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Editorial

Dear readers,

Welcome to the 2021-2 issue of the FACS FACTS Newsletter. A theme for this issue is
suggested by the thought that it is just over 50 years since the birth of Domain
Theory'.

Why did computer science need Domain Theory? To provide a semantics for
computational structures, one needs to construct a mathematical model for them. In
many high-level programming languages it is possible to define recursive data types,
and to write successful programs which use them. Yet it is impossible to model
recursive data types, such as those that contain their own function spaces, in set
theory. Georg Cantor showed this in about 1874-1884°. Where data types embody
functions, they are computable functions, not the fully fledged functions found in set
theory. Domains provide a way of expressing these limited functions, which has,
almost happily, the accidental effect of enabling types to have this kind of recursion.

Programming languages were not the first context in which we find recursion.
Developments in mathematical logic, in the early 20™ century, used the idea decades
before. In their introduction to the second edition of Principia Mathematica®> Whitehead
and Russell refer to that theorem of Cantor’s, stating it very succinctly:

2" >n

Here 2 denotes the two-value set {0,7}, n denotes the set of natural numbers [0:n-1],
2" denotes the set of functions from n to 2 and > compares the cardinalities of the
sets. Whitehead and Russell remark that Cantor’s proof is limited to finite sets n, but if
that historically is the case, it is easy to extend a natural proof to infinite sets of any
cardinality (left to the reader!). (Note that if n is countably infinite, then the theorem
and proof are isomorphic to another strongly related theorem of Cantor’s, that the
Reals are uncountable).

Enough of this from me. Our first feature article is by my co-editor, Brian Monahan,
Domain Theory Revisited, an introduction and thoughtful discourse on the subject.
Then comes John Tucker, Haskell B. Curry at War, a historical note from the History of
Computing Collection at Swansea University. The third feature is by Glynn Winskel,
Domain Theory and Interaction. This is a splendid grand tour of the history from
Domain Theory’s beginnings, through interactive computation, concurrent games and

'Dana S. Scott. Outline of a mathematical theory of computation. Technical Monograph PRG-2, Oxford University
Computing Laboratory, Oxford, England, November 1970; Dana Scott and Christopher Strachey. Toward a
mathematical semantics for computer languages Oxford Programming Research Group Technical Monograph.
PRG-6. 1971.

See e.g. https://mathshistory.st-andrews.ac.uk/Biographies/Cantor/

*Alfred North Whitehead & Bertrand Russell, Principia Mathematica, CUP 1910, second edition 1927, paperback
edition to *56 1962, page xiv.
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strategies, to recent work on dialectica categories and container types. Then, Andrew
Johnstone provides a most instructive review of the recent book by Cliff Jones,
Understanding Programming Languages (Springer Switzerland 2020), again extremely
relevant to program language semantics.

Finally we have reports on some recent FACS and FACS-related events. Keith Lines
summarises the webinar by Conor McBride & Fredrik Nordvall Forsberg, Dimensionally
correct by construction: Type systems for programs. Jonathan Bowen details the ABZ
2021 conference, which was preceded by a festschrift for Egon Borger. Jonathan also
covers FACS and other relevant seminars that have taken place so far this year: Keith
Lines, NPL’s Experience with Formal Aspects; Marta Kwiatkowska, Probabilistic Model
Checking for the Data-rich World (BCS Lovelace seminar); and Michael Leuschel, New
Ways of Using Formal Models in Industry (joint FACS and FME seminar).

We hope you enjoy FACS FACTS issue 2021-2.

Tim Denvir
Brian Monahan
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Domain Theory — Revisited

Brian Monahan

Introduction

Just over 50 years ago, the logician Dana Scott discovered a way to give an elegant
mathematical semantics to Church’s (untyped) lambda calculus. At the time, this was an
extraordinary and most unexpected discovery that required some surprising and unanti-
cipated developments in the kind of mathematics involved.

This mathematics made significant use of a range of concepts, most of which were en-
tirely new to Theoretical Computer Science, at least up until that point. Although this
initially seemed all rather shocking and strange — certainly unusual — the mathematics
came to be seen as the beginning of a liberating revolution with some far reaching con-
sequences. The mathematical framework in question was, of course, Domain Theory,
as it later came to be known.

What is perhaps difficult for us to see today is just how controversial and infamous
lambda calculus had become amongst logicians and theoreticians of the day. From
the time it emerged in the 1920s as a primitive notion of “function as rules”, lambda
calculus was quickly seen by logicians to be rather problematical, despite consisting
of only a few equational rules. It was regarded with much suspicion and considerable
doubt as to its utility and consistency, since it was plagued with seeming foundational
questions from the outset, such as finite expressions which appeared to never terminate,
and particular terms which required arbitrary functions to have fix-points — and so on.
Perhaps the most shocking thing of all was that the lambda calculus was envisaged as
modelling something quite basic and fundamental — the primitive idea of “functions as
rules” — and yet it proved to be far from simple! If this could be so problematical, what
hope could there be for tackling anything more complicated?

The distinction between the typed and untyped lambda calculus is very important here.
The simply typed lambda calculus seemed to be far better behaved and relatively tame
(due to strong normalization), compared to its apparently unruly sibling, the untyped
lambda calculus. However, this only led to yet more unsettling questions and creating
even greater unease and suspicion in the minds of logicians. Given the simplicity, what
could possibly have gone wrong? The answer was that nothing had gone wrong — we
just hadn’t yet understood what the rules described.
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Roadmap

This essay takes an informal tour through various issues surrounding Domain Theory,
such as:

e What were the underlying questions that motivated Domain Theory’s develop-
ment?

e What problems can Domain Theory help us solve?
e How does Domain Theory work, mathematically speaking?

e And, what insights were needed?

The tour concludes by examining what Domain Theory opened up for Computing Sci-
ence and where it has led us to today.

What this essay doesn’t set out to do is to present a definitive historical account of the
development of Domain Theory — the story presented here is more concerned with the
ideas themselves and their inter-relationships. One may already find a very extensive
historical account of the origins and development of both lambda calculus and Domain
Theory from Felice Cardone and Roger Hindley [7].

My primary source for technical understanding, inspiration and background has been
an extensive chapter from the Handbook of Logic in Computer Science called Domain
Theory, by Samson Abramsky and Achim Jung [2]. It has proved to be an invaluable
and reliable resource concerning the mathematics of Domain Theory.

Logic, Language and Programming

These days we all know what programming is - programming involves instructing a
device to perform a series of calculations that solves some problem by producing out-
puts, given suitable inputs. These instructions determine the behaviour of the device and
they may be given in the form of textual computer programs, machine instructions — or
even simply by selecting and clicking on something in a browser window with a mouse.

The issue urgently confronting computing in the late 1960s and early 1970s was to do
with organising and instructing computer systems on an ever-increasing scale. It was
clear that this would need to be done through the use of computer programs written in a
variety of computer programming languages and later translated into machine instruc-
tions in an automated manner.

However, it was soon realised that the problem at hand was two-fold in nature;
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e Firstly, it concerned how to keep programs manageable so that precise instructions
for behaviour could be provided in machine format - via machine translators and
compilers.

e Secondly, how to make programs sufficiently intelligible to people so that an ac-
curate human understanding of the machine’s behaviour given by the program
could be obtained purely from the program text itself. Without this, it is very
doubtful how anyone'could organise, marshall and be confident of what any given
program would do — or even what it could do.

The issue became one of communication between human and machine in two distinct
senses — providing precise instructions to the machine to direct its activity, and human
understanding for creating and reasoning about systems behaviour. In short, programs
should provide the basis for reasoning about the behaviour they precisely describe. Both
logic and language are required for effective programming.

The remainder of this essay is concerned with the basics of what Domain Theory it-
self does and how its application helped to make programming itself more reasonable
and therefore more effective. This story involves understanding the primitive basis of
programming in terms of the (untyped) lambda calculus and showing how this prim-
itive calculus was given a precise mathematical semantics, despite the calculus itself
involving self-reference, thereby courting potential circularity and inconsistency.

What problem does semantics help solve?

Why do we need (model-theoretic) mathematical semantics — what problems can it help
us solve?

The short answer is that semantics helps to show that what we say is capable of being
meaningful, of conveying meaning. Imagine we are doing formal reasoning of some
kind in, say, something like first order predicate logic. What we would like to know is
that, when our formal reasoning is well-formed, we can be sure that the inferences we
make produce, at each stage, statements that make sense (i.e. they are valid).

To do this, we firstly need to introduce a mathematical semantics as a function that can
assign a suitable value to every well-formed expression and relational formula — we say
that such a value is a denotation. Typically this semantic function will need to depend
upon an interpretation (or model) associating denotations with primitive symbols and
terms of the language. Furthermore, we will say that any semantic function associat-

LOf course, where ‘anyone’ here includes oneself, after having written and tested the code only six
months previously!
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ing denotations with expressions and formulae (usually defined by induction over the
syntactical phrase structure), is known as a denotational semantics.

Formal semantics then defines what validity means by introducing a logical consequence
(or satisfaction) relation over the structure of formulae. This says what it means for uni-
versally closed statements (or sentences having no free variables) to be valid, relative to
a particular model. Sentences are then said to be (universally) valid whenever they are
valid with respect to all (appropriate) models. We also say that a system of inference
rules is sound whenever each inference rule preserves validity — that is, whenever the
premisses are valid, then so is the conclusion. Sound inferences map valid statements
into valid statements.

Obviously, the soundness of a logic or calculus is a very desirable property to have —
indeed, not possessing soundness would make it worse than useless!

Overall, semantics is generally needed to say what is meant by soundness of inference.
Without a semantics and a consequential notion of soundness, it calls into question
whether deduction and inference is even meaningful, and potentially undermining con-
fidence in the utility of the entire calculus.

It’s worth explicitly saying that formal calculi are often symbolically defined in a purely
algebraic style just in terms of equations or proof-theoretically in terms of inference
rules (e.g. process algebra, Structural Operational Semantics). This might be done
without any particular or overriding concern for providing a model-based denotational
semantics. In these cases, the focus of concern naturally becomes one of formal deriv-
ability using the inference rules. The extent to which that has any significance or not
boils down to what the calculus in question is for. Denotational semantics generally
makes an appearance to provide a mathematical correspondence between logical state-
ments about things on the one hand, and those relationships that hold berween things on
the other.

Consistency

The question of consistency is related to the notion of validity — and is therefore right
at the core of our concerns. To discuss this, it is perhaps easier to say what lack of
consistency, or inconsistency, means for a logic or calculus. Having done this, we then
define consistency to mean the lack of inconsistency, or equivalently, not inconsistent.

The general idea is that inconsistent systems derive absurd conclusions - such as assert-
ing that all values are the same when there are at least two distinct values (e.g. 0 = 1).
Inconsistency means that validity collapses, leading to all propositions being identified
together — making truthhood and falsehood indistinguishable. We may more generally
say that a logic is inconsistent when every possible sentence or statement is derivable —
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and therefore no distinctions could be drawn by using inferences in that system.

From a model-theoretic point of view, this immediately says that there cannot be any
well-defined, non-trivial models for an inconsistent logical system — because in any non-
trivial model, only some propositions will hold, and others will not. Since inconsistency
collapses validity and all propositions would be identified together, there could not then
be any non-trivial models.

Consequently, a consistent system always has at least one well-defined, non-trivial
model (typically many, many more than one!) — and, from an inference point of view,
not every statement or equation is derivable.

All of this will have particular significance when we come to consider the semantics of
the untyped lambda calculus below.

Untyped Lambda Calculus

The untyped lambda calculus arose in the late 1920s and was pioneered by a number
of logicians, primarily Alonzo Church and then Haskell Curry. This formal system
provided a way to explore functional forms involving abstraction, substitution and ap-
plication [13, 4]. The (simply) typed lambda calculus came about somewhat later in the
early 1930s. For completeness, here are the basic rules of the untyped lambda calculus?:

aconv: Az« M = \y. Mz :=y] (for variable y not occurring freely in M)
Beonv: (A\x.M)N = Mz := N|
neonv: (Ax .« M(a )) =M (for variable = not occurring freely in M)

The above are generally regarded as left-to-right reduction rules. The o reduction rule
only renames bound variables within terms, bringing no change. On the other hand,
(3 reduction 'unfolds’ the terms on the left, therefore doing something more radical.
Finally, 7 reduction cancels redundant lambda’s.

After applying these rules in a (possibly empty) sequence of reductions, a term is said
to be in normal-form (or normalised) when no further 3 or n reductions are possible,
modulo « conversion.

However, this begged some questions. For example, does it matter how each of these
strikingly simple rules is applied? Could different normal-forms be produced by differ-
ent reduction sequences?

These questions were cleared up by Alonzo Church and J. Barkley Rosser in 1936 when

2The substitution notation M [z := N| means “substitute term N for all free occurrences of x within
term M™.
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they showed that reduction® is confluent. This meant that for any term ¢ that reduces to
term t; and also reduces to term ¢, then there exists a common term t3 where both terms
t, and t; reduce to t5 [15]. Furthermore, this implies that normal-forms are unigue,
since if any reduction sequence could produce a term in normal-form, then all of them
could, and what’s more, each of these normal-forms have to be equal to each other, by
transitivity of equality.

This removed some degree of concern for the untyped lambda calculus. When terms
possessed normal-forms, then reduction sequences behaved in a deterministic manner,
yielding a single result. However, as illustrated below, not all reduction sequences nor-
malised, raising further concern over what the untyped lambda calculus might mean.

Self-Reference, Circularity ... and Non-Termination

At the core of this issue are those meaningful lambda terms that do not reduce to normal-
form, such as, for example, Curry’s fix-point combinator, Y":

= M- (@ @)y - fly(y))

Applications of this expression do not normalise because of the following derivation®:

Y(g) = Az« (x () Ay - g(y (v))) [1]—defn. of Y + 3 conv.
= Azeg(z(2))NAy gy (y))) [2] - 5 conv. + « conv.
= g((Az gz (2)) Ny« gly (v)))) [3] - /3 conv. + a conv.
= g(Y( ) [4] — back substitution from [2]
= glglg(---))) [5] — by inductive repetition of [4]

The above well-formed expression for Y contains self-applications such as (x (z)).
Self-applications like this illustrates how every entity could always receive arguments
and may also be applied as an argument, even to itself. As can be seen, the self-
application directly gives rise to a circularity at each stage, where a fresh application
is produced. This is effectively a direct, unguarded loop — and, as we may all appreci-
ate, this leads to non-terminating reduction behaviour when evaluated eagerly.

Combinatory Logic (CL)

In an earlier and parallel development to untyped lambda calculus, Combinatory Logic
(or CL) was formulated and explored originally by Moses Schéenfinkel in 1924, and

3Originally proven for a more restricted variant of untyped lambda calculus.
4The underlining indicates the site of substitution — typically 3 conversion.

10
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then rediscovered by Haskell Curry. The general idea was to develop a way of express-
ing functional forms, but without the explicit use of bound variables. In modern terms,
this amounts to an equational approach that expresses combinatory functions, in much
the same way that untyped lambda calculus does [13, 4, 28]. We have:

FSfgr = fa(ga) FKzy = x
Fr =2 e =y
Fy = =x

Fa =
Ffz =

Ff=g
Ffx=gx

I
— |
<

Equational inference rules for {S,K} Combinatory Logic

There is an elegant simplicity and a purity of form in CL. Whereas the rules for the un-
typed lambda calculus involves a meta-logical “substitution” notation, no such device is
necessary in formalising CL. Because these notations are inter-convertible and therefore
expressively equivalent, the issues inherent in either form necessarily find expression in
the other. Because of its spartan simplicity, expressions in CL are typically consider-
ably longer than in pure lambda calculus, with a worst-case expansion of O(n?) [16].
For example, given below is the shortest possible S K term [30] representing a fix-point
combinator — of which there are many:

SSK(S(K(SS(S(SSK))))K)

The particular combinator names, S and K have some informal mnemonic value — the
S combinator can be thought of as a kind of ‘Substitution” operator, whereas the K
combinator might be thought of as a kind of ‘Konstant’ operator!

The core problem

The issue of course is that both CL and untyped lambda calculus were each very basic
formal systems encoding functional forms together with a process of calculation, given
in terms of equational reduction. It is hard to imagine a simpler system than these, that
expressed the same intent.

11
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Given this stark simplicity, it was intuitively clear that anything more practical or more
involved in terms of computation would almost certainly exhibit aspects similar to those
witnessed in these calculi. Therefore, studying these rather primitive systems seemed
like a necessary step to make. And so it proves.

The general niive idea was that lambda terms formalised functions intensionally by
defining them via equational rules, as opposed to defining them extensionally in terms
of sets of ordered pairs. It was quite naturally assumed that these two notions exactly
corresponded and were merely two different ways of describing the same thing.

However, as understanding of lambda calculus grew, it became increasingly clear that
these two notions of function were not completely alike. In particular, because of the
Y combinator, this showed that all lambda terms possess a fix-point — namely, the term
Y f since:

Y(f) = [V ()

Moreover, this also meant there were also terms that failed to normalize. This failure
might be naturally accounted for by considering lambda terms just to represent partial
functions — where the lack of normalization then corresponded to undefined behaviour.

The confluence result of Church-Rosser was especially welcome as it showed that the
way lambda terms could be reduced to normal-form was entirely consistent with this
suggestion (c.f. deterministic behaviour). Importantly, it also demonstrated that the
lambda calculus was, from a proof-theoretic standpoint, consistent (e.g. not all values
were equivalent).

However, there was a remaining serious issue, though: every lambda term represented
a function-like entity, since every term could be applied to every term, including it-
self. This severely complicates the idea that lambda terms somehow represented simple
functions of any kind. The difficulty here amounts to finding a non-trivial mathematical
structure D isomorphic to its own set of functions — that is:

D~ (D—D)

However, this flatly contradicts Cantor’s Theorem concerning cardinalities of sets and
their corresponding sets of functions. The only possible set-theoretical solution might
conceivably be to make D a trivial, one-point set and then the set of functions would
then have to correspond to the set of fotal functions from D to D, just to satisfy the
cardinality constraint®.

However, using total functions here could not explain the lack of normalisation for some
terms — nor the fact that the Church-Rosser result implies that D would have at least two
distinct values. Problematical indeed!

3 Any set of partial functions for any non-empty set has at least two elements.

12
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All of the above was widely understood during the 1930s. Despite the Church-Rosser
result clearly demonstrating consistency for the untyped lambda calculus as a pure re-
duction theory of functional forms, it was hard to reconcile this with what was generally
understood mathematically about functions.

Unsurprisingly, this led to a general disquiet about the untyped lambda calculus amongst
logicians and mathematicians. Of course, no such concerns plagued the simply-typed
lambda calculus and typed combinatory logic — and generally speaking, research focus
shifted towards those approaches instead.

Alan Turing and Lambda Calculus

One may therefore be forgiven for thinking that all this fuss about a somewhat bizarre
equational calculus is rather blown out of proportion — after all, does it really matter if
there were all these issues? The short answer is, yes, of course it does.

The basic reason is that, as part of Alan Turing’s landmark work in 1936-1937 [31, 32,
23, 5] Turing showed that a number of what we would now call computational models
(including lambda calculus) were all equivalent, in the sense that they were intercon-
vertible — everything that could be expressed in one model, could also be expressed in
any of the other models. What’s more, Turing was able to present a convincing justific-
ation [31] that “effective computation™ corresponds to performing symbolic operations
according to rules (e.g. Turing Machines, Post Correspondence Problem, and Lambda
Calculus) [8, 11].

This meant that untyped lambda calculus embodies full-blown universal computation in
all its intricate variety — which provided even greater impetus to understand its nature.
By giving a model-based semantics to untyped lambda calculus, it meant that these
concerns of logicians could then be resolved in purely mathematical terms.

Although the Church-Rosser theorem had already shown in the 1930s that untyped
lambda calculus is consistent proof-theoretically, what wasn’t known until Scott was
if a model-based semantics of untyped lambda calculus properly existed. Although it
is now known that there are many possible models for the lambda calculus (consider
Cartesian-Closed Categories), Domain Theory shows us that it is consistent to say:

e Asintended, lambda terms denote functions of some description.

e Although not every term has a normal-form, even those terms that don’t normalize
are still meaningful and nevertheless possess a denotation. What’s more, even
though a sub-term may not be normalizing, a term containing such a term may
still normalize overall.

e FElegantly explains why all lambda terms possess fix-points.

13
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Properties of calculations in lambda calculus could be established just by mathematic-
ally examining and exploring the model itself. In this way, the model theory naturally
provides a metatheory for the underlying calculus and its derivation structure.

The need for programming language semantics

This puzzle of the untyped lambda calculus languished for many years. Here was what
appeared to be a remarkably simple calculus consisting of only a few rules that was
intended to capture the basic idea of “function as rule” (i.e. computation) — and yet
there were several deep issues concerning what it might mean!

During the 1960s and 1970s, the need to use programming languages to express pro-
grams and then to compile, translate and run them, became ever more pressing. Back
then, most of the R&D effort on language development and design had focused almost
exclusively on the ‘parsing’ problem — how to parse complex textual phrase structures
into tree representations.

However, as languages become ever more sophisticated and therefore complex, the com-
pilers, translators and other infrastructure necessarily become much more technically
complicated and difficult to manage. For example, landmark languages like ALGOL 60
had by then emerged, as well as executable application languages like SIMULA, both
of which needed complex processing to translate from phrase structures into machine
instruction sequences. The issue of compiler correctness, and how to describe what that
might mean, loomed large.

For example, the language SIMULA illustrates this trend of increasing tools sophistic-
ation arising from complex application needs that were provided for through language
design. From the outset, SIMULA was considered mostly as a way to precisely describe
complex arrangements of systems that interact to produce behaviour. Operationally, this
included all sorts of complex structures, such as coroutines, discrete event simulation,
garbage collection and of course, object-oriented programming in terms of objects and
classes [17, 9].

At around this time, the idea of turning to logic and using some kind of mathematical
approach was starting to emerge among researchers, in particular Christopher Strachey
at the University of Oxford; this approach would involve extending and developing lin-
guistics and logical structure to give meaning and content to programming languages.
The whole area cried out for finding a way to utilise mathematics somehow to help bring
some coherence and much needed structure to the general understanding of program-
ming languages.

However, given the puzzle of the untyped lambda calculus — still unsolved at that time
— it was clear that such a programme of research was never going to be straightforward.

14
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Fortunately, Christopher Strachey was by then collaborating with Dana Scott, both of
whom were no doubt very well-aware of the issues surrounding formal mathematical
semantics. In particular, these concerns included the potentially problematical nature of
general recursive definitions over syntactic phrase structures (See [20]).

The puzzle of the untyped lambda calculus mentioned earlier suggested that a novel
approach to mathematical semantics of programming languages was required. This was
the same kind of problem in each case after all — the untyped lambda calculus was
known to be centrally concerned with computation, and it also seemed highly plausible
that the foundational issues arising for providing the lambda calculus with a semantics
could easily reappear when dealing with more complex programming languages.

This all pointed towards finding some degree of deep understanding of the lambda cal-
culus itself and the mathematical difficulties of giving it a formal semantics.

The puzzle of the lambda calculus needed to be solved!

Scott’s solution

The key insight was to realise that lambda terms weren’t representing arbitrary functions
between plain old sets of values, but instead they represented some kind of function over
sets that were endowed with some extra mathematical structure. Furthurmore, these
lambda definable functions were not entirely arbitrary themselves — they also preserved
this additional structure.

Setting up the framework: Domains

In his 1970 PRG monograph ”Outline of a Mathematical Theory of Computation” [19],
Scott showed how a semantic model of the untyped lambda calculus could be construc-
ted. The first part of the monograph introduced and motivated his framework under-
pinning his approach. Within this section, Scott in fact used the term “data type” to
stand for what we might now call a domain®. To avoid any further confusion, the term
’domain’ is used here instead. The framework Scott originally presented was given in
terms of 5 axioms’ or required properties of domains and were as follows:

1. A domain is a partially ordered set.
Domains form basic set-like entities and contain the elements or values of in-

®Within the practice of semantics, the term *domain’ is somewhat fluidly defined in general, simply
because of the great variety of possible structures available for use. Typically, what 'domain” may mean
is only more sharply defined within a particular context. In any event, domains are generally some
class of partially ordered sets with additional structure and satisfying some particular constraints e.g.
completeness.

15
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terest. These domains are endowed with a partial ordering over the elements and
represents approximation’between values, written as = C 7.

Intuitively, this ordering qualitatively captures how data can approximate other
data — for example, consider a sequence of real numbers of greater and greater
precision converging towards a real number in the limit.

2. Mappings between domains are monotonic.
The functions of interest (or mappings) all preserve this ordering on each domain.
If m: A — Bthen, foralla,a’ : A+ aC o implies that m(a) C m(a’).

Intuitively, monotonic mappings preserve approximations — as the inputs become
better known, so also do the resulting outputs.

3. A domain is a complete lattice under it’s partial ordering.
A partially ordered set P is a complete lattice whenever every subset S of P has
a least upper bound, written as | | S in P. This also implies that every subset has
a greatest lower bound, written as [ | S.

Taking the entire set P, there is necessarily a least element of P, written as |, as
well as a greatest element, written as T.

Intuitively, the lattice structure captures how information may be combined to-
gether to yield improved approximations. Not all combinations are consistent in
that way and these yield the over-determined or inconsistent element, represented
by T, the greatest element of a domain.

4. Mappings between domains are confinuous.
At this point, Scott brings in the key idea of continuous function, from topology,
albeit in a unexpected way. The broad idea is that continuous functions preserve
limits of directed subsets.

To see what’s going on here, we need the idea of a directed set in a partially
ordered set P. A non-empty subset D of P is a directed subset whenever for any
two elements a. b € D there exists d € D such thata C d and b C d.

We mention that monotonic functions preserve directed sets — that is, they map
directed subsets for a domain into directed subsets for the result domain. This
holds because monotonic functions preserve the relevant ordering.

However, in general, monotonic functions may or may not preserve limits — that
is, least upper bounds of (infinite) directed sets. Because of this, we need to
consider instead those functions which do.

"To reduce notational clutter, we do not use decoration to distinguish the orderings in different, but
related, domains
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We say that a monotonic function f : A — B is a Scott-continuous function
whenever, for every directed subset C' of A, we have that:

flljoy = {freoeB|cecy=]]0)

We now write [A — B] for the set of all Scott-continuous functions between
domains A and B.

The intuition is that directed subsets, I of a domain 7" represent consistent sets
of approximations of some value, v = | | D from T'. The Scott continuous func-
tions are then those functions mapping consistent approximations into consistent
approximations, where the function applied to the limit of the inputs, is the same
as the limit of the corresponding outputs.

In summary, continuous functions preserve the limits of consistent information.

5. A domain has an effectively given basis.
This is the final ingredient of the framework described by Scott, and is the most
technical of his requirements by far. It introduces some constraints of a topolo-
gical nature ensuring that all entities are the limits of finite approximations, largely
echoing the situation of the real numbers being limits of convergent rational num-
ber intervals.

The approach taken here is relatively economical and introduces only a few more
concepts. The main idea is to ensure that all values in the data type are limits of
directed subsets of what are called basis elements.

We firstly introduce the way-below binary relation to capture more tightly what
approximation means for a domain, 7". We say that for =,y € T that x is way-
below y, written as x <& y, whenever, for all directed subsets D of 7', that if
y C | | D then there exists a d € D such that x C d.

It is worth noting that if x <& y then @ T y, as one might expect. Intuitively,
what © <& y says is that @ neccessarily approximates y because whenever y
approximates d = | | D for any directed subset D of 7', then there is always some
value a € D such that x approximates o which, in turn, approximates d. Clearly,
this must also mean that = C | | D for every directed subset D whenevery C | | D
— which explains the terminology ‘way-below’.

We can now introduce what is meant by the basis elements for a domain 7T, also
known as the compact or finite elements for 7.

An element ¢ is a compact element of domain 7" whenever ¢ <& ¢ — informally,
this means that ¢ necessarily approximates every element above it. Hence, for
every directed subset D of 7', if ¢ C d = | | D, then there exists an element a € D
such that ¢ C a. We also define the set of all basis elements for T to be:

KT)= {ceT | cxc}
= {ceT | ciscompact }

17
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Finally, putting all this together, we say that domain 7' is algebraic whenever:

a. Foreveryv € T,wehavethatv = | { c€e K(T) | ¢cC v}
b. The basis set K (T') is at most countably infinite.

Technically, what is called a domain here is known as an w-algebraic domain. As
hinted at earlier, every element of the domain 7 is then the limit of all the compact
(or basis) elements that approximate it.

Interlude : Domains, least fixed points and recursion

Here we take an interlude to show how domain theory explains the idea of recursion
for continuous functions, through the use of least fixed points of appropriately given
functionals. Let D be any domain and let f : [D — D] be a Scott-continuous function
from D to D.

We mathematically define the least fix-point operator FIX : (D — D) — D in terms of
domains by:

FIX(f) =| {f(L)eD | neN}
We can see that, for continuous f:

JEIX() = [ /ML eD | neNY)
= W/suUmL)eD | neN}
= /(L) eD | neN}
= FIX(f)
This shows that every Scott-continuous function has a fixed point.
Our next illustration uses a hypothetical programming notation to explain how recursion
is related to least fixed points. Consider the humble factorial function, fact, mapping
Nat to Nat, typically defined by:
letrec fact (n) = if n==0 then 1 else nxfact (n-1)
The letrec indicates here that a recursive definition is being given and semantically

equates to an implicit use of the fix-point operator, FIX. In a call-by-name, lazy language
(such as Haskell, for example) the above could equally be defined like this:

let fact = FIX(Afn « An « if n==0 then 1 else nxfn(n-1))

18
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where we also have the following recursive definition:
FIX £f = Aa « f (FIX f) a

We shall show how this evaluates in a specific case — and to help with that, first introduce
this auxiliary function, called bodyFact by:

let bodyFact fn n = if n==0 then 1 else nxfn(n-1)

meaning that we have:

fact m (FIX bodyFact) m

= FIX (Afn « An « bodyFact fn n) m

Using this machinery, we can then evaluate fact 2 by unrolling the above definition
using the properties of fix-points:

fact 2 (FIX bodyFact) 2
bodyFact (FIX bodyFact) 2

= if 2==0 then 1 else 2+ (FIX bodyFact) (2-1)

2 % (FIX bodyFact) (1)
= 2 x (bodyFact (FIX bodyFact) 1)
= 2 + (if 1==0 then 1 else 1« (FIX bodyFact) (1-1))
= 2 % 1 % (bodyFact (FIX bodyFact) 0)
2 % 1 » (if 0==0 then 1 else 0 (FIX bodyFact) (0-1))
= (2 x 1 1)y = 2

This has illustrated, via an example, how fix-points can provide a mathematically sound
account of recursive definitions.

A semantic model of the untyped lambda calculus

In the final section of [19], a detailed sketch is given showing how, in broad outline, the
framework could be used to build up a repertoire of basic domain-building operators
for constructing compound domains out of given domains. It was there shown how
these domain operators would then be used to formulate domain equations whose least
solutions (up to isomorphism) can yield other useful domains. These solution domains
would typically be used to provide the mathematical structures (e.g. lists, trees, etc.)
over which recursive functions could then be defined.

The elegant idea proposed by Scott and Strachey in [20] was to define the abstract syntax
for a notation using domain equations, thereby introducing formal term structures that
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embodied the syntax represented in terms of trees etc. Semantic functions may then be
defined over these term structures by structural induction and recursion®.

As a part of this discussion, Scott then indicated how to construct a domain so that a
semantic model for the pure untyped lambda calculus could at last be given.

Consider the following infinite sequence of domains D);, defined by:
Dn+1 = [Dn — Dn]

Starting from a given (non-trivial) domain for D, (e.g. a two-point domain), the required
solution is 1), the limit object that is obtained by stitching together’ all of these spaces
D,, via appropriate embeddings” Finally, we have that:

Dy = [Dy — Dy

where, importantly, the isomorphism pair involved is itself produced as a by-product of
constructing the domain D,. Such domains having a recursion to the left of the function
arrow are known as reflexive domains.

Computable functions are continuous — but not vice-versa

What might have puzzled some readers here concerns the relationship between con-
tinuous functions and computable functions. For example, it might be assumed that
continuity implies computable — but this is false in general (e.g. for infinite domains)!

All partial recursive functions can be shown to be Scott-continuous, as defined in Do-
main Theory [2, 26, 24]. However, just on cardinality grounds, there are far too many
continuous functions for them all to be computable! The situation here is somewhat
analogous to the cardinality relationship between the rational/algebraic numbers (count-
able) and the real numbers (uncountable).

Moving away from Complete Lattices to DCPOs

In [19], domains were taken to be Complete Lattices, which meant that domains would
necessarily possess a top value, T. The immediate advantage of using complete lattices
was that there could be no question that the appropriate limits existed, thus neatly set-
tling any unease there might have been on that score. However, from the point of view

8 A popular alternative approach uses Initial Algebra Semantics to define semantic functions [12].

Technically, continuous “embedding-projection pairs” need to be used as 'fitting’ morphisms instead
of the simpler embeddings, due to complications connected with the structure of function spaces (See
Section 4.2 of [2]).
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of defining semantic functions for programming notations, having a T element was also
proving somewhat cumbersome, awkward and difficult to motivate.

It was then noticed that only directed subsets were required to have least upper bounds,
instead of taking every subset in order for the theory to work out. The common approach
adopted for Domain Theory since then generally uses Directed Complete Partial Orders
(DCPOs) instead of Complete Lattices'®.

A partially ordered set P is a DCPO whenever:

1. P has a least element, 1 € P, and

2. Every non-empty directed subset D of P has a least upper bound in P
ie.||D e P.

By using DCPOs instead, this provided a helpful relaxation that simplifies some aspects
of the theory and additionally increases the range of natural examples of domains, and
hence applicability.

Categories, Domain Operators, and Domain Equations

It is perhaps worth saying that what Domain Theory provides overall is a mathematically
rich repertoire (or foolbox) of ways of constructing mathematical spaces within which
our computational constructions and evaluations can then exist. Accordingly, the central
problem answered by Domain Theory concerns showing how to systematiclly construct
these mathematical semantics spaces in general.

Quite naturally, Category Theory then began to be seen as providing the formal un-
derpinnings and an appropriate setting for the wider development of Domain Theory
itself. Category Theory gives a suitably structured account of broad classes of mathem-
atical spaces, based on the fundamental notion of transformations that preserve specific
kinds of mathematical structure — from morphisms between objects, to functors between
morphisms, and then natural transformations between functors.

This modern categorial form of Domain Theory was pioneered by Gordon Plotkin, who
initiated, discovered and transformed so much of what is now known and understood
about these rich mathematical spaces [26, 2]. A major part of this involved showing how
recursive domain equations can be formulated and solved in various categorial settings
(with Mike Smyth) [25]. Plotkin’s contribution is of course not limited to Domain The-
ory but has substantially touched many areas of semantics and Computing Science,such
as formulating the modern treatment of Operational Semantics, for example [27, 6].

A5 a postgraduate student at Edinburgh back in the late 1970s/early 1980s, I learnt Domain Theory
at the feet of Gordon Plotkin, using his ‘Pisa’ notes [26]. These notes generally took the more minimal
approach of using w-chain Complete Partial Orders, rather than the DCPQs mentioned here.
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Domains Elements Ordering |
One-point domain, O {1} 1=1
Two-point domain, 1 {L, T} 1CT
Truth domain, T {L,tt, ff} Lot L Cff
Number domain, N | {L} UN | LCn,forallneN

Some Basic (Flat) Domains

Name Operation Definitions
eup:[D — Djl,dn:[D; — D]
Lifting D, « dn(up(d)) = d, forany d € D

« L Cup(d), forany d € D

«inl: [C — (C & D)],inr: [D — (C & D)]

«inl(c) = (¢, 1), foranyc e C — {1}

Coalesced Sum Ca&D «inr(d) = (d,2),foranyd e D — {1}

«inl(L) =L =inr(l)

«e.g L Cinl(e), foranyce C — {L}

«f3t: [(Cx D) = Cl,snd: [(C'x D) — D]

Cartesian Product CxD « fst({c,d)) = c,snd({c,d)) =d,forany c € C,d € D

(e, d)C(d,d) < (cCHANECT)

CoD « As for Cartesian Product, except that pairing is separately
strict: {L,dy=1 = (¢, L)

« The set of Scott-Continuous functions from C' to D,
ordered pointwise: c C ¢ = f(e) C f()

1 - As above for Function Space, except that functions
¢ — Dl are strict: f(L) = L

Smash Product

Function Space C — D]

Strict Function Space

Some Domain Operators

Two-point domain 1=20,
Domain of truth values T=161
Domain of natural numbers Nat= 1 ¢ Nat
~ N,
Domain of finite lists NatList = 1 ¢ (Nat ® NatList)
Domain of finite trees NatTree = | @ Nat ¢ (NatTree ©® Nat @ NatTree)
Domain of finite and infinite | NatStream = 1 & [1 — (Nat x NatStream)]
streamns

Some Domain Equations
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This section completes our brief tour of the basic technical intricacies of lambda cal-
culus and Domain Theory. More advanced topics necessarily had to be omitted, such
as a discussion of Scott’s universal domain construction, Pw, (see [21]), Scott’s eleg-
ant reformulation of Domain Theory in terms of Information Systems [22], Abramsky’s
notion of Domains in Logical Form (see [1]) as well as the question of fill-abstraction

[3].

More technical detail can be found in the mathematical accounts already cited [26, 2].
Further details on lattices and partial orders may be found in the textbook by Davie and
Priestley [10]. There are a number of well-known textbooks available covering elements
of Domain Theory and mathematical semantics such as [29, 18, 33], also including the
following online notes: [14].

Discussion

The remainder of this essay discusses a range of questions typically raised about Domain
Theory, with the hope of dispelling some myths and misconceptions that have arisen
over time.

Domain Theory seems strange and unusual

At first glance, Domain Theory seems rather strange mathematically. Who would have
thought that considerations of topology, continuity and approximation would ever make
any appearance within Computing Science itself, a subject that is highly focused upon
discrete actions and systems behaviour? And yet, that was what was needed to solve the
puzzle of the untyped lambda calculus!

As already discussed earlier, it was clear that untyped lambda calculus captures some-
thing deeply primitive about the nature of effective calculation. The fact that such a
calculus was extremely simple and yet contained apparently paradoxical elements sug-
gests that more complex systems of programming could contain at least similar sources
of difficulty, with probably far greater complexity and variety to follow.

We have seen that the primary difficulty solved by Domain Theory was showing how
to construct particular mathematical structures containing appropriate semantic denota-
tions — providing a semantics modelling toolkit. The development of Domain The-
ory made it possible to confidently formulate and routinely write down mathematical
equations corresponding to language definitions, allowing language designers to reason
about what was meant through mathematical investigation.

A further reason that Domain Theory may seem at least unfamiliar to some is that, in a
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strong sense, Domain Theory necessarily operates at the meta-mathematical level of the
logical models used to interpret logical statements and definitions, rather than drawing
inferences about objects within that logic.

Domain Theory and Engineering Specifications

For some practitioners, the preceeding discussion of Domain Theory may have seemed
somewhat esoteric and at odds with their understanding and general experience of com-
puting. For example, formal software specifications are typically based on mathematical
formalisms such as Higher Order Logic and Typed Set Theory (e.g. Z and VDM), all
of which seemingly have little or nothing to do with the arcane elements of Domain
Theory.

It is true that Domain Theory does not make a direct and explicit appearance in those
contexts. However, that being said, the study of Domain Theory forms a part of the
model-theoretic foundations of mathematical semantics more widely and has therefore
indirectly informed and influenced those areas. Domain Theory, together with the theory
of inductive definitions, is largely responsible for providing a well-founded mathemat-
ical approach to recursion and recursive definitions.

More subtly, it was realised that, with a careful set-theoretical treatment of types, a
more conventional logic-based approach might be very effectively used for software
specification. In that set up, all entities would be freely assigned meanings, just as in
predicate logic.

However, the main sticking point would then be making sure that the sets and functions
thus assigned as denotations satisfied appropriate structural induction principles and
such like, so as to accord strongly with our computational experience. This amounts to
an extra-logical requirement that the assigned models were in some sense minimal'' —
which in turn brings the discussion full circle back to concerns about recursive definition
of various kinds, as tackled within Domain Theory.

Does untyped lambda calculus remain controversial?

Admittedly, the untyped lambda calculus did achieve some notoriety early on because
of its association with an early system of logic later shown to be inconsistent (the Curry
paradox — See Chapter 17B of [13]). As mentioned earlier, there were also concerns
around the potential for non-termination and circularity due to self-application. As we
have seen, this made niive interpretation of lambda terms as pure functions somewhat
challenging!

"More technically, minimality corresponds to initial in an appropriate sense from Category Theory.
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However, untyped lambda calculus is now far better understood and its equational theory
is now known to be consistent, while also accepting that some terms may not normalise.

What about concurrency?

Concurrency and Parallelism remains a hot topic for research in mathematical semantics
and Computing Science. Within Domain Theory itself, there are semantic domains
given by the theory of powerdomains, due to Plotkin and Smyth [26, 2], as well as event
structures, as developed by Winskel [34], all of which have application to concurrency.

How is Domain Theory used today?

At its core, Domain Theory provides two things:

e It firmly establishes that recursion and recursive definition, when appropriately
guarded, can be generally understood mathematically in terms of concepts such
as approximation, limit and fix-point.

On the one hand, there are other ways in which recursion might be given a per-
fectly respectable understanding such as by structural induction, by (higher order)
primitive recursion or by proving a theorem showing that the particular definition
has a unique solution. However, each of these approaches generally imposed fur-
ther constraints on the form of the recursive definition in some manner to ensure
that solutions (uniquely) exist. On the other hand, Domain Theory provides a
more general and less constrained foundation for the mathematical account of
computational recursive definitions.

e Domain Theory shows how to construct mathematical spaces in which recursively
defined entities are then guaranteed to exist.

The success of Domain Theory as a semantic framework providing the foundation and
underpinnings of programming language semantics has encouraged the development
and exploration of other kinds of semantic frameworks, such as Type Theory and Struc-
tural Operational Semantics, albeit from a more proof-theoretical starting point. Each
of these have in same way benefited from Domain Theory, if only because they make
use of a similar meta-mathematical toolbox of ideas and techniques.
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Conclusions

What Domain Theory tells us is something profound. For example, it shows that the
untyped lambda calculus is surprisingly quite meaningful after all and is more accurately
understood to be a uni-typed system, as opposed to a type-free system. Much the same
kind of situation arises with the more free-wheeling programming/scripting languages
like Javascript, Python, Perl, Lisp and Prolog, in the sense that they all do possess some
form of typing, except it is rather implicit, very often having some dynamic effect at
runtime.

Much of modern computing has inherited ideas and concerns that were clearly evident
within Domain Theory. Prior to the emergence of Programming Language Semantics
and Domain Theory, concerns in Computing Science were largely restricted to auto-
mata, syntax and parsing, and, of course, complexity theory. Although Domain Theory
may not be as fashionable as it once was, it does continue to shape and influence Com-
puting Science.

Domain Theory is all about showing that our computational ideas are grounded and that
they make sense by showing how to build consistent models in which our language-
based constructions can be embodied. Without Domain Theory and Programming Lan-
guage Semantics, how would anyone be able to consistently judge correctness, even in
principle? How could we know what it means for a compiler to be correct?

Language descriptions are necessary and are used to articulate (by reasoning) what is
and what is not permitted. Without a mathematical basis of some kind, it would be
difficult to argue one way or another. Although Domain Theory may not make an ex-
plicit appearance, it nonetheless has a profound effect by showing that computational
definitions can be given in a precise and principled fashion and in a way that ultimately
‘makes sense‘ mathematically.
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History of Computing Collection at Swansea University

The History of Computing Collection specialises in computing
before computers, formal methods, and local histories of
computing. An introduction to the Collection appeared in the last
issue of FACS FACTS (2021-1 February 2021, pp.10-17). The
Collection is located on the Singleton Campus of Swansea
University; it can be visited by appointment. A small nhumber of
items from the Collection are on display in the Computational
Foundry, Bay Campus, which is the home of the Computer Science
Department. All enquires welcome.

From the History of Computing Collection, Swansea University:

Haskell B Curry at War

Haskell B Curry (1900-1982) is known to computing students as the namesake of the
functional programming language Haskell. In logic he is known for his work on
combinatory logic which has influenced the design of modern functional programming
languages (e.g., Turner’s SASL, Ken Iversons APL). Combinatory logic is built on the
idea of operations for building definitions of functions called combinators. Moses
Schonfinkel (1888-1942), at Gottingen, had introduced the idea in 1924. Curry went
to Gottingen where he gained a PhD in 1929. Curry solved the problem of
completeness for a set of combinators. Over decades, starting in the 1930s, Curry
developed their theory that became combinatory logic. Curry was very rigorous in
matters of logic, like many founders of mathematical logic in the early Twentieth
Century. He was interested in ‘philosophical’ questions about mathematical ideas
commonly taken for granted and for which radical and primitive idealisations are
necessary.

In the previous issue of FACS FACTS (2021-1 February 2021, pp.23-25), Jonathan
Bowen wrote about Moses Schonfinkel and combinatory logic. It was in celebration of a
century old pure mathematical idea with unforeseen but significant applications.
Combinatory logic is yet one more example of our debt in computer science to early
and (very) abstract speculations of logicians.
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Curry on Programming

Curry deserves to be better known for his theorising about programming. This belongs
to his war work for the United States Army's Ballistic Research Laboratory, which he
moved to in 1944. In the History of Computing Collection, we have items that bring to
life computing between and during in the world wars. The image (Figure 1) shows our
copy of a report on programming the ENIAC by Haskell B Curry, written together Willa
A Wyatt and finished in August 1946; it was declassified in 1999.

They begin on page 6 of their report with these clear explanations:

1.1 The problem of inverse
interpolation may be stated as
follows. Suppose we have a table
giving values of a function x(t),
and possibly some additional
functions, for equally spaced
values of the argument t. It is
required to tabulate t and the
additional quantities for equally
spaced values of x.

1.2 This problem is important in
the calculation of firing tables.
Suppose the trajectory
calculations have given us the
coordinates (x,y) of the projectile
as functions of t (time) and ¢
(angle of departure.) For the
tables we want t and ¢ as
functions of x and y; indeed we
Figure 1 wish to determine ¢ so as to hit
a target whose position (x,y) is
known, and t is needed for the fuze setting or other purposes. This is a
problem of inverse interpolation in two variables; it can be solved by two
successive inverse interpolations on one variable.
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Such computational work is core business
for the Ballistic Research Laboratory of the
Ordnance Department! The Laboratory was
established in 1938 from the Research
Division at the Aberdeen Proving Ground in
Maryland. The production of ballistic tables
for guns was a central problem for the
army.
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These were complex tables that, ideally,
gave the angle of elevation required for a
particular type of shell to hit a target at a
given range with a given propellant. The
tables gave variations to account for:
atmospheric temperature; air density;
wind; angle of sight; weight of projectile;
muzzle velocity; and drift. Calibrating a
gun was a massive computational job. See
Bergin (1996).

The images show the cover and a page
from our copy of a table book for gunnery
calculation (Figures 2 and 3).
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Operating ENIAC  (Photo: US Army).

It was the Ballistic Research Laboratory that commissioned a hugely expensive project
to mechanise these tasks of table making. (Reminding us today of Babbage’s first steps
in mechanising table-making using the Difference Engine.) Thus, the Electronic
Numerical Integrator and Computer - ENIAC - was designed and built in order to
calculate gunnery firing tables. The project was conceived in 1943 and completed in
1945 at the University of Pennsylvania led by John Mauchly and J Presper Eckert. It was
reconfigured 1947-48 and decommissioned in 1955. ENIAC was destined to be
celebrated as the first programmable electronic computer in the USA.

ENIAC was indeed programmable, electronic, and a general-purpose digital computer.
It was programmed by rewiring the machine: the positions of the wires and switches
was a program! Curry’s co-author Willa Wyatt was a mathematician who programmed
ENIAC.

The report describes general schemes for programming inverse problems that can also
be adapted to related programmes. In the 1940s and early 1950s, computer
programmers were intimate with the hardware: programming was specific to individual
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machines. Curry and Wyatt’s concept of programming the ENIAC introduced a symbolic
abstraction of the logic of the ENIAC hardware.

Curry went on to write companion reports that are noteworthy milestones for us:

o On the composition of programs for automatic computing (1949)
o A program composition technique as applied to inverse interpolation (1950)

For a fuller account of Curry’s three papers on programming | recommend de Moll,
Bullynck and Carle (2010). For an account of ENIAC, its history and legacy, |
recommend Haigh, Priestley, and Rope (2016).

Willa Wyatt (1917-2011) was a practical ENIAC programmer. The programmers of the
ENIAC were women, celebrated in Fritz (1996). She was born in in Portsmouth, New
Hampshire. A graduate of New Hampshire University in 1939, she was recruited by the
Moore School of Electrical Engineering at the University of Pennsylvania to work on the
differential analyzer and computer sections for the ENIAC. When the ENIAC was moved
to the Aberdeen Proving Grounds, Maryland, in 1946, she moved with it. There she met
her husband Bill Sigmund; in 1957 they moved to Tampa, Florida where they remained:
war work behind them and, as car enthusiasts, the open road ahead. Wyatt died aged
94.
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Abstract

This article traces domain theory from its beginnings as a theory of
computable functions to recent connections with interactive computation.
In particular, it is shown how concurrent games and strategies specialise
to domain models of geometry of interaction, dialectica categories and
container types.

1 Introduction

After more than 50 years of development, domain theory permeates computer
science. While it has its limitations it has set a compelling paradigm in the
formalisation and analysis of computation. In many contexts its models are the
simplest we could hope for. If alone for this reason, it is here to stay. It grew
up alongside the methodology of denotational semantics. The methodology
of giving meaning to programming languages and systems in a compositional
fashion is the only way to manage their complexity; its achievement tests our
understanding and the robustness of our models.

Domain theory grew out of a functional way of understanding computation.
It is no surprise that it began to meet its limits with the shift to a more inter-
active form of computation. While the functional paradigm has a long history,
theories of interactive computation have been more unsettled.

Here T'll try to explain how recent developments in understanding interac-
tive computation in terms of concurrent strategies feed back and inform func-
tional and domain-theoretic ways to understand computation. Several different
paradigms for interaction within functional languages, logic and domain theory
come about as special cases.

I have tried to be as informal as I can be in writing this article. Where ['ve
added technical or additional parts for more precision they are indicated by being
in wtalic font, so they can be skipped more easily.

*Dedicated to the memory of my father, Thomas Francis Winskel, 1925-2021.
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2 Early beginnings

The history of domain theory is fairly well known. In the mid 1960’s Christopher
Strachey realised he needed new techniques to understand the sophisticated pro-
gramming languages he was developing; that he needed a mathematical model
with which to give semantics of programming languages. How else was he to be
convinced of the correctness of his programs? Over lunch, in Wolfson College,
Oxford, Roger Penrose suggested he investigate the lambda calculus, a tool
of logicians for describing and reasoning about computable functions. Mean-
while Dana Scott, at Princeton, was highly critical of the untyped nature of the
lambda calculus, that it allowed such paradoxical phenomena as the application
of a function to itself, something forbidden in traditional set theory. When Stra-
chey and Scott met there were going to be fireworks, of one kind or another. At
their first meeting they got on very well, marking the beginning of their famous
collaboration.

Scott persuaded Strachey to move to the safe typed lambda calculus and for-
malised a Logic of Computable Functions, LCF, as a foundation for Strachey’s
ambitions. A logician, Scott was concerned with mathematical foundations right
from the start. Scott introduced the idea that types denoted domains, simple
forms of topological spaces, built on an order of approximation. Although a
computable function can act on an infinite input, for instance a function on
the natural numbers, it can only do so via finite approximations to the input.
Accordingly Scott promoted the idea that a computable function be understood
as a continuous function from the domain of its input to the domain of its out-
put. On domains the usual topological definition of continuity amounted to the
function preserving the approximation order and least upper bounds of chains.

The simplest form of domain is o complele partial order, thal is, a par-
tial order (D,CSp) of approzimation with a least element Lp and least upper
bounds |,, dn, a form of limit point, of chains of dy Sp dy Sp - Ep d,, Ep -
in D. A function F from a domain (D,Sp) to a domain (FE,Cg) is continu-
ous if F(d) cg f(d") when dcp d', and |, F(d,) = F(U,d,) for any chain
doSpdi Sp - Epd, Ep - inD. Based on earlier ideas of Kleene, a continuous
function F' from a domain to itself has a least fixed point fix(F) constructed as
the least upper bound, | |, F" (1) = fix(F).

One remarkable feature of domains and continuous functions is that, unlike
topological spaces in general, under the pointwise, or Scott order on functions
the set of continuous functions from a domain D to a domain FE itself formed a
domain, the function space [D — E]. More obviously the product of domains
D x I, consisting of pairs of elements, formed a domain when ordered coordi-
natewise. Then, in particular, a recursively defined function from D to E could
be readily understood as a least fixed point of the continuous function F' on
[D — E] associated with the body of its recursive definition. LCF included a
useful inequational logic for reasoning about recursive programs with tools such
as Scott induction for establishing properties of least fixed points,
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Scott’s 1969 article on LCF was circulated widely and very influential. But
it was only published relatively much later in 1993 [1]. The reason: Scott had
suddenly seen that the techniques for understanding recursive functions as least
fixed points could be pushed to the level of types, thus providing a nontrivial
domain D isomorphic to its domain of continuous functions [D — D], so a
model of the (untyped) lambda calculus. His objections to the lambda calculus
had vanished. Scott’s discovery led to a flurry of activity.

3 The word spreads

Researchers outside Oxford joined in the effort. David Park, at Warwick, showed
that in Scott’s model the paradoxical combinator of the lambda calculus denoted
a least fixed point operator. A young Gordon Plotkin, at Edinburgh, and Scott
independently discovered universal domains, within which all manner of types
could be defined recursively by describing them as certain functions on the
domain. Plotkin and Mike Smyth, then a postdoc at Warwick, extended Scott’s
ideas to a categorical treatment of recursively defined domains. This provided
an understanding of a very broad range of recursive types. The mathematical
foundations of functional programming were set.

Meanwhile, at Stanford, Robin Milner, Malcolm Newey and Richard Weyrauch
had forged ahead with the mechanisation of proofs in LCF. In the process Mil-
ner invented the functional language ML as a MetaLanguage to support assisted
proofs securely. ML was inspired both by the functional nature of LCF itself and
Peter Landin’s ISWIM. With its watertight type discipline, ML ensured that
only programs yielding legitimate LCF proofs would receive the type “Theo-
rem.” At Stanford, Milner began the push into the semantics of concurrent
computation through “oracles” to settle nondeterministic choices. These roots
continued at Stanford with the work of Zohar Manna and his student Jean
Vuillemin on reasoning about recursively defined programs.

Domain theory forged new links between computer science and logic. Pro-
gramming languages and computing systems were amenable to mathematical
analysis. Computer scientists approached programming languages with a new
confidence born out of a belief that sensible language constructs could be given a
mathematical definition. The guidelines of domain theory influenced the design
of programming languages and provided a foundation for functional program-
ming.

By the mid 1970’s it seemed only a matter of time before domain theory could
tackle all features of programming languages. Through continuations Strachey
and Antoni Mazurkiewicz had shown how to provide semantics to jumps in im-
perative languages; building on earlier ideas of Egli and Milner, Plotkin had
extended domain theory to a treatment of nondeterministic and parallel pro-
grams through his powerdomain—his treatment avoided the non-associativity
and non-commutativity of parallel composition Milner had met through using
oracles; Nasser Saheb-Djahromi began constructing a probabilistic powerdo-
main, so enabling the denotational semantics of probabilistic programs. Young
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researchers in France were beginning to lend their own brilliant vision and math-
ematical expertise.

4 Limitations—early signs

Domain theory has given us a lasting vision of a mathematical approach to
the semantics of programming languages. It supported the method of denota-
tional semantics whereby the semantics of a programming language is defined
compositionally by structural induction on its syntax.

However, intimations of the limits of domain theory were present in very
carly work. Gilles Kahn showed how dataflow fitted easily within the scheme;
it was a simple matter to represent dataflow processes as continuous functions
from streams of input to streams of output, and handle loops in the network
through the fixed point treatment of recursion that domain theory provided.
But, the extension to nondeterministic dataflow was to be problematic. The
difficulties in giving a compositional semantics to nondeterministic dataflow
was stressed much later in 1981 by Brock and Ackerman [2]. There are ways to
give denotational semantics to nondeterministic datalow but they lie outside
traditional domain theory—a point we shall come back to.

From LCF, Plotkin got the idea of studying its core programming language
PCF, a tradition that continues in testing new theories with some extra feature
or other in the presence of function spaces [3]. He invented the concept of
full abstraction—the name is due to Milner—a way to formalise full agreement
between the denotational and operational semantics of a language. Plotkin did
this through the vehicle of PCF. Traditional domain theory did not provide
a fully abstract model because Scott’s domains contained “parasitic” elements
such as “parallel or,” undefinable in PCF, on which operationally equivalent
terms disagreed.

This sparked off the search for more operationally tuned domain theory,
one which could capture the sequential evaluation of PCF and lambda-calculi.
Both Milner and Vuillemin gave early, slightly different, definitions of what
it meant for a continuous function f : Dy x -+ x D,,, - F| x --- x E,, between
products of domains to be sequential: for a particular input (xq,---, z,,) where
f(x1,-- zm) = (y1.-,yn) any increase in an output place y; had to depend
uniformly on an increase in a critical input place x;. A problem with such a
definition is that it depends on the particular way one decomposes a domain
into a product.

This was remedied in 1975 by Kahn and Plotkin’s definition of sequential
function between concrete domains in which there is an inbuilt notion of place
(there called a cell) [4]. Roughly, the elements of a concrete domain consist of
a set of events where an event is the filling of a cell with a particular value;
as events occur further cells become accessible and able to be filled by at most
one of several values. According to Kahn and Plotkin’s definition a sequential
function between concrete domains is a continuous function for which at any
input the filling of an accessible output cell depends on the filling of a critical
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accessible input cell; there can be several critical cells. The problem was that
space of sequential functions wasn’t itself a concrete domain. Concrete domains
didn’t appear suitable for giving a denotational semantics to PCF.

Gérard Berry suggested two remedies. In his first, he proposed restricting
continuous functions between domains to those which were stable—an approx-
imation to being sequential [5]. Technically, stable functions preserve meets of
compatible subsets of elements, but, more intuitively, in a stable function any
part of the output depends on a minimum part of the input (reading “part of”
as below in the order). Significantly, once the domains are axiomatised appro-
priately, as what Berry called dI-domains, they have function spaces: the set of
all stable functions between dI-domains when ordered by a refinement of Scott’s
order, the stable order, themselves form a dl-domain. Roughly, two functions
are in the stable order if they are in the Scott order and they share the same
minimum inputs when producing common output. Berry went on to consider
bidomains which possessed both a Scott and stable order. Berry’s stable domain
theory received an extra impetus in the mid 1980’s with Jean-Yves Girard’s use
first of qualitative domains in models of polymorphism and then with his path-
breaking discovery of linear logic through special kinds of dl-domains called
coherence spaces related by stable functions.

Stable functions have their own importance, but as a treatment of sequential-
ity they are just an approximation. With student Pierre-Louis Curien, Berry
showed that there was a way to construct a domain theory for sequentiality,
within which one could give a denotational semantics to PCF. Though it was
at the cost of departing from functions. They showed that concrete domains
did indeed have a form of function space if instead of sequential functions they
used sequential algorithms [6]. Sequential algorithms can be expressed in terms
of local decisions as to whether to output a value or inspect a cell for its value.
Berry and Curien’s pioneering work is a precursor to game semantics, and a
sequential algorithm a form of strategy and the decisions its moves, as was laid
bare by Francois Lamarche [7]. However, as Berry and Curien showed, a se-
quential algorithm can also be viewed as a sequential function together with a
function which, given input and a cell accessible at the output, returns a specific
critical cell accessible at the input. (This characterisation anticipated maps of
containers in functional programming—see Section 9.4.)

In sequential algorithms we begin to see a more interactive view of computa-
tion, not simply as a the calculation of a function from input to output, but one
in which the algorithm actively queries and makes demands on the input, and
assigns values to cells. Without it being so obvious at the time, both sequential
algorithms and stable functions were part of a growing chorus suggesting a view
of computation based on interaction.

5 Interaction

Concurrent processes can proceed independently but with points of interaction.
Their treatment has long been a bugbear of traditional domain theory. While
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special cases such as deterministic dataflow were easily expressible within do-
mains, and Plotkin’s powerdomains with a recursively defined domain of resump-
tions supported parallel composition through the nondeterministic interleaving
of actions (8], in general the denotational semantics of parallel programs could
seem convoluted. Indeed, after initial excursions into domain models, these
complications led Robin Milner to forsake domain theory and denotational se-
mantics in favour of a Calculus of Communicating Systems (CCS) based on a
structural operational semantics and the process equivalence of bisimulation [9].
Instead, Tony Hoare, with Steve Brookes and Bill Roscoe, proposed a purpose-
built domain of failure sets for Communicating Sequential Processes (CSP) [10].
Both Hoare and Milner settled on synchronisation, possibly with the exchange of
values, as their primitive of communication. For a number of years concurrency
became a rather separate field of study and is still often rather syntax-driven.
Meanwhile since the early 1960’s Carl Adam Petri and others had been
developing a radically new model of computation, Petlri nets. Petri nets are
based on events making local changes to conditions representing local states. A
state of a Petri net is captured by a marking which picks out those conditions
which currently hold. The net’s dynamics, how one marking changes to another,
is based on the key idea that the occurrence of an event ends the holding of its
preconditions (those conditions with arrows leading to the event) and begins
the holding of its postconditions (those conditions with arrows from the event).
The structures of Petri were remarkably similar to those Kahn and Plotkin
had uncovered as representations of concrete domains in their investigations of
sequentiality. In fact, through the intermediary concept of event structure, com-
prising a set of event occurrences with relations of causal dependency and con-
flict, Mogens Nielsen, Gordon Plotkin and the author were able to transfer con-
cepts across the two communities, around Petri nets and domains; just as tran-
sition systems unfold to trees, so Petri nets unfold to event structures [11, 12].
Notably, Petri’s notion of confusion freeness in Petri nets coincided with the
restrictions Kahn and Plotkin were making to localise nondeterministic choice
to cells. A little later it was realised that Berry’s dl-domains were exactly the
domains of configurations of event structures ordered by inclusion [13, 14].

In its simplest form, an event structure is

(E,<,#),

comprising a partial order of causal dependency < and a symmetric, irreflecive
binary relation of conflict # on events E. The relation €' < e expresses that
event e causally depends on the previous occurrence of event e¢'. That e#te’
means that the occurrence of one event, e or €', excludes the occurrence of
the other. Together the relations satisfy two axioms: the first ariom says that
an event causally depends on only a finite number of events while the second
says that events which causally depend on conflicting events are themselves in
conflict. The set of configurations C(F) consists of subsets of events which
are left-closed w.r.t. < and conflict-free. Two events e, e’ are considered to be
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causally independent, called concurrent, if they are not in conflict and neither
one causally depends on the other.

In diagrams, events are depicted as squares, immediate causal dependencies
by arrows and tmmediate conflicts by wiggly lines. For example,

N

O O

O

represents an event structure with five events. The event to the far-right is in
immediate conflict with one event—as shown, but in conflict with all events but
that on the lower far-left, with which it is concurrent.

But there was a curious mismatch. Whereas Petri nets were largely used to
model concurrent processes the corresponding structures in domain theory were
being used as representations of domains, so types of processes. The reconcilia-
tion of these two views came much later in generalisations of domain theory in
which both types and processes denoted event structures—as will be the case
in concurrent games and strategies.

From the burgeoning world of richly structured models and their equivalences
in concurrency, it became clear that concurrent computation wasn’t going to
fit neatly within traditional domain theory. A Petri net carried much more
structure than could be supported by a point in a poset of information.

Fortunately category theory helped organise models for concurrency: an in-
dividual model, say Petri nets, event structures or a transition systems, carried
its own style of map to form a category; relations between the different cate-
gories of models could be expressed as adjunctions; and helped systematise the
equivalences on concurrent processes [15, 16]. This helped separate models of
concurrency from the syntax and operational semantics in which they were so
often embedded.

For example, a map of event structures from E to E' is a partial function
f on events which respects configurations and events: it sends a configuration
x of E, by direct image, to a configuration fx of E' such that no two distinct
events in x go to the same event in fx. While causal dependency need not be
preserved by f, it is reflected locally: if the e,e' e x and f(e) < f(e') then e <e'.
Consequently maps of event structures automatically preserve the concurrency
relation on events.

This taxonomy was based on existing models, but it suggested a more gen-
eral class of models with the versatility to be adapted in the same way as domain
theory—a form of generalised domain theory [17, 18]. In several early domain
models of processes, a process had been identified with the set of computation
paths it could perform. One well-known model of this kind is Hoare’s “trace”
model of CSP in which a process denotes the set of sequences of visible actions
it can perform. The generalised domain theory was similar, but instead of a
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process being a sef of computation paths it took a process to be a presheaf of
computation paths. Roughly a presheaf is like a generalised characteristic func-
tion but where the usual truth values are replaced by sets, to be thought of sets
of ways of realising truth. By modelling a process as a presheal one allowed
for the process possibly following several computation paths of the same shape
and kept track of how the paths of the process branched nondeterministically.
Presheaf models for concurrency connected concurrent computation with a rich
mathematics, in particular the mathematics of species, but their operational
reading could be challenging. Sometimes though, a denotational semantics in
terms of presheaves could be represented by event structures; technically the
category of elements of the presheaf denotation took the form of the configura-
tions of an event structure. By bringing the role of event structures to the fore
this eventually led to a game semantics based on event structures—see Section 8.

6 French logic

Jean-Yves Girard has been an imposing figure in French logic and computation.
He has a distrust of what he sees as too simple and over-arching use of algebra
to structure and analyse logic. He has been exaggeratedly rude about Alfred
Tarski’s definition of truth in a model for first-order logic, and about indeed
denotational semantics, to which his work has nevertheless contributed enor-
mously'. Girard’s work emphasises an operational understanding of proof and
computation. This is far from saying it forsakes mathematical models, or con-
centrates on syntax in the way of traditional proof theory. On the contrary, the
models he has developed and inspired have considerable ingenuity and depth,
and have shifted interest to new ways of understanding proof and computation.

Through his reinvention of stable domain theory in the more restricted set-
ting of coherence spaces, Girard was led to the important discovery of linear
logic in the mid 1980°s [20]. This gave a deconstruction of traditional logic
into a more fundamental resource-conscious logic. That work helped turn the
emphasis of domain theory away from function spaces supporting “currying”
w.r.t. a product, to w.r.t. more general tensor products. In technical jargon, it
shifted the emphasis from cartesian-closed to monoidal-closed categories. Now
in semantics of computation we see models of linear logic everywhere. Girard’s
coherence spaces correspond to a very special form of event structure in which
causal dependency is the trivial identity relation. This won’t be the last time
we see nontrivial structure associated with what at first sight seems a trivial
degenerate case.

In studying the proofs of linear logic, Girard discovered geometry of inter-
action (Gol) [21]. Although originally explained in terms of the mathematical
structures of quantum mechanics, Gol was shown by Samson Abramsky and
Radha Jagadeesan to have a more traditional, domain-theoretic reading in which
the mechanism of interaction was that of least fixed points of domains [22] . Gol

!For instance in domain models of polymorphism including System F [19], used in Sec-
tion 9.4
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was related to Jean-Jacques Lévy’s optimal reduction of the lambda-calculus by
Martin Abadi, George Gonthier and Lévy and has influenced the implemen-
tation of programming languages, notably via token-based computation [23].
Today Gol is perhaps most often viewed as an early form of game semantics—
see Section 9.2, where a model of Gol emerges from a simple form of concurrent
game.

7 Game semantics

There was some vagueness about what a solution to the full-abstraction problem
for PCF entailed.

The 1980°s had seen several technical successes, through the use of repre-
sentations of domains: concrete data structures [4] and event structures [14] to
give an operational description of how functions compute; information systems
due to Scott and the author to give a logical presentation, and considerably sim-
plify the recursive definition of domains and their logical relations [24, 25, 26].
Girard’s work too, often exploited the fine structure such representations.

Given this history, it is not surprising that several early attempts to con-
struct a fully-abstract model for PCF were based on adjoining extra structure
to domains or their representations; for example using both the Scott order
and stable order on functions in bidomains and bistructures [27], via Ehrhard’s
hypercoherences [28] or O’Hearn and Riecke’s powerful logical relations [29].
These attempts were put paid to, or at least compromised, by Ralph Loader.
In a tour de force Loader showed that the full-abstraction problem for PCF,
as originally understood, couldn’t be achieved effectively; the presentation of a
fully abstract domain model for PCF would be non-computable [30].

This left open the intermediate question of whether there were other more in-
dependently motivated models in which all the finite elements were definable by
PCF terms; from which then a (non-effective) domain model could be obtained
by quotienting. To this question, called “intensional full-abstraction,” two dif-
ferent affirmative answers were given and pioneered the highly informative use of
games in the semantics of programming languages. Samson Abramsky, Radha
Jagadeesan and Pasquale Malacaria invented AJM games [31], while Martin Hy-
land, Luke Ong, and independently Hanno Nickau, discovered HO games [32].
In many ways game semantics fitted the bill for a more operationally tuned do-
main theory; the role of domains was replaced by games and that of continuous
functions by strategies. The role of games was extended beyond functional to
imperative programs.

But the story was far from complete. For one thing, it wasn’t clear, at least
initially, how to reconcile the two different versions, AJM and HO, of game
semantics. For another, the games were based on sequential plays in which
Player and Opponent moves alternated.

The bias towards sequentiality has handicapped the theories of games in
general. In game theory it has led to a menagerie of different kinds of games,
each kind specialised to cope with one feature or another. There concurrency
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is handled in a piecemeal fashion, often through extra structure to capture
imperfect information. This limits the ways that the games and strategies of
game theory can be composed. While game semantics is very much concerned
with structure and composition, its games are predominantly sequential; in
most cases concurrency is represented indirectly via the interleaving of atomic
actions of the participants. This rarely does justice to the distributed nature of
the system described, inhibits analysis of its causal dependencies, and is often
accompanied by compensatory, ad hoc fairness assumptions.

What was lacking was a rich algebraic theory of distributed/concurrent
games in which Player and Opponent are more accurately thought of as teams
of players, distributed over different locations, able to move and communicate.
Although there are glimpses of such a theory in earlier work [33, 34, 35, 36, 37],
a considerable unification occurs with the systematic use of event structures to
formalise concurrent games and strategies through their causal structure [38, 39].

8 Concurrent strategies

Distributed/Concurrent games answer the need to rethink the foundations of
games, to a more flexible grounding where they more truly belong, in the models
and theories of interaction of computer science.

A concurrent game is represented by an event structure together with a
polarity marking its events to say whether they are moves of Player (marked
+4) or Opponent (marked —). Games often have extra features such as winning
conditions, describing those configurations at which Player wins, or a payoff
functions assigning a reward to each configuration. For simplicity, here we
assume A is race-free, i.e. that there is no immediate conflict between a Player
and an Opponent move; there may be conflict between Player and Opponent
moves but it must be inherited from conflict between earlier moves, either both
of Player, or both of Opponent.

With games as event structures the history of a play of a game is no longer
described by a sequence of moves, but by a partial order expressing their causal
dependency. The transition from total to partial order brings in its wake tech-
nical difficulties and potential for undue complexity unless it’s done artfully.
Fortunately one can harness the mathematical tools developed for interacting
processes, specifically on event structures [14, 15].

There are two fundamentally important operations on two-party games. One
is that of forming the dual game in which the roles of Player and Opponent are
interchanged. On an event structure with polarity A this amounts to reversing
the polarities of events to produce the dual A'. By a strategy in a game we
implicitly mean a strategy for Player. A strategy for Opponent, or counterstrat-
egy, in a game A is identified with a strategy in A*. The other operation is a
parallel composition of games, achieved on event structures A and B by simply
juxtaposing them, with events from different components, not in conflict, to
form Al B.

Following ideas of Conway and Joyal [40, 41], a strategy o from a game A to
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a game B is taken to be a strategy in the compound game A*||B. Given another
strategy 7 from the game B to a game C the composition T®c is given essentially
by playing the two strategies against each other over the common game B, and
then hiding that interaction. But what is a strategy in a concurrent game?

First, an example of a strategy, consider the copycat strategy in the game
A*|| A which, following the spirit of a copycat, has Player copy the corresponding
Opponent moves in the other component. The copycat strategy (C 4 is obtained
by adding extra causal dependencies to A*|| A so that any Player move in either
component causally depends on its copy, an Opponent move, in the other com-
ponent. It is illustrated below when A is the simple game comprising a Player
move causally dependent on a single Opponent move:

B-- -+
At T W4 T A
B - -8

Strategies are not always obtained by simply adding extra causal dependen-
cies to the game. In general, a strategy in a game A is expressed as a map
of event structures o : § — A describing the choices of Player moves by the
event structure S. For example, consider the game comprising two Opponent
moves in parallel with a Player move, and the (nondeterministic) strategy (for
Player) in which Player makes their move if Opponent makes one of theirs. It
is represented by the map

= Z
0 T
= a. 8 g.

Not all maps of event structures o : § — A are strategies. There are two
further axioms on maps for them to be deemed strategies, receptivity and (lin-
ear) innocence. Intuitively, they prevent Player from constraining Opponent’s
behaviour further than is allowed by the game. Receptivity expresses that any
Opponent move allowed from a reachable position of the game is present as a
possible move in the strategy. Innocence says a strategy can only adjoin new
causal dependencies of the form 8 — @, where Player awaits moves of Oppo-
nent, beyond those inherited from the game. Silvain Rideau and the author
have shown that the axioms are precisely those that make copycat the identity
for the composition of strategies [38].

A strategy from a game A to a game B is a strategy in the compound game
A*||B; so a map o : S = A*||B. Given another strategy T : T — B*||C from
B to a game C', the composition TOa is got by playing off the two strategies
against each other over the game B. To do this precisely it is useful to harness
two operations associated with maps of event structures: pullback, to produce
the interaction T@ o : T ® S — A*||B||C, which “synchronises” matching moves
of S and T over the game B; then, a partial-total factorisation property of par-
tial maps of event structures, to hide the synchronisations and produce, as its
defined part, the strategy composition 700 : TS - A||C.
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A strategy o : S = A is deterministic if all conflict in S is inherited through
causal dependency on conflicting Opponent moves. That copycat is determinis-
tic is due precisely to the game being race-free. (The strategy illustrated above
is not deterministic.)

‘We shall shortly have use for two extensions to concurrent games: with win-
ning conditions and with imperfect information.

The axioms on strategies entail a formal connection with presheaf models
mentioned earlier in Section 5 and through them with Scott domains [42]. In
characterising the configurations of the copycat strateqy (Cy4, for a game A,
an tmportant partial order on configurations appears: configurations of copycat
correspond to those configurations x|y of A*||A which are in the Scott order
Y Ea x, associated with undoing Opponent moves from y then executing Player
mowves to arrive at x. The Scott order of games extends and connects with Dana
Scott’s information order on domains.

The Scott order of games is surprisingly important. In particular, a strategy
in a game is a (special) presheaf over its configurations under the Scott order;
essentially because the dual game reverses the Scott order, a strateqy between
games is a (special) profunctor—though in a way that only respects composition
laxly. A profunctor directly reduces to a Scott approrimable mapping so relating
strategies to a domain-theoretic model.

8.1 Winning conditions

Winning conditions of a game A specify a subset of its winning configurations
W. An outcome in W is a win for Player. A strategy (for Player) is winning if
it always prescribes moves for Player to end up in a winning configuration, no
matter what the activity or inactivity of Opponent [43].

Formally, a strategy o : S — A is winning if ox is in W for all +-mazimal
configurations x of S; a configuration is +-mazximal if no additional Player
moves can occur from it. This can be shown equivalent to all plays of o against
counterstrategies of Opponent resulting in a win for Player.

As the dual of a game A with winning conditions W we again reverse the
roles of Player and Opponent to get A' and take its winning conditions to
be the set-complement of W. In a simple parallel composition of games with
winning conditions, Al B, Player wins if they win in either component. With
these extensions we can take a winning strategy from a game A to a game B,
where both games have winning conditions, to be a winning strategy in the
game A*||B. The choices ensure that the composition of winning strategies is
winning. Because games are race-free, copycat will always be a winning strategy.
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8.2 Imperfect information

In a game of imperfect information some moves are masked, or inaccessible,
and strategies with dependencies on unseen moves are ruled out. One can ex-
tend games with imperfect information in a way that respects the operations of
concurrent games and strategies [44]. Each move of a game is assigned a level
in a global order of access levels; moves of the game or its strategies can only
causally depend on moves at equal or lower levels.

In more detail, a fived preorder of levels (A, <) is pre-supposed. A A-game,
comprises a game A with a level function [ : A — A such that if a <4 a’ then
I(a) <l(a") for all moves a,a’ in A. A A-strategy in the A-game is a strategy
o:8 = A for which if s <g s" then lo(s) <lo(s") for all s,s" in S. The access
levels of moves in a game are left undisturbed in forming the dual and parallel
composition of games. As before a A-strategy from a A-game A to a A-game B
is a A-strategy in the game A*||B. It can be shown that A-strategies compose.

9 Special cases

The additional complexity of event structures over trees shouldn’t obscure di-
rect connections between strategies on concurrent games and the more familiar
notions on games as trees. Event structures subsume trees. An event structure
is tree-like when any two events are either in conflict or causally dependent, one
on another; in this case its configurations form a tree w.r.t. inclusion, with root
the empty configuration.

A tree-like game is one for which its underlying event structure is tree-like.
Because we are assuming games are race-free, at any finite configuration of a
tree-like game, the next moves, if there are any, are either purely those of Player,
or purely those of Opponent; in this sense positions of a tree-like game either
belong to Player or Opponent. At each position belonging to Player a deter-
ministic strategy either chooses a unique move or to stay put. In contrast to
many presentations of games, in a concurrent strategy Player isn’t forced to
make a move, though that can be encouraged through suitable winning condi-
tions. Winning conditions specify those configurations at which Player wins,
80 in a tree-like game can be both finite and infinite branches in the tree of
configurations.

Clearly the dual of a tree-like game is tree-like. A counterstrategy, as a
strategy in the dual game, picks moves for Opponent at their configurations;
when the counterstrategy is deterministic at each Opponent configuration it
chooses to stay or make one particular move. As expected, the interaction 7@ o
of a deterministic strategy ¢ with a deterministic counterstrategy 7 determines
a finite or infinite branch in the tree of configurations, which in the presence of
winning conditions will be designated as a win for one of the two players.

On tree-like games we recover familiar notions. What is perhaps surpris-
ing is that by exploiting the richer structure concurrent games we can recover
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other familiar paradigms, not traditionally tied to games, or if so only some-
what informally. We start by recovering Berry’'s stable domain theory. The
other examples, from logic and functional programming, are to do with ways of
handling interaction within a functional approach.

Central to any compositional theory of interaction is the dichotomy between
a system and its environment. Concurrent games and strategies address the
dichotomy in fine detail, very locally, in a distributed fashion, through polarities
on events. A functional approach has to handle the dichotomy much more
ingeniously, through its cruder distinction between input and output; with basic
interaction treated through the application of a function to its argument. Within
concurrent games we can more clearly see what separates and connects the
differing paradigms.

9.1 Stable spans and stable functions

They might seem stupid as games, but let’s consider games in which all the
moves are Player moves.

Consider a strategy o from from one such purely Player game A to another
B, in other words a strategy in the game A*||B. This is a map o : S - A'|| B
which is receptive and innocent. Notice that in A*||B all the Opponent moves
are in A+ and all the Player moves are in B. The only new immediate causal
connections, beyond those in A* and B, that can be introduced are those from
what is now an Opponent move of At to a Player move in B. Beyond the
causal dependencies of the games, a strategy ¢ can only make a Player move in
B causally depend on a finite subset of Opponent moves in A*.

When o is deterministic, all conflicts are inherited from conflicts between
Opponent moves. Then, deterministic strategies correspond exactly to Berry’s
stable functions from the domain of configurations of A to the domain of config-
urations of B. Moreover this correspondence respects composition. We recover
Berry’s stable functions as the subcategory of deterministic strategies between
concurrent games comprising purely Player moves. In the case where the games
are further restricted to have trivial identity causal dependency we recover Gi-
rard’s coherence spaces and their maps. (We obtain all of Berry’s dI-domains
when we allow slightly more general event structures than those here, which for
simplicity we have based on a binary conflict; the more general event structures
include Girard’s qualitative domains.)

When ¢ may be nondeterministic, it corresponds to a stable span, a form
of many-valued stable function which has been discovered, and rediscovered,
in giving semantics to nondeterministic dataflow [45, 2, 46]. Recall from Sec-
tion 4 that nondeterministic dataflow is problematic as far as traditional domain
theory is concerned. Concurrent strategies support a {race operation which on
stable spans coincides with the once-tricky feedback operation of nondetermin-
istic dataflow [46].

If we were to extend purely Player games with winning conditions, to specify
a subset of winning configurations, the stable spans and functions that would
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ensue from winning strategies would send winning configurations to winning
configurations.

Several important categories of domains have arisen as subcategories of con-
current games. We show that in a similar way, we obtain geometry of interaction,
dialectica categories, containers, lenses, open games and learners, and optics by
moving to slightly more complicated subcategories of concurrent games, some-
times with winning conditions and imperfect information.

9.2 Geometry of Interaction

Let’s now consider slightly more complex games. A Gol game comprises a
parallel composition A := A;|| Az of a purely-Player game A; with a purely-
Opponent game As. Counsider a strategy o from a Gol game A := A;||As to a
Gol game B := B;||B2. Rearranging the parallel compositions,

AT B = Ay || Az || B1 || B2 = (Av | B2) | (Az ]| B1) -

So o, as a strategy in A*|| B, corresponds to a strategy from the purely-Player
game A, || B3 to the purely-Player game A3 || B;. We are back to the simple situ-
ation considered in the previous section, where we considered strategies between
purely-Player games.

Strategies between Gol games, from A to B correspond to stable spans from
C(A,||B3) to C(A3||By), and to stable functions when deterministic. Noting
that a configuration of a parallel composition of games splits into a pair of
configurations,

C(A3[|B1) 2 C(A2) x C(By).

Thus deterministic strategies from A to B correspond to stable functions
S=(f,g):C(A1) x C(Bz2) > C(A2) x C(B1).

associated with a pair of stable functions f : C(A;) x C(Bz) = C(Az) and g :
C(A1)xC(Bz2) —C(B1). Such maps are obtained by Abramsky and Jagadeesan’s
Gol construction, though now starting from stable domain theory [22].

The composition of deterministic strategies between Gol games, o from A to
B and 1 from B to C coincides with the composition of Gol given by “tracing
out” By and Bs. Precisely, suppose o corresponds to the stable function

§:C(Ay) x C(Bz) —» C(Az) x C(By)
and 7 to the stable function
T:C(By)x C(C2) > C(B2)x C(CY).

Then their composition 7@ corresponds to the stable function taking (x,w) €
C(A1)xC(C) to (x',w") eC(A2) x C(Cy) in the least solutions to the equations

(2',2)=S(x,y) and (y,w')=T(z,w)
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—given, as in Kahn dataflow networks, by taking a least fixed point.
It is straightforward to extend Gol games with winning conditions. The
winning conditions on a Gol game A := A;|| Ay pick out a subset of the config-

in C(A;)xC(Az). That a deterministic strategy from Gol game A to Gol game
B is winning amounts to

WA(I’, g(sr:.y)) = WB(f(Q:'Iy)*y) )

for all z € C(A;),y € C(B2), when expressed in terms of the pair of stable func-
tions the strategy determines. In particular, a deterministic winning strategy in
an individual Gol game B := B, || B2 with winning conditions W corresponds
to a stable function f: C(B2) — C(B1) such that Vy € C(Bz2). Wi(f(y),y).

Unlike dI-domains with stable functions, with stable spans, the operation of
parallel composition || is no longer a product; stable spans form a monoidal-
closed and not a cartesian-closed category. For this reason, general, not just de-
terministic, strategies between Gol games cannot be expressed simply as lenses
but instead are a form of optics [47].

9.3 Dialectica games

Dialectica categories were devised in the late 1980’s by Valeria de Paiva in her
Cambridge PhD work with Martin Hyland [48]. The motivation then was that
they provided a model of linear logic underlying Kurt Godel’s dialectica interpre-
tation of first-order logic. They have come to prominence again recently because
of a renewed interest in their maps, in a variety of contexts from formalisations
of reverse differentiation and back propagation, open games and learners, and
as an early occurrence of maps as lenses.

We obtain a particular dialectica category, based on Berry’s stable functions,
as a full subcategory of deterministic strategies on dialectica games. Dialectica
games are obtained as Gol games of imperfect information, intuitively by not
allowing Player to see the moves of Opponent.

A dialectica game is a Gol game A = A || Ay with winning conditions, and
with imperfect information given as follows. The imperfect information is de-
termined by particularly simple order of access levels: 1 < 2. All Player moves,
those in A, are assigned to 1 and all Opponent moves, are assigned to 2. It is
helpful to think of the access levels 1 and 2 as representing two rooms separated
by a one-way mirror allowing anyone in room 2 to see through to room 1. In
a dialectica game, Player is in room 1 and Opponent in room 2. Whereas Op-
ponent can see the moves of Player, and in a counterstrategy make their moves
dependent on those of Player, the moves of Player are made blindly, in that
they cannot depend on Opponent’s moves.

Although we are mainly interested in strategies between dialectica games it
is worth pausing to think about strategies in a single dialectica game A = A, || A2
with winning conditions W,4. Because Player moves cannot causally depend on
Opponent moves, a deterministic strategy in A corresponds to a configuration
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x e C(Ay); that it is winning means Vy e C(Ay). Wa(x,y). So to have a winning
strategy for the dialectica game means

Jz e C(A1)Vy e C(Az). Wa(z,y).

(Winning strategies in general are a little more complicated to describe because
they can branch nondeterministically.)

Consider now a deterministic winning strategy o from a dialectica game
A = Aq||A2 with winning conditions W4 to another B = B4| B> with winning
conditions Wg. Ignoring access levels, o is also a deterministic strategy between
Gol games, so corresponds to a pair of stable functions

f:C(A1) xC(Bz) = C(By) and g: C(A1) x C(B2) - C(A2).

But moves in B; have access level 2, moves of B; access level 1; a causal de-
pendency in the strategy o of a move in By on a move in By would violate the
access order 1 < 2. That no move in By can causally depend on a move in B;
is reflected in the functional independence of f on its second argument. As a
deterministic strategy between dialectica categories, o corresponds to a pair of
stable functions

f:C(A1) » C(By) and g: C(A1) x C(Bz) - C(A2).
That o is winning means

WA(SC..Q(SC..Q)) s WB(f(SC)..’y) ’

for all x € C(Ay),y € C(B2). Lenses f,g satisfying this winning condition
are precisely the maps of de Paiva’s construction of a dialectica category from
Berry’s stable functions.

Such pairs of functions are the lenses of functional programming where they
were invented to make composable local changes on data-structures [49, 50]. We
recover their at-first puzzling composition from the composition of strategies.
Let o be a deterministic strategy from dialectica game A to dialectica game B;
and 7 a deterministic strategy from B to another dialectica game C'. Assume o
corresponds to a pair of stable functions f and ¢, as above, and analogously that
T correponds to stable functions f’ and ¢’. Then, the composition of strategies
T®o corresponds to the composition of lenses: with first component f’ o f and
second component taking x € C(Ay) and y € C(C2) to g(x,¢'(f(x),y).

The characterisation of nondeterministic strategies between dialectica games
is more complicated to describe; they are optics based on stable spans [47].

Girard’s variant

In the first half of de Paiva’s thesis she concentrates on the construction of
dialectica categories. In the second half she follows up on a suggestion of Girard
to explore a variant. This too is easily understood in the context of concurrent
games: imitate the work of this section, with Gol games extended with imperfect
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information, but now with access levels modified to the discrete order on 1, 2.
Then the causal dependencies of strategies are further reduced and deterministic
strategies from A = A, || As to B = By || B2 correspond to pairs of stable functions

J:C(A1) > C(B1) and g : C(B2) > C(A2).

Combs

Through another variation we obtain the generalisation of lenses to combs, use-
ful in quantum architecture and information [51, 52]. Combs arise as strategies
between comb games which, at least formally, are an obvious generalisation of
dialectica games; their name comes from their graphical representation as struc-
tures that look like (hair) combs, with each tooth representing a transformation
from input to output. An n-comb game, for a natural number n, is an n-fold par-
allel composition A ||As||--+|| A, of purely-Player or purely-Opponent games A;
of alternating polarity, so the polarities of A; and A, are different; it is a game
of imperfect information associated with access levels 1 <2 <--- <n with moves
of component A; having access level i. Dialectica games are 2-comb games. Dis-
cussions of causality in science, and quantum information in particular, are often
concerned with what causal dependencies are feasible; then structures similar
to orders of access levels are used to capture one-way signalling, as in dialectica
games, and non-signalling, as in Girard’s variant.

9.4 Containers

A container game is a game of imperfect information A w.r.t. access levels 1 < 2;
each Player move of A is sent to 1 and each Opponent move to 2. Thus within
A there can be all manner of causal dependencies but never of the form B <@
in which a Player move causally depends on an Opponent move.

The configurations of a container game A have a dependent-type structure.
Opponent moves can causally depend on Player moves, but not conversely. Let
A; denote the subgame comprising the substructure of A consisting of purely-
Player moves. A configuration x eC(A,) determines a subgame A, /x comprising
the substructure of A consisting of all those Opponent moves for which all the
Player moves on which they depend appear in x. A configuration of A breaks
down uniquely into a union x Uy where x € C(A;) and y € C(Az/x). We can
see the configurations of a container game A as forming a dependent-sum type
Emec(m)Azfm.z In this way a container game corresponds to a container type,
familiar from functional programming [54].

We can of course extend a container game A with winning conditions which
we identify with a property Wy of the dependent-sum type X,cca,)A2/z. A
deterministic winning strategy in the container game corresponds to a configu-
ration x € C(Ay) such that Yy e C(As/x). Wa(x,y).

2In this section we rely on the fact that dI-domains and stable functions support the
construction of dependent types—shown by Coquand, Gunter and the author, following ideas
of Girard [53].
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A deterministic strategy ¢ from a container game A to a container game
B can be shown to correspond to a map of container types: a pair of stable
functions

f:C(A1) » C(B1) and g:Mieca,)[C(Bz/f(x)) ~ C(Az/x)],

where we have relied on the fact that di-domains and stable functions support
function spaces and dependent product types [53]. For container games A and
B, with winning conditions W, and W respectively, the strategy from A to B
would be winning if, and only if,

Wa(z, g:(y)) = Wge(f(x),y).

for all z € C(Ay), y € C(B2/f(x)). The correspondence respects composition.
Container types built on dl-domains and stable functions arise as a full subcat-
egory of concurrent games.

What about general, possibly nondeterministic, strategies between container
games? Such strategies are a form of optics, extended to container types.

We won't treat symmetry in concurrent games at all here, but extending
games with symmetry is important in many applications; with the addition of
symmetry to a game configurations form a nontrivial category, not merely a
partial order based on inclusion [55].

10 Enrichment

Concurrent strategies have been extended with probability, also with contin-
uous probability distributions, functions on real numbers, as well as quantum
structure.?

The enrichments specialise to the cases considered in the last section. For
example, probabilistic strategies specialise to optics based on Markov kernels
when between dialectica games. So work on concurrent strategies can transfer
to situations of interest in functional programming and domain theory, and their
extensions into probabilistic and quantum programming. This is also relevant
to enrichments of open games and learners [56, 57|, which can be viewed as
parameterised dialectica categories. Of course there are lots of questions. How
do enrichments from concurrent strategies compare with existing attempts? And
when they don’t already exist, how can the specialisations be characterised and
simplified?

One area neglected in this article is the theory of effects in programming
languages which uses the technology of monads and algebraic theories to refine
the influential work of Eugenio Moggi and, roughly, describe computation in
terms of enriched computation trees [58, 59]. I don’t presently understand to
what extent enrichment of concurrent strategies relates to effects.

3All fall within a general way to support enrichment of concurrent strategies, based on
ideas developed with Marc de Visme and Pierre Clairambault.

53



FACS FACTS Issue 2021-2 July 2021

11 Conclusion

I believe this article demonstrates the lasting power of domain theory. Con-
current games and strategies provide a general model of interaction. Their
generality can provide guidance in the form a model or its enrichment should
take. In special cases they simplify to easier domain models. In one direction
concurrent strategies help build domain models. In the other, when domain
models are available they simplify concurrent strategies. Only a fool would use
a complicated model when a simpler one is available! In many contexts domain
theory provides the simplest models we know.
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Understanding Programming Languages
By Cliff Jones, Springer 2020

Reviewed by: Adrian Johnstone

Royal Holloway and New College
University of London

July 2021

Cliff’s new book on programming language semantics is a distillation of the material
he has taught at Newcastle for over a decade now, using VDM-like notation to develop
(mostly) operational descriptions of (mostly) imperative programming languages.
Anybody who knows Cliff or has heard him speak will know what style to expect here -
confident, authoritative and challenging in the best way, so that good students are
encouraged to pursue their own ideas within a formal framework.

A particular strength is the emphasis on the semantics of concurrency. We all know
that reasoning informally about concurrency is very hard, and of course reasoning
about meta-concurrency (i.e. notations for expressing concurrent programs) is a whole
other level of challenge. This presents an educational opportunity. From the
perspective of folk who want to increase the formal content in undergraduate courses,
Cliff’s advanced chapters on concurrency are particularly helpful, since many
elementary books on programming language design and implementation struggle to
get past toy examples. Students thus become demotivated since they perceive the
entry price for formal methods as being high, but they then never get to see hard
problems being solved. Cliff does a fine job of showing how formal semantics can save
language designers from themselves, and in the process strengthens the case for
formal methods on undergraduate courses.

Before looking in detail at the contents, | should do that full-disclosure thing. This
cannot be an entirely objective review since I’ve known Cliff for many years, and some
time ago he sent me a signed copy of the book... In addition, Cliff solicited my review
comments on a draft, and was kind enough to mention me in the acknowledgements.
So, | have seen the work in progress and when Jonathan Bowen asked me if | would
review it, my inclination was to demure through lack of independence. On the other
hand, | teach semantics at undergraduate level too (though in a very different style)
and | want to see more mainstream courses and publicise the usefulness of this new
book. As a result, here is an unsurprisingly positive review that you might want to
leaven with an independent reading.
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The first thing to say to this BCS-FACS audience is that this is not a book about VDM.
Notationally, Cliff uses essentially a subset of VDM but since much of that comprises
standard mathematical notation for sets, first order predicate logic and partial
functions, supplemented with familiar square bracket notation for lists, sets of
bindings for maps and conventional notation for function signatures, | think that most
undergraduate finalists will be able to read these clauses easily. The notation is
introduced early on in digestible lumps, and there is an appendix that enumerates all
of the forms used in the book, with very useful pictorial representations of their
signatures. Thus the text stands alone and is self-contained.

Cliff’s first three chapters are scene-setters covering (1) the need for small meta-
languages with which we can reason about programming languages, (2) the
specification of and translation from concrete to abstract syntax and (3) operational
semantics, and in particular Structural Operational Semantics. This marks the real shift
in Cliff’s pedagogic approach: whereas his teaching at Manchester was based on VDM
and denotational semantics, this book is firmly SOS-oriented.

Cliff then looks at the core requirements of a sequential imperative language, with
chapters on: (4) types, data and representations of the store; (5) block structure,
control flow and procedures with parameter passing; and (6) objects, records, the
heap and functions including higher order functions.

This material is completed with a chapter on other forms of semantic description:
specifically denotational and axiomatic semantics. Cliff writes eloquently of the
distinction between model oriented styles (including SOS) in which machine state is
explicitly modelled, and property oriented approaches in which the semantics is
defined using properties of the program text.

He goes on to give a summary of the development of denotational ideas, describes the
difficulties that arise when procedures are passed to procedures, and their resolution
through Scott’s development of domain theory, wrapping up with a sequence of
pointers into the historical literature of denotational semantics.

Axiomatic semantics, refinement calculus and VDM as an aid to formal software
development and verification are discussed at some length, with a link to programming
language semantics. As might be expected, Cliff gives useful insights into the history
of these ideas that will motivate students’ reading.

For me, the most useful material is in the final three main chapters which look at (8)
shared variable concurrency, (9) concurrent object orientated languages and (10)
exceptions and continuations. Our students have grown up with languages that offer
pragmatic support for all of these features, yet early books on semantics rarely provide
ideas on how to model them formally.

A summary of the challenges presented by interacting parallel threads of computation,
and of several abstractions that have been developed to allow programmers to manage
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concurrency, is followed by an expansion of the SOS idea to cover nondeterministic small-
step rules which are used in the rest of the material to model concurrent programming
language structures. Recent research on Rely/Guarantee reasoning and Concurrent
Separation Logic is then described using these new tools.

The set piece of this book is an object-oriented language (COOL) that supports concurrency
via method calls, and which avoids data races by only allowing at most one method per
instance to be executing at a time. The motivation for the language, and the techniques
used to formally specify the constructs are laid out in detail, and an appendix summarises
the full semantics. The language would need some fleshing out to become general
purpose: the intention is to illustrate core concurrency issues in a few pages.

The section on exceptions and continuations mostly focusses on approaches to
generalising, and capturing formally, unstructured control flow. In just a few pages it is
hard to give more than an overview and pointers into the literature, which good students
will use as a springboard. Perhaps not surprisingly, Cliff labels this material optional.

I’ll conclude with some remarks on the pedagogic style, and the place that such a book
would find in the curriculum context | work in. A feature of the book is the identification of
some 46 Language issues and eight Challenges. These are sprinkled throughout the text in
the form of boxed asides, and each makes an excellent talking point for an interactive style
of teaching. Each could be expanded into a reading or implementation assignment, and
together they present a seasoned overview of the many facets of programming language
design. All those who have written a few examples in some putative new programming
language and then moved straight to a first implementation before getting lost in the
swamp of complexity would do well to have figured out their approach to these language
issues on paper before they started writing code...

Throughout, the treatment is brisk and | think that my weaker students would need some
further reading. In particular, compared to 40 years ago our students often grow up in a
coding monoculture where median students never really advance beyond their first
language. A second-year course on informal comparative programming languages, or a
thorough reading of (say) David Watt’s Programming Language Design Concepts would be
helpful in expanding students’ consciousness away from Java. Another area where
supplementary reading might be needed is in developing some design-level facility with
SOS. Cliff presents many elegant examples, but the conciseness of the text does not allow
much exploration of alternative formulations of the same core formal idea. A cookbook of
ideas that covers a broad spectrum of language features might be a useful adjunct - | like
Hans Huttel’s Transitions and Trees.

One of the great strengths of this book, though, is the continual reference to the research
culture, both contemporary and historical. There are voluminous references, copious
footnotes and a light-touch set of asides on the history of ideas in this field which | think
will strongly motivate the best students to read and fully engage with the topic, and to
understand that there are open questions and opportunities to make their own future
contributions.
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Dimensionally correct by construction: Type systems for
programs

Fredrik Nordvall Forsberg and Conor McBride
Mathematically Structured Programming Group
University of Strathclyde

Webinar presented: 15/06/2021
https://www.youtube.com/watch?v=DVDvloz9vEQ

Reported by: Keith Lines, NPL

Introduction

The last FACS talk before a summer break was a webinar presented by Fredrik Nordvall
Forsberg and Conor McBride of the Mathematically Structured Programming Group at
the University of Strathclyde. Fredrik and Conor are also joint appointees with the
National Physical Laboratory, working on a project concerned with increasing the
trustworthiness of software used in measurement systems.

The webinar introduced the concept of dependent types. It explained how dependent
types can be used to define versions of linear algebra operations, such as matrix
multiplication, that check the dimensions [1] of measured quantities as well as
calculate numeric values. Further details are provided in [2].
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Fredrik and Conor at the Whitebord.

Instead of the usual slides, Fredrik and Conor provided a whiteboard-based double-act
and included a physics demonstration. This approach was very entertaining and much
appreciated.
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Summary

A simple example, using Haskell, demonstrated how the type checking most
programmers are familiar with often does not help with writing trustworthy software.
Treating all elements of a type equally, when type checking, is an approximation that
can have serious consequences. Dependent types increase trustworthiness by including
contextual information, e.g. whether a number is being used as the index of an
element in an array.

A type definition for lists demonstrated how much type and proof checkers can leave
the programmer to implement and prove. E.g. list appending is an associative
operation, but such basic properties are not always “built in”.

A matrix where rows represent students, columns represent tests results and cells
contain exam results provided a further example of context. Each cell contains
information specific to a particular student and a particular exam.

Attention then turned to physics, in particular dimensional analysis. Mass (M), length
(L) and time (T) are amongst these dimensions. A practical demonstration showed how
dimensions can be used derive an expression for calculating the period of a pendulum.
Dimensions helped derive the expression in a way analogous to how types help with
writing software. The next stage was to bring these two concepts together.

As Andrew Kennedy noted in the 1990s there are strong similarities between
dimensions in physics and types in programming languages. Fredrik and Conor’s
research presented in this section of the webinar builds on Kennedy’s [3] and George
Hart’s [4] work.

A free abelian group on the set of fundamental dimensions, contains the dimensions
that can be assigned to quantities. Type checkers that implement all this theory
obviously relieve the programmer of having to implement and prove these concepts,
making software more trustworthy.

Question and answers

Topics covered included:
e The theory outlined in this talk is not only applicable to functional languages.
E.g. type theory has been introduced to PHP [5].

e The was a discussion about possible areas of applications and similar work
undertaken the past.
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ABZ 2021 Conference Report

Jonathan P. Bowen
Chair, BCS-FACS, June 2021

Introduction

The ABZ 2021 8th International Conference on Rigorous State Based Methods was
held entirely virtually during June 2021. This incorporated presentations of papers
from the planned ABZ 2020 conference, postponed due to the COVID-19 pandemic. It
was held during 9-11 June 2021, preceded by a Colloquium on the Occasion of Egon
Borger's 75th Birthday with an associated Festschrift volume, on 7 June 2021 and the
9th Rodin User and Developer Workshop with other sessions on 8 June 2021, making
five days of related online presentations in all. Thus, there were three associated
Springer LNCS (Lecture Notes in Computer Science) volumes for the Festschrift
(Raschke et al., 2021), ABZ 2020 (Raschke et al., 2020), and ABZ 2021 (Raschke &
Méry, 2021). The events were organized by the University of Ulm in Germany, using
Zoom for sessions and wonder.me for breaks, allowing online networking. There was
no registration fee due to sponsorship.

old SCOO/ meets new school with a whiteboard presentation on Zoom,
presenting work by Jean-Raymond Abrial and Dominique Cansell during the Rodin Workshop.

Colloquium on the Occasion of Egon Borger’s 75" Birthday

On 7 June 2021, a one-day celebration of Egon Boérger’s 75" birthday with
presentations and an associated Festschrift volume (Raschke et al., 2021) was held
on Zoom. The event was organized through the University of Ulm in Germany by
Alexander Raschke, Elvinia Riccobene, and Klaus-Dieter Schewe. A previous
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Festschrift celebration for Egon Borger’s 60" birthday was held in 2006 at Schloss
Dagstuhl in Germany (Abrial & Gldsser, 2009). Egon Bbdrger has been the leading
promulgator of the ASM (Abstract State Machines) formal method for much of his
career. He also has an interesting background in his academic advisor tree, leading
back to Hegel, Kant, and Leibniz, among others (Bowen, 2021).

© Zoom Meeting
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Discussions on Zoom during Egon Bérger’s 75" Festschrift celebration.
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Egon Bérger speaking during his 75" Festschrift celebration.

ABZ 8th International Conference on Rigorous State Based Methods

The ABZ conference series was initiated in London during 2008, when the previous
ZB conference series on the Z notation and B-Method combined with the previous
ASM workshops to form “ABZ” (Borger et al., 2008). The series has gradually
expanded in its scope to include further state-based formal approaches such as
Alloy, TLA, and VDM. It is now open to any state-based formal (or “rigorous”) method.

During 9-11 June 2021, papers submitted for both the ABZ 2020 and ABZ 2021
conferences were presented, in short 15-minute and longer 30-minute formats on
Zoom. There were two keynote talks, each an hour in length, by Ana Cavalcanti
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(Chair of FME, Formal Methods Europe) and Gilles Dowek of INRIA in France. It was
originally hoped to hold the first of these conferences in 2020 but due to the Covid-
19 pandemic this was delayed and eventually held completely online in combination
with ABZ 2021. The ABZ 2020 proceedings was edited by Alexander Raschke,
Dominique Méry, and Frank Houdek (Raschke et al.,, 2020) and the ABZ 2021
proceedings was edited by the first two of these editors (Raschke et al., 2021).

It is interesting to note the occurrence of various formal methods and tools in the
titles of papers in the two ABZ proceedings. Event-B tops the list with 14 papers. 11
papers mention the Rodin tool, providing Event-B tool support. Next there are nine
papers with ASM in the title (including two mentioning the ASMETA toolset). Alloy is
mentioned in three paper titles, as is the ProB tool providing tool support for B. The
Atelier B, UML-B, and UPPAAL tools are each mentioned in one title. Interestingly,
TLA, VDM, and Z are not mentioned in any paper titles. So, the “A” (ASM and Alloy)
and “B” (mainly Event-B with the associated Rodin and ProB tools) in “ABZ” live on,
especially strongly in the case of ASM and Event-B/Rodin. However, the “Z” part has
essentially disappeared and perhaps can now be considered as “the rest”. C’est la vie
(as we say in the UK!).

Currently, we are having a break
Meet us in wonder.me (see ABZ 2021 website)

We will continue in Zoom at 13:30 (CEST)
with the Keynote of Ana Cavalcanti

WiE N |

-

ABZ 2021 | 9.6.2021

| Dominique MERY

Alexander Rasc...

Discussions on Zoom during ABZ 2021.
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Discussions on “wonder.me’ during ABZ 2021, including an impromptu presentation.

Conclusion

The events all went very well in the circumstances, although online networking is not
the same as at a real conference of course. Swapping between Zoom for
presentations and wonder.me for breaks was not ideal. In the future, perhaps Zoom
will develop to include better facilities for breaks in meetings, but wonder.me does
allow participants to easily join discussion groups in a visual way. The next ABZ 2023
conference is planned to be at Nancy, France, organized by Dominique Méry et al. at
LORIA, University of Lorraine. We hope that this can be a physical conference again!
Meanwhile, for further information on ABZ 2021, see: https://abz2021.uni-ulm.de

Alexander Raschke Alexander Raschke
Dominique Méry Dominique Méry (Eds.)
Frank Houdek (Eds.)

Rigorous State-Based Rigorous State-Based
Methods Methods

licated 7th International Conference, ABZ 2020 sth International Conference, ABZ 2021
e 2 g B&rgv Ulm, Germany, May 27-29, 2020 Ulm, Germany, June 3-11, 2021
onthe Occasion of His 75th Birthday Proceedings

LNCS 12750 g
LNCS 12071
LNCS 12709

Procesdings

&N Ot 5N Cpnt
%] Springer %) Springer

The three proceedings associated with the ABZ 2021 conference.
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Meeting Reports

Jonathan P. Bowen
Chair, BCS-FACS, May 2021

Introduction

FACS has moved online for its meetings using the Zoom facilities of the BCS. This
makes recording of talks easier, as well as enabling a more geographically dispersed
audience. Of course, the networking opportunities are reduced, and we aim to resume
meetings at the BCS London office when this is possible. It is then likely that talks will
be hybrid in nature, with a real audience and an online audience, hopeful the best of
both worlds. | understand that the BCS plan facilities at the BCS London office to
enable this, but no timescale has been set yet.

Keith Lines, NPL

On 6 April 2021, Keith Lines, a FACS committee member based at the National Physical
Laboratory (NPL), gave an interesting talk entitled, “NPL’s Experience with Formal
Aspects”, covering activities at NPL in the area of formal methods. He started with a
briefly introduction to perhaps NPL’s most famous “formal methods” person, indeed
“computer scientist”, although neither terms were used with their modern meanings at
the time, Alan Turing (1912-1954). The talk included Turing’s hand-written NPL
personnel record and NPL’s connections with Robert Milne and also Christopher
Strachey, a colleague of Turing and founder of the Programming Research Group at
Oxford. Brian Wichmann, a retired member of NPL, was in the audience and
contributed some interesting remarks durlng the taIk A video of the talk is available
online under: https:

Cambridge sabbatical

%“'%Hmlo—i a9, vle o

4 1 WG, Dre A I I
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Alan Turing’s NPL personnel record.
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© zoom Meeting

Keith Lines |5 £ margaretwest g Brian Wichmann

Milne and Strachey 2]

National Physical Laboratory

A theory of programming language semantics
a single work in two parts

First published 1976
by Chapman and Hall Ltd.,
11 New Fetter Lane, London EC4P 4EE

© 1976 Robert Milne

Printed in Great Britain by
Whitstable Litho Ltd., Whitstable, Kent

ISBN 0 412 14260 0

I am very grateful to the people mentioned above and to the Science
Research Council and the National Physical Laboratory, which gave me financial
support, Naturally the defects of this ok are my own responsibility; what I

regard as some of them should occasionallyWgcome evident from the tone of my

Robert Milne

Synopsis

The National Physical Laboratory’s pioneering role in modern-day computing is well
known; not least because of Alan Turing’s design of the ACE (Automatic Computing
Engine) and Donald Davies’ development of packet switching. NPL has also maintained
an interest in theoretical computer science and formal methods over the years. This
presentation summarised NPL’s work in this area, including: 1) exploring the use of
formal methods in the standardisation of communications protocols; 2) a survey
undertaken in the 1990s on the take up (or lack thereof) of formal methods within
industry; 3) work undertaken with the Department of Computer Science of the
University of York as part of the EU-funded Traceability for Computationally Intensive
Metrology (TraCIM) project. NPL continues formal aspects work through joint
appointments with universities. The presentation ended with a very brief overview of a
project, undertaken with the University of Strathclyde, on physical dimensions and
types, the subject of a FACS presentation from Strathclyde in June 2021.

Biography

Keith Lines applies experience gained in over 30 years of working with NPL’s scientists,
administrators, and support staff to help ensure that NPL activities in software
development continue to meet the requirements of NPL’s ISO 9001 and TickITplus
certifications. Formal aspects of computing have been an interest since he was a
student at the University of Kent in the mid-1980s. He is a member of the BCS.
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Marta Kwiatkowska, Oxford

Although not a FACS presentation, Marta Kwiatkowska of Oxford University delivered
the BCS Lovelace Lecture, entitled “Probabilistic Model Checking for the Data-rich
World’, on 5 May 2021. Marta has given previous lectures to FACS and was elected a
Fellow of the Royal Society (FRS) in 2019. The talk was introduced by Professor Dame
Muffy Calder DBE OBE, Professor of Formal Methods, Head of the College of Science
and Engineering, and Vice Principal of the University of Glasgow, as well as being
another former FACS speaker. Professor Steve Furber CBE FRS of the University of
Manchester chaired the talk, which concentrated on the PRISM probabilistic model
checker, developed by Marta and her group at Oxford. An impressive range of
applications was presented. A vote of thanks was given at the end of the talk by
Professor Tony Cohn of the University of Leeds. Information on the talk is available
online under:

https://www.bcs.org/events/2021/may/bcs-lovelace-lecture-202021-prof-marta-kwiatkowska

© Zoom Webinar

Verification: the quest for program correctness

+ It began in the beginning

EDSAC inaugural conference, Cambridge, 24th June 1949

Checking a large routine by Dr A. Turing
"How can one check a routine in the sense of
making sure that it is right? In order that the man
who checks may not have too difficult a task the

programmer should make a number of definite
assertions which can be checked individually, and
from which the correctness of the whole
programme easily follows.”

+ Further developed by Floyd (1967), Hoare (1969),
Dijkstra (1976), and many others

Checking a large routine, by Alan Turing.
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Probabilistic model checking, beyond PRISM

« DNA origami folding
Markov chain mode
2™ state
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Probabilistic model checking beyond PRISM.

Synopsis

Computing systems have become indispensable in our society, supporting us in almost
all tasks, from social interactions and online banking to robotic assistants and
implantable medical devices. Since software faults in such systems can have disastrous
consequences, methods based on mathematical logic, such as proof assistants or
model checking, have been developed to ensure their correctness. However, many
computing systems employ probability, for example as a randomisation technique in
distributed protocols, or to quantify uncertainty in the environment for Al and robotics
applications. Systems with machine learning components that make decisions based
on observed data also have a natural, Bayesian probabilistic interpretation. In such
cases, logic no longer suffices, and we must reason with probability. Probabilistic
model checking techniques aim to verify the correctness of probabilistic models
against quantitative properties, such as the probability or expectation of a critical
event. Exemplified through the software tool PRISM (www.prismmodelchecker.org),
they have been successfully applied in a variety of domains, finding and fixing flaws in
real-world systems. As today’s computing systems evolve to increasingly rely on
automated, strategic decisions learnt from rich sources of data, probabilistic model
checking has the potential to provide probabilistic robustness guarantees for machine
learning. Using illustrative examples from mobile communications, robotics, security,
autonomous driving and affective computing, this lecture gave an overview of recent
progress in probabilistic model checking, and highlighted challenges and opportunities
for the future.
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Biography

Marta Kwiatkowska is Professor of Computing Systems and Fellow of Trinity College,
University of Oxford. She is known for fundamental contributions to the theory and
practice of model checking for probabilistic systems. She led the development of the
PRISM model checker, the leading software tool in the area. Probabilistic model
checking has been adopted in diverse fields, including distributed computing, wireless
networks, security, robotics, healthcare, systems biology, DNA computing and
nanotechnology, with genuine flaws found and corrected in real-world protocols. Marta
Kwiatkowska was awarded two ERC Advanced Grants, VERIWARE and FUN2MODEL, and
is a coinvestigator of the EPSRC Programme Grant on Mobile Autonomy. She was
honoured with the Royal Society Milner Award in 2018 and the Lovelace Medal in 2019,
and is a Fellow of the Royal Society, ACM and BCS, and Member of Academia Europea.

Michael Leuschel, Diisseldorf, Germany

On 6 May 2021, Michael Leuschel, a professor at the Institut fur Informatik of Heinrich-
Heine-Universitat Disseldorf in Germany, delivered a joint Formal Methods Europe
(FME) and FACS talk entitled “New Ways of Using Formal Models in Industry’. The talk
covered Michael’s extensive experience of liaising with industry in the use of formal
methods, mainly using the B-Method and especially Event-B, including the use of the
ProB animator and model checker tool developed by Michael and his colleagues. Ana
Cavalcanti, chair of FME, attended the talk, giving a brief introduction and welcome. A
video of the talk is available online under:

https://www.bcs.org/events/2021/may/webinar-evening-seminar-facs-s

© Zoom Meeting
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Synopsis

Advances in formal methods tools have enabled a wide variety of new ways of using
formal models and for increasing the added value of formal modelling. This talk
presented experience in using the B formal method for systems modelling and data
validation in the railway sector. The talk started out by situating the B-Method within
the realm of formal methods and providing a brief overview of twenty-five years of
industrial usage. The talk then discussed various lessons learnt during the speaker’s
experience with formal methods, in particular for the new hybrid-level 3 European train
control system specification. It discussed how to combine the various verification and
validation aspects, from proof to visualization, leading to new applications such as
executable prototypes or interactive requirements documents.

Biography

Michael Leuschel is full professor at the Institut fir Informatik of Heinrich-Heine-
Universitat Dusseldorf, Germany, where he leads the Software Engineering and
Programming Languages group. His research focusses on model-based problem
solving using symbolic model checking. He has been one of the main developers of
ProB, a successful animator, constraint solver and model checker for the B-Method.
ProB is certified T2 SIL4 according to the Cenelec EN 50128 standard. Michael’s
research is also behind the development of the ECCE system for partial deduction.
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Conclusion

We plan to continue to make FACS talks available on Zoom and then as videos via
YouTube after the talk if the speaker agrees. However, we also look forward to live
talks again when this is possible and aim to deliver these in hybrid mode, both at the
BCS London office and online. We are looking for a volunteer to join the FACS
committee and help in organizing FACS talks. This is an excellent opportunity to
enable talks by people you wish to hear. If you would like to take on this role, or
suggest a speaker and co-organize a single talk, please contact the Chair of FACS,
Jonathan Bowen, on: jonathan.bowen@Isbu.ac.uk
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Forthcoming events

Events Venue (unless otherwise specified):

BCS, The Chartered Institute for IT
Ground Floor, 25 Copthall Avenue, London, EC2R 7BP

The nearest tube station is Moorgate, but Bank and Liverpool Street are within walking
distance as well.

Webinar: Matrices of Sets
23 September,

5:15pm - 8:00pm | An introduction to Matrices of Sets
Speaker: Renaud Di Francesco, Sony Europe BV

Synopsis:
An introduction to Matrices of Sets, i.e. tables where the

position at line i and column j is occupied by a set M(i,j),
instead of a number.

https://www.bcs.org/events/2021/september/webinar-
matrices-of-sets-bcs-formal-aspects-of-computing-science-sg-

facs/

Details of all forthcoming events can be found online here:

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-
computing-science-group/

Please revisit this site for updates as and when further events are confirmed.
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FACS is always interested to hear from its members and keen to recruit additional
helpers. Presently we have vacancies for officers to help with fund raising, to liaise with
other specialist groups such as the Requirements Engineering group and the European
Association for Theoretical Computer Science (EATCS), and to maintain the FACS
website. If you are able to help, please contact the FACS Chair, Professor Jonathan
Bowen at the contact points below:

BCS-FACS

c/o Professor Jonathan Bowen (Chair)
London South Bank University

Email: jonathan.bowen@lsbu.ac.uk
Web: www.bcs-facs.org

You can also contact the other Committee members via this email address.

Mailing Lists

As well as the official BCS-FACS Specialist Group mailing list run by the BCS for FACS
members, there are also two wider mailing lists on the Formal Aspects of Computer
Science run by JISCmail.

The main list <facs@jiscmail.ac.uk> can be used for relevant messages by any
subscribers. An archive of messages is accessible under:

http://www.jiscmail.ac.uk/lists/facs.html
including facilities for subscribing and unsubscribing.

The additional <facs-event@jiscmail.ac.uk> list is specifically for announcement of
relevant events.

Similarly, an archive of announcements is accessible under:
http://www.jiscmail.ac.uk/lists/facs-events.html
including facilities for subscribing and unsubscribing.

BCS-FACS announcements are normally sent to these lists as appropriate, as well as the
official BCS-FACS mailing list, to which BCS members can subscribe by officially joining
FACS after logging onto the BCS website.
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