the BCS London office to
enable this, but no timescale has been set yet.

Keith Lines, NPL

On 6 April 2021, Keith Lines, a FACS committee member based at the National Physical
Laboratory (NPL), gave an interesting talk entitled, “NPL’s Experience with Formal
Aspects”, covering activities at NPL in the area of formal methods. He started with a
briefly introduction to perhaps NPL’s most famous “formal methods” person, indeed
“computer scientist”, although neither terms were used with their modern meanings at
the time, Alan Turing (1912-1954). The talk included Turing’s hand-written NPL
personnel record and NPL’s connections with Robert Milne and also Christopher
Strachey, a colleague of Turing and founder of the Programming Research Group at
Oxford. Brian Wichmann, a retired member of NPL, was in the audience and
contributed some interesting remarks durlng the taIk A video of the talk is available
online under: https:

Cambndgs sabhalics

N 1T SR B

Alan Turing’s NPL personnel record.

71

https://www.bcs.org/events/2021/april/webinar-npl-s-experience-with-formal-aspects/

FACS FACTS Issue 2021-2 July 2021

i W Vary greatElul e L

-

| PESTEOR ST T

mpport. Watnmlily the Ssleat

repur; e osmes of thew mhoald cos

[“Hp0 Y

Robert Milne and Christopher Strachey.

Synopsis

The National Physical Laboratory’s pioneering role in modern-day computing is well
known; not least because of Alan Turing’s design of the ACE (Automatic Computing
Engine) and Donald Davies’ development of packet switching. NPL has also maintained
an interest in theoretical computer science and formal methods over the years. This
presentation summarised NPL’s work in this area, including: 1) exploring the use of
formal methods in the standardisation of communications protocols; 2) a survey
undertaken in the 1990s on the take up (or lack thereof) of formal methods within
industry; 3) work undertaken with the Department of Computer Science of the
University of York as part of the EU-funded Traceability for Computationally Intensive
Metrology (TraCIM) project. NPL continues formal aspects work through joint
appointments with universities. The presentation ended with a very brief overview of a
project, undertaken with the University of Strathclyde, on physical dimensions and
types, the subject of a FACS presentation from Strathclyde in June 2021.

Biography

Keith Lines applies experience gained in over 30 years of working with NPL’s scientists,
administrators, and support staff to help ensure that NPL activities in software
development continue to meet the requirements of NPL’s ISO 9001 and TickITplus
certifications. Formal aspects of computing have been an interest since he was a
student at the University of Kent in the mid-1980s. He is a member of the BCS.

72

FACS FACTS Issue 2021-2 July 2021

Marta Kwiatkowska, Oxford

Although not a FACS presentation, Marta Kwiatkowska of Oxford University delivered
the BCS Lovelace Lecture, entitled “Probabilistic Model Checking for the Data-rich
World’, on 5 May 2021. Marta has given previous lectures to FACS and was elected a
Fellow of the Royal Society (FRS) in 2019. The talk was introduced by Professor Dame
Muffy Calder DBE OBE, Professor of Formal Methods, Head of the College of Science
and Engineering, and Vice Principal of the University of Glasgow, as well as being
another former FACS speaker. Professor Steve Furber CBE FRS of the University of
Manchester chaired the talk, which concentrated on the PRISM probabilistic model
checker, developed by Marta and her group at Oxford. An impressive range of
applications was presented. A vote of thanks was given at the end of the talk by
Professor Tony Cohn of the University of Leeds. Information on the talk is available
online under:

https://www.bcs.org/events/2021/may/bcs-lovelace-lecture-202021-prof-marta-kwiatkowska

Verification: the guest for program Correctness

LT ThF BTG

AT

Cheching & lange routing by D & Tuning

¥ Cam One Chels § Fisalens
¥ i

I order that ke man
wled Chedks mdy Aol Rive 500 SIFCul & Likk 1Fhe
priyrasmmer ghowld make 3 nuembser of dedinas
i whith can e checked indresclimally, and
e ERad § 11 Fhe wehicls

Checking a large routine, by Alan Turing. .

73

https://www.bcs.org/events/2021/may/bcs-lovelace-lecture-202021-prof-marta-kwiatkowska/

FACS FACTS Issue 2021-2 July 2021

ki

Frobabilisne model chacking, beyvond PRISM

Probabilistic model checking beyond PRISM.

Synopsis

Computing systems have become indispensable in our society, supporting us in almost
all tasks, from social interactions and online banking to robotic assistants and
implantable medical devices. Since software faults in such systems can have disastrous
consequences, methods based on mathematical logic, such as proof assistants or
model checking, have been developed to ensure their correctness. However, many
computing systems employ probability, for example as a randomisation technique in
distributed protocols, or to quantify uncertainty in the environment for Al and robotics
applications. Systems with machine learning components that make decisions based
on observed data also have a natural, Bayesian probabilistic interpretation. In such
cases, logic no longer suffices, and we must reason with probability. Probabilistic
model checking techniques aim to verify the correctness of probabilistic models
against quantitative properties, such as the probability or expectation of a critical
event. Exemplified through the software tool PRISM (www.prismmodelchecker.org),
they have been successfully applied in a variety of domains, finding and fixing flaws in
real-world systems. As today’s computing systems evolve to increasingly rely on
automated, strategic decisions learnt from rich sources of data, probabilistic model
checking has the potential to provide probabilistic robustness guarantees for machine
learning. Using illustrative examples from mobile communications, robotics, security,
autonomous driving and affective computing, this lecture gave an overview of recent
progress in probabilistic model checking, and highlighted challenges and opportunities
for the future.

74

http://www.prismmodelchecker.org/

FACS FACTS Issue 2021-2 July 2021

Biography

Marta Kwiatkowska is Professor of Computing Systems and Fellow of Trinity College,
University of Oxford. She is known for fundamental contributions to the theory and
practice of model checking for probabilistic systems. She led the development of the
PRISM model checker, the leading software tool in the area. Probabilistic model
checking has been adopted in diverse fields, including distributed computing, wireless
networks, security, robotics, healthcare, systems biology, DNA computing and
nanotechnology, with genuine flaws found and corrected in real-world protocols. Marta
Kwiatkowska was awarded two ERC Advanced Grants, VERIWARE and FUN2MODEL, and
is a coinvestigator of the EPSRC Programme Grant on Mobile Autonomy. She was
honoured with the Royal Society Milner Award in 2018 and the Lovelace Medal in 2019,
and is a Fellow of the Royal Society, ACM and BCS, and Member of Academia Europea.

Michael Leuschel, Diisseldorf, Germany

On 6 May 2021, Michael Leuschel, a professor at the Institut fur Informatik of Heinrich-
Heine-Universitat Disseldorf in Germany, delivered a joint Formal Methods Europe
(FME) and FACS talk entitled “New Ways of Using Formal Models in Industry’. The talk
covered Michael’s extensive experience of liaising with industry in the use of formal
methods, mainly using the B-Method and especially Event-B, including the use of the
ProB animator and model checker tool developed by Michael and his colleagues. Ana
Cavalcanti, chair of FME, attended the talk, giving a brief introduction and welcome. A
video of the talk is available online under:

https://www.bcs.org/events/2021/may/webinar-evening-seminar-facs-s

= B for Sofhware:

¢ abouf 30% of SHTC systerns workiwida smplay thie B formal mathod

& Urhals 400, Agiom, ower 100 matno ines workisoa, 25% af wondeeda LH PO markat
R . T ™

Distribution of the industrial use of the B formal method around the world.

75

https://www.bcs.org/events/2021/may/webinar-evening-seminar-facs-sg/

FACS FACTS Issue 2021-2 July 2021

Prawtad THice

Firsd papar
o Event-8
alrinaady publisfhed
Erg ol in 1

o s
ey I"hlll'llﬂﬂ

L
PROCEEDINGS

il B H SRS

B .

= = rrmrr
Trae Farid Tl Fras Waders
al rnlemtrrad L ol tha & - et

B LdmTaiaein dimibedd, Wad Tattans,

A graphical history of the industrial use of the B-Method.

76

FACS FACTS Issue 2021-2 July 2021

ProB2-Ul Demo

EF ™
i) sl N
L

Fn s am

ProB tool demonstration.

Synopsis

Advances in formal methods tools have enabled a wide variety of new ways of using
formal models and for increasing the added value of formal modelling. This talk
presented experience in using the B formal method for systems modelling and data
validation in the railway sector. The talk started out by situating the B-Method within
the realm of formal methods and providing a brief overview of twenty-five years of
industrial usage. The talk then discussed various lessons learnt during the speaker’s
experience with formal methods, in particular for the new hybrid-level 3 European train
control system specification. It discussed how to combine the various verification and
validation aspects, from proof to visualization, leading to new applications such as
executable prototypes or interactive requirements documents.

Biography

Michael Leuschel is full professor at the Institut fir Informatik of Heinrich-Heine-
Universitat Dusseldorf, Germany, where he leads the Software Engineering and
Programming Languages group. His research focusses on model-based problem
solving using symbolic model checking. He has been one of the main developers of
ProB, a successful animator, constraint solver and model checker for the B-Method.
ProB is certified T2 SIL4 according to the Cenelec EN 50128 standard. Michael’s
research is also behind the development of the ECCE system for partial deduction.

77

FACS FACTS Issue 2021-2 July 2021

Conclusion

We plan to continue to make FACS talks available on Zoom and then as videos via
YouTube after the talk if the speaker agrees. However, we also look forward to live
talks again when this is possible and aim to deliver these in hybrid mode, both at the
BCS London office and online. We are looking for a volunteer to join the FACS
committee and help in organizing FACS talks. This is an excellent opportunity to
enable talks by people you wish to hear. If you would like to take on this role, or
suggest a speaker and co-organize a single talk, please contact the Chair of FACS,
Jonathan Bowen, on: jonathan.bowen@Isbu.ac.uk

78

mailto:jonathan.bowen@lsbu.ac.uk

FACS FACTS Issue 2021-2 July 2021

Forthcoming events

Events Venue (unless otherwise specified):

BCS, The Chartered Institute for IT
Ground Floor, 25 Copthall Avenue, London, EC2R 7BP

The nearest tube station is Moorgate, but Bank and Liverpool Street are within walking
distance as well.

Webinar: Matrices of Sets
23 September,

5:15pm - 8:00pm | An introduction to Matrices of Sets
Speaker: Renaud Di Francesco, Sony Europe BV

Synopsis:
An introduction to Matrices of Sets, i.e. tables where the

position at line i and column j is occupied by a set M(i,j),
instead of a number.

https://www.bcs.org/events/2021/september/webinar-
matrices-of-sets-bcs-formal-aspects-of-computing-science-sg-

facs/

Details of all forthcoming events can be found online here:

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-
computing-science-group/

Please revisit this site for updates as and when further events are confirmed.

79

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/
https://www.bcs.org/events/2021/september/webinar-matrices-of-sets-bcs-formal-aspects-of-computing-science-sg-facs/
https://www.bcs.org/events/2021/september/webinar-matrices-of-sets-bcs-formal-aspects-of-computing-science-sg-facs/
https://www.bcs.org/events/2021/september/webinar-matrices-of-sets-bcs-formal-aspects-of-computing-science-sg-facs/

FACS FACTS Issue 2021-2

FACS Committee

July 2021

B Farmal Aspects of Computing
Scionoa Specialis! Group

Jonathan Bowen John Cooke Roger Carsley
FACS Chair and FACS Treasurer and Minutes Secretary
BCS Liaisan Publications

Rob Hierons
LkAS Liaison

Keith Lines
Sovernment and
Standards Liaison

Tim Denvir
CorEditor, FACS
FACTS

80

Ana Cavalcant
FRAE Liaisaon

EBrijesh Dongol
Refinement

Waorkshop Liaison

MargaretWest
Inclusion Officer and
BCSYiormen Liaisan

CorEditor, FACS
FACTS

https://www.youtube.com/watch?v=PG2G5xSz0NQ

FACS FACTS Issue 2021-2 July 2021

FACS is always interested to hear from its members and keen to recruit additional
helpers. Presently we have vacancies for officers to help with fund raising, to liaise with
other specialist groups such as the Requirements Engineering group and the European
Association for Theoretical Computer Science (EATCS), and to maintain the FACS
website. If you are able to help, please contact the FACS Chair, Professor Jonathan
Bowen at the contact points below:

BCS-FACS

c/o Professor Jonathan Bowen (Chair)
London South Bank University

Email: jonathan.bowen@lsbu.ac.uk
Web: www.bcs-facs.org

You can also contact the other Committee members via this email address.

Mailing Lists

As well as the official BCS-FACS Specialist Group mailing list run by the BCS for FACS
members, there are also two wider mailing lists on the Formal Aspects of Computer
Science run by JISCmail.

The main list <facs@jiscmail.ac.uk> can be used for relevant messages by any
subscribers. An archive of messages is accessible under:

http://www.jiscmail.ac.uk/lists/facs.html
including facilities for subscribing and unsubscribing.

The additional <facs-event@jiscmail.ac.uk> list is specifically for announcement of
relevant events.

Similarly, an archive of announcements is accessible under:
http://www.jiscmail.ac.uk/lists/facs-events.html
including facilities for subscribing and unsubscribing.

BCS-FACS announcements are normally sent to these lists as appropriate, as well as the
official BCS-FACS mailing list, to which BCS members can subscribe by officially joining
FACS after logging onto the BCS website.

81

http://www.jiscmail.ac.uk/lists/facs-events.html
mailto:facs-event@jiscmail.ac.uk
mailto:facs-event@jiscmail.ac.uk
mailto:facs-event@jiscmail.ac.uk
http://www.jiscmail.ac.uk/lists/facs.html
mailto:facs@jiscmail.ac.uk
mailto:facs@jiscmail.ac.uk
mailto:facs@jiscmail.ac.uk
http://www.bcs-facs.org/
mailto:jonathan.bowen@lsbu.ac.uk

	The FACS FACTS Team
	References
	Haskell B Curry at War
	Curry on Programming
	ENIAC
	References
	Understanding Programming Languages
	By Cliff Jones, Springer 2020

	Dimensionally correct by construction: Type systems for programs
	Introduction
	Summary
	Question and answers

	References
	ABZ 2021 Conference Report
	Introduction
	Colloquium on the Occasion of Egon Börger’s 75th Birthday
	ABZ 8th International Conference on Rigorous State Based Methods
	Conclusion
	References
	Meeting Reports
	Jonathan P. Bowen Chair, BCS-FACS, May 2021

	Introduction
	Keith Lines, NPL
	Synopsis
	Biography

	Marta Kwiatkowska, Oxford
	Synopsis
	Biography

	Michael Leuschel, Düsseldorf, Germany
	Synopsis
	Biography

	Conclusion
	Forthcoming events
	Webinar: Matrices of Sets
	An introduction to Matrices of Sets
	Speaker: Renaud Di Francesco, Sony Europe BV
	Synopsis:
	Mailing Lists

