
Issue 2021-2
July 2021

FACS
A
C
T
S

The Newsletter of the
Formal Aspects of Computing Science

(FACS) Specialist Group

ISSN 0950-1231

FACS FACTS Issue 2021-2 July 2021

About FACS FACTS
FACS FACTS (ISSN: 0950-1231) is the newsletter of the BCS Specialist Group on Formal
Aspects of Computing Science (FACS). FACS FACTS is distributed in electronic form to
all FACS members.

Submissions to FACS FACTS are always welcome. Please visit the newsletter area of the
BCS FACS website for further details at:

https://www.bcs.org/membership/member-communities/facs-formal-aspects-
of-computing-science-group/newsletters/

Back issues of FACS FACTS are available for download from:
https://www.bcs.org/membership/member-communities/facs-formal-aspects-
of-computing-science-group/newsletters/back-issues-of-facs-facts/

The FACS FACTS Team
Newsletter Editors

Tim Denvir timdenvir@bcs.org

Brian Monahan brianqmonahan@googlemail.com

Editorial Team:
Jonathan Bowen, John Cooke, Tim Denvir, Brian Monahan, Margaret West.

Contributors to this issue:
Jonathan Bowen, Andrew Johnstone, Keith Lines,

Brian Monahan, John Tucker, Glynn Winskel

BCS-FACS websites
BCS: http://www.bcs-facs.org

LinkedIn: https://www.linkedin.com/groups/2427579/

Facebook: http://www.facebook.com/pages/BCS-FACS/120243984688255

Wikipedia: http://en.wikipedia.org/wiki/BCS-FACS

If you have any questions about BCS-FACS, please send these to Jonathan Bowen
at jonathan.bowen@lsbu.ac.uk.

2

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/
mailto:jonathan.bowen@lsbu.ac.uk
http://en.wikipedia.org/wiki/BCS-FACS
http://www.facebook.com/pages/BCS-FACS/120243984688255
https://www.linkedin.com/groups/2427579/
http://www.bcs-facs.org/
mailto:brianqmonahan@googlemail.com
mailto:timdenvir@bcs.org
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/back-issues-of-facs-facts/
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/back-issues-of-facs-facts/

FACS FACTS Issue 2021-2 July 2021

Editorial
Dear readers,

Welcome to the 2021-2 issue of the FACS FACTS Newsletter. A theme for this issue is
suggested by the thought that it is just over 50 years since the birth of Domain
Theory1.

Why did computer science need Domain Theory? To provide a semantics for
computational structures, one needs to construct a mathematical model for them. In
many high-level programming languages it is possible to define recursive data types,
and to write successful programs which use them. Yet it is impossible to model
recursive data types, such as those that contain their own function spaces, in set
theory. Georg Cantor showed this in about 1874-18842. Where data types embody
functions, they are computable functions, not the fully fledged functions found in set
theory. Domains provide a way of expressing these limited functions, which has,
almost happily, the accidental effect of enabling types to have this kind of recursion.

Programming languages were not the first context in which we find recursion.
Developments in mathematical logic, in the early 20th century, used the idea decades
before. In their introduction to the second edition of Principia Mathematica3 Whitehead
and Russell refer to that theorem of Cantor’s, stating it very succinctly:

2n > n

Here 2 denotes the two-value set {0,1}, n denotes the set of natural numbers [0:n-1],
2n denotes the set of functions from n to 2 and > compares the cardinalities of the
sets. Whitehead and Russell remark that Cantor’s proof is limited to finite sets n, but if
that historically is the case, it is easy to extend a natural proof to infinite sets of any
cardinality (left to the reader!). (Note that if n is countably infinite, then the theorem
and proof are isomorphic to another strongly related theorem of Cantor’s, that the
Reals are uncountable).

Enough of this from me. Our first feature article is by my co-editor, Brian Monahan,
Domain Theory Revisited, an introduction and thoughtful discourse on the subject.
Then comes John Tucker, Haskell B. Curry at War, a historical note from the History of
Computing Collection at Swansea University. The third feature is by Glynn Winskel,
Domain Theory and Interaction. This is a splendid grand tour of the history from
Domain Theory’s beginnings, through interactive computation, concurrent games and

1Dana S. Scott. Outline of a mathematical theory of computation. Technical Monograph PRG-2, Oxford University
Computing Laboratory, Oxford, England, November 1970; Dana Scott and Christopher Strachey. Toward a
mathematical semantics for computer languages Oxford Programming Research Group Technical Monograph.
PRG-6. 1971.
2See e.g. https://mathshistory.st-andrews.ac.uk/Biographies/Cantor/
3Alfred North Whitehead & Bertrand Russell, Principia Mathematica, CUP 1910, second edition 1927, paperback
edition to *56 1962, page xiv.

3

https://mathshistory.st-andrews.ac.uk/Biographies/Cantor/

FACS FACTS Issue 2021-2 July 2021

strategies, to recent work on dialectica categories and container types. Then, Andrew
Johnstone provides a most instructive review of the recent book by Cliff Jones,
Understanding Programming Languages (Springer Switzerland 2020), again extremely
relevant to program language semantics.

Finally we have reports on some recent FACS and FACS-related events. Keith Lines
summarises the webinar by Conor McBride & Fredrik Nordvall Forsberg, Dimensionally
correct by construction: Type systems for programs. Jonathan Bowen details the ABZ
2021 conference, which was preceded by a festschrift for Egon Börger. Jonathan also
covers FACS and other relevant seminars that have taken place so far this year: Keith
Lines, NPL’s Experience with Formal Aspects; Marta Kwiatkowska, Probabilistic Model
Checking for the Data-rich World (BCS Lovelace seminar); and Michael Leuschel, New
Ways of Using Formal Models in Industry (joint FACS and FME seminar).

We hope you enjoy FACS FACTS issue 2021-2.

Tim Denvir
Brian Monahan

4

FACS FACTS Issue 2021-2 July 2021

5

FACS FACTS Issue 2021-2 July 2021

6

FACS FACTS Issue 2021-2 July 2021

7

FACS FACTS Issue 2021-2 July 2021

8

FACS FACTS Issue 2021-2 July 2021

9

FACS FACTS Issue 2021-2 July 2021

10

FACS FACTS Issue 2021-2 July 2021

11

FACS FACTS Issue 2021-2 July 2021

12

FACS FACTS Issue 2021-2 July 2021

13

FACS FACTS Issue 2021-2 July 2021

14

FACS FACTS Issue 2021-2 July 2021

15

FACS FACTS Issue 2021-2 July 2021

16

FACS FACTS Issue 2021-2 July 2021

17

FACS FACTS Issue 2021-2 July 2021

18

FACS FACTS Issue 2021-2 July 2021

19

FACS FACTS Issue 2021-2 July 2021

20

FACS FACTS Issue 2021-2 July 2021

21

FACS FACTS Issue 2021-2 July 2021

22

FACS FACTS Issue 2021-2 July 2021

23

FACS FACTS Issue 2021-2 July 2021

24

FACS FACTS Issue 2021-2 July 2021

25

FACS FACTS Issue 2021-2 July 2021

26

FACS FACTS Issue 2021-2 July 2021

References
[1] Samson Abramsky,

Domain theory in logical form, Annals of Pure and Applied Logic, 51:1–77, 1991
https://www.sciencedirect.com/science/article/pii/016...065T

[2] Samson Abramsky, Achim Jung,
Domain Theory,
Pub. in: Handbook of Logic in Computer Science, Vol 3, Clarendon Press, Oxford, 1994
https://www.cs.bham.ac.uk/ ̃ axj/pub/papers/handy1.pdf

[3] Samson Abramsky, C.-H. Luke Ong,
Full abstraction in the lazy lambda calculus, Information and Computation, 105:159–
267, 1993 https://www.sciencedirect.com/science/article/pii/S08...0448

[4] H.P.Barendregt, The Lambda Calculus Its Syntax and Semantics, Studies in Logic and the
foundations of mathematics, North-Holland, 1981

[5] Guy Blelloch, Robert Harper, λ-Calculus - The Other Turing Machine, Conference paper,
Carnegie-Mellon University, July 2015
https://www.cs.cmu.edu/˜rwh/papers/lctotm/cs50.pdf

[6] Luca Cardelli, Marcelo Fiore, Glynn Winskel (Ed), Computation, Meaning, and Logic:
Articles dedicated to Gordon Plotkin, Electronic Notes in Theoretical Computer Science
172 (2007) https://www.sciencedirect.com/journal/electronic-...nce/vol/172

[7] Felice Cardone, J. Roger Hindley, History of Lambda-calculus and Combinatory Logic,
Swansea University Mathematics Department Research Report No. MRRS-05-06, 2006
https://www.researchgate.net/publication/2283868...inatory_logic

[8] B. Jack Copeland, The Church-Turing Thesis, The Stanford Encyclopedia of Philosophy
(Summer 2020 Edition), Edward N. Zalta (ed.),
https://plato.stanford.edu/archives/sum2020/entries/church-turing/

[9] O-J Dahl, E.W.Dijkstra, C.A.R.Hoare, Structured Programming,

Academic Press, 1972

https://dl.acm.org/doi/pdf/10.5555/1243380

[10] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order,
Cambridge, 2002 (2nd Ed.)

[11] Dina Goldin, Peter Wegner, The Church-Turing Thesis: Breaking the Myth, Lecture Notes
in Computer Science 3526:152-168, June 2005
https://www.researchgate.net/publication/221652812_T...ing_the_Myth

27

https://www.researchgate.net/publication/221652812_The_Church-Turing_Thesis_Breaking_the_Myth
https://dl.acm.org/doi/pdf/10.5555/1243380
https://plato.stanford.edu/archives/sum2020/entries/church-turing/
https://www.researchgate.net/publication/228386842_History_of_lambda-calculus_and_combinatory_logic
https://www.sciencedirect.com/journal/electronic-notes-in-theoretical-computer-science/vol/172/suppl/C
https://www.cs.cmu.edu/~rwh/papers/lctotm/cs50.pdf
https://www.cs.cmu.edu/~rwh/papers/lctotm/cs50.pdf
https://www.cs.cmu.edu/~rwh/papers/lctotm/cs50.pdf
https://www.sciencedirect.com/science/article/pii/S0890540183710448
https://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf
https://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf
https://www.cs.bham.ac.uk/
https://www.sciencedirect.com/science/article/pii/016800729190065T

FACS FACTS Issue 2021-2 July 2021

[12] J.A.Goguen, J.W.Thatcher, E.G.Wagner, E.B.Wright, Initial Algebra Semantics and
Continuous Algebras, JACM, Vol 24, Issue 1, Jan. 1977 pp 68–95

[13] J. Roger Hindley, Jonathan Seldin, Introduction to Combinators and λ-Calculus, London
Mathematical Society Student Texts 1, Cambridge, 1986

[14] Graham Hutton, Introduction to Domain Theory, 5 lectures, 1994
http://www.cs.nott.ac.uk/˜pszgmh/domains.html

[15] Dexter Kozen, Church–Rosser Made Easy, Fundamenta Informaticae 105 1–8, DOI
10.3233/FI-2010-306 IOS Press, 2010
https://www.researchgate.net/publication/220444851_..._Made_Easy

[16] Lukasz Lachowski, On the Complexity of the Standard Translation of Lambda Calculus
into Combinatory Logic. REPORTS ON MATHEMATICAL LOGIC 53 (2018), 19–42 doi:
10.4467/20842589RM.18.002.8835
https://www.ejournals.eu/rml/2018/Number-53/art/12285/

[17] Kristen Nygaard and Ole-Johan Dahl The Development of the SIMULA Languages ACM
SIGPLAN Notices. Vol. 13. No. 8. August 1978
https://phobos.ramapo.edu/˜ldant/datascope/simulahistory.pdf

[18] David A. Schmidt, Denotational Semantics, Allyn and Bacon, 1986
https://people.cs.ksu.edu/˜schmidt/text/DenSem-full-book.pdf

[19] Dana Scott, Outline of a Methematical Theory of Computation, (1977), Kiberneticheskij
Sbornik. Novaya Seriya. 14. Also: PRG-02, Monograph, Oxford University Computing
Laboratory, November 1970. https://www.cs.ox.ac.uk/files/3222/PRG02.pdf

[20] Dana Scott, Christopher Strachey, Towards a Mathematical Semantics for Computer
Languages, PRG-06, Monograph, Oxford University Computing Laboratory, August
1971, https://www.cs.ox.ac.uk/files/3228/PRG06.pdf

[21] Dana Scott, Data Types as Lattices, SIAM J. Computing, Vol 5, pp522–587, 1976
https://www.researchgate.net/publication/213877138_...s_Lattices

[22] Dana Scott, Domains for Denotational Semantics, January 1982, Conference: Automata,
Languages and Programming, 9th Colloquium, Aarhus, Denmark, July 12-16, 1982,
Proceedings July 12-16, 1982, DOI:10.1007/BFb0012801
https://www.researchgate.net/publication/220897586_...nal_Semantics

[23] Dana Scott, λ calculus: Then and Now, Turing Centennial Celebration, Princeton
University, May 10-12, 2012 https://turing100.acm.org/lambda_calculus_timeline.pdf

[24] M.B.Smyth, Effectively given domains, Theoretical Computer Science, 5:257–274, 1977

[25] Mike Smyth and Gordon Plotkin, The category-theoretic solution of recursive domain
equations, SIAM J. Computing, 11:761–783, 1982
https://homepages.inf.ed.ac.uk/gdp/publications/Ca...ion.pdf

[26] Gordon D. Plotkin, Domains, Dept. of Computer Science, University of Edinburgh, 1983
https://homepages.inf.ed.ac.uk/gdp/publications/...4.ps

28

https://homepages.inf.ed.ac.uk/gdp/publications/Domains_a4.ps
https://homepages.inf.ed.ac.uk/gdp/publications/Category_Theoretic_Solution.pdf
https://turing100.acm.org/lambda_calculus_timeline.pdf
https://www.researchgate.net/publication/220897586_Domains_for_Denotational_Semantics
https://www.researchgate.net/publication/213877138_Data_Types_as_Lattices
https://www.cs.ox.ac.uk/files/3228/PRG06.pdf
https://www.cs.ox.ac.uk/files/3222/PRG02.pdf
https://people.cs.ksu.edu/~schmidt/text/DenSem-full-book.pdf
https://people.cs.ksu.edu/~schmidt/text/DenSem-full-book.pdf
https://people.cs.ksu.edu/
https://phobos.ramapo.edu/~ldant/datascope/simula%20history.pdf
https://phobos.ramapo.edu/~ldant/datascope/simula%20history.pdf
https://phobos.ramapo.edu/~ldant/datascope/simula%20history.pdf
https://www.ejournals.eu/rml/2018/Number-53/art/12285/
https://www.researchgate.net/publication/220444851_Church-Rosser_Made_Easy
http://www.cs.nott.ac.uk/~pszgmh/domains.html
http://www.cs.nott.ac.uk/~pszgmh/domains.html
http://www.cs.nott.ac.uk/~pszgmh/domains.html

FACS FACTS Issue 2021-2 July 2021

[27] Gordon D.Plotkin, A Structural Approach to Operational Semantics, University of
Aarhus, Denmark, DAIMI FN-19, September 1981
https://www.cs.cmu.edu/˜crary/819-f09/Plotkin81.pdf

[28] Raymond Smullyan, To Mock a Mockingbird And Other Logic Puzzles, Oxford, 1985

[29] R.D.Tennent, Semantics of Programming Languages, Prentice-Hall, 1991

[30] John Tromp, Binary Lambda Calculus and Combinatory Logic,
10.1142/9789812770837 0014, 2006,
https://www.researchgate.net/publication/30815197_Bin...tory_Logic

[31] A.M. Turing, On Computable Numbers, with an Application to the
Entscheidungsproblem, Proceedings of the London Mathematical Society (Series 2),
42 (1936–37): 230–265
(Also in: The Essential Turing, B.Jack Copeland (Ed.), Oxford, 2004)

[32] A.M. Turing, Computability and λ-definability, J. Symbolic Logic, vol. 2 (1937), pp. 153-
163

[33] Glynn Winskel, The Formal Semantics of Programming Languages. An
Introduction, MIT Press, 1993

[34] Glynn Winskel, An introduction to event structures April 2006, Lecture Notes in
Computer Science Vol 354, pp364-397 DOI:10.1007/BFb0013026
https://www.researchgate.net/publication/225207108_...uctures

29

https://www.researchgate.net/publication/225207108_An_introduction_to_event_structures
https://www.researchgate.net/publication/30815197_Binary_Lambda_Calculus_and_Combinatory_Logic
https://www.cs.cmu.edu/~crary/819-f09/Plotkin81.pdf
https://www.cs.cmu.edu/~crary/819-f09/Plotkin81.pdf
https://www.cs.cmu.edu/

FACS FACTS Issue 2021-2 July 2021

History of Computing Collection at Swansea University

The History of Computing Collection specialises in computing
before computers, formal methods, and local histories of
computing. An introduction to the Collection appeared in the last
issue of FACS FACTS (2021-1 February 2021, pp.10-17). The
Collection is located on the Singleton Campus of Swansea
University; it can be visited by appointment. A small number of
items from the Collection are on display in the Computational
Foundry, Bay Campus, which is the home of the Computer Science
Department. All enquires welcome.

From the History of Computing Collection, Swansea University:

Haskell B Curry at War

Haskell B Curry (1900–1982) is known to computing students as the namesake of the
functional programming language Haskell. In logic he is known for his work on
combinatory logic which has influenced the design of modern functional programming
languages (e.g., Turner’s SASL, Ken Iversons APL). Combinatory logic is built on the
idea of operations for building definitions of functions called combinators. Moses
Schönfinkel (1888–1942), at Gottingen, had introduced the idea in 1924. Curry went
to Gottingen where he gained a PhD in 1929. Curry solved the problem of
completeness for a set of combinators. Over decades, starting in the 1930s, Curry
developed their theory that became combinatory logic. Curry was very rigorous in
matters of logic, like many founders of mathematical logic in the early Twentieth
Century. He was interested in ‘philosophical’ questions about mathematical ideas
commonly taken for granted and for which radical and primitive idealisations are
necessary.

In the previous issue of FACS FACTS (2021-1 February 2021, pp.23-25), Jonathan
Bowen wrote about Moses Schönfinkel and combinatory logic. It was in celebration of a
century old pure mathematical idea with unforeseen but significant applications.
Combinatory logic is yet one more example of our debt in computer science to early
and (very) abstract speculations of logicians.

30

FACS FACTS Issue 2021-2 July 2021

Curry on Programming
Curry deserves to be better known for his theorising about programming. This belongs
to his war work for the United States Army's Ballistic Research Laboratory, which he
moved to in 1944. In the History of Computing Collection, we have items that bring to
life computing between and during in the world wars. The image (Figure 1) shows our
copy of a report on programming the ENIAC by Haskell B Curry, written together Willa
A Wyatt and finished in August 1946; it was declassified in 1999.

They begin on page 6 of their report with these clear explanations:

1.1 The problem of inverse
interpolation may be stated as
follows. Suppose we have a table
giving values of a function x(t),
and possibly some additional
functions, for equally spaced
values of the argument t. It is
required to tabulate t and the
additional quantities for equally
spaced values of x.

1.2 This problem is important in
the calculation of firing tables.
Suppose the trajectory
calculations have given us the
coordinates (x,y) of the projectile

as functions of t (time) and ϕ
(angle of departure.) For the

tables we want t and ϕ as
functions of x and y; indeed we

wish to determine ϕ so as to hit
a target whose position (x,y) is

known, and t is needed for the fuze setting or other purposes. This is a
problem of inverse interpolation in two variables; it can be solved by two
successive inverse interpolations on one variable.

31

FACS FACTS Issue 2021-2 July 2021

Such computational work is core business
for the Ballistic Research Laboratory of the
Ordnance Department! The Laboratory was
established in 1938 from the Research
Division at the Aberdeen Proving Ground in
Maryland. The production of ballistic tables
for guns was a central problem for the
army.

These were complex tables that, ideally,
gave the angle of elevation required for a
particular type of shell to hit a target at a
given range with a given propellant. The
tables gave variations to account for:
atmospheric temperature; air density;
wind; angle of sight; weight of projectile;
muzzle velocity; and drift. Calibrating a
gun was a massive computational job. See
Bergin (1996).

The images show the cover and a page
from our copy of a table book for gunnery
calculation (Figures 2 and 3).

32

FACS FACTS Issue 2021-2 July 2021

ENIAC

Left: Betty Jennings Right: Frances Bilas
Operating ENIAC (Photo: US Army).

It was the Ballistic Research Laboratory that commissioned a hugely expensive project
to mechanise these tasks of table making. (Reminding us today of Babbage’s first steps
in mechanising table-making using the Difference Engine.) Thus, the Electronic
Numerical Integrator and Computer – ENIAC – was designed and built in order to
calculate gunnery firing tables. The project was conceived in 1943 and completed in
1945 at the University of Pennsylvania led by John Mauchly and J Presper Eckert. It was
reconfigured 1947-48 and decommissioned in 1955. ENIAC was destined to be
celebrated as the first programmable electronic computer in the USA.

ENIAC was indeed programmable, electronic, and a general-purpose digital computer.
It was programmed by rewiring the machine: the positions of the wires and switches
was a program! Curry’s co-author Willa Wyatt was a mathematician who programmed
ENIAC.

The report describes general schemes for programming inverse problems that can also
be adapted to related programmes. In the 1940s and early 1950s, computer
programmers were intimate with the hardware: programming was specific to individual

33

FACS FACTS Issue 2021-2 July 2021

machines. Curry and Wyatt’s concept of programming the ENIAC introduced a symbolic
abstraction of the logic of the ENIAC hardware.

Curry went on to write companion reports that are noteworthy milestones for us:

o On the composition of programs for automatic computing (1949)

o A program composition technique as applied to inverse interpolation (1950)

For a fuller account of Curry’s three papers on programming I recommend de Moll,
Bullynck and Carle (2010). For an account of ENIAC, its history and legacy, I
recommend Haigh, Priestley, and Rope (2016).

Willa Wyatt (1917-2011) was a practical ENIAC programmer. The programmers of the
ENIAC were women, celebrated in Fritz (1996). She was born in in Portsmouth, New
Hampshire. A graduate of New Hampshire University in 1939, she was recruited by the
Moore School of Electrical Engineering at the University of Pennsylvania to work on the
differential analyzer and computer sections for the ENIAC. When the ENIAC was moved
to the Aberdeen Proving Grounds, Maryland, in 1946, she moved with it. There she met
her husband Bill Sigmund; in 1957 they moved to Tampa, Florida where they remained:
war work behind them and, as car enthusiasts, the open road ahead. Wyatt died aged
94.

References
Thomas J. Bergin (editor), 50 Years of Army Computing, From ENIAC to MSRC, Army
Research Laboratory 1996
Available at: https://www.arl.army.mil/wp-content/uploads/2019/11/ARL-SR-93-50-Years-
of-Computing.pdf

Haskell B Curry and Willa A Wyatt, A Study of Inverse Interpolation of the ENIAC, Army
Ballistic Research Laboratory, Aberdeen Proving Ground, 1946.
Available at: https://apps.dtic.mil/sti/citations/AD0640621

W. Barkley Fritz, The Women of ENIAC, IEEE Annals of the History of Computing, 18: 3,
(1996) 13-28.

Thomas Haigh, Mark Priestley, and Crispin Rope, ENIAC in Action: Making and Remaking
the Modern Computer, MIT Press, 2016.

L. De Mol, M. Bullynck, M. Carle, Haskell before Haskell. Curry’s contribution to
programming (1946– 1950), In: F. Ferreira, B. Lo we, E. Mayordomo, L.-M. Gomze (eds.), ̈
Computability in Europe 2010, Lecture Notes in Computer science, vol. 6158, Springer,
108–117. Available at: https://biblio.ugent.be/publication/1041602/file/6742990.pdf

John V Tucker
Department of Computer Science and History of Computing Collection

Swansea University

34

https://biblio.ugent.be/publication/1041602/file/6742990.pdf
https://apps.dtic.mil/sti/citations/AD0640621
https://www.arl.army.mil/wp-content/uploads/2019/11/ARL-SR-93-50-Years-of-Computing.pdf
https://www.arl.army.mil/wp-content/uploads/2019/11/ARL-SR-93-50-Years-of-Computing.pdf

FACS FACTS Issue 2021-2 July 2021

35

FACS FACTS Issue 2021-2 July 2021

36

FACS FACTS Issue 2021-2 July 2021

37

FACS FACTS Issue 2021-2 July 2021

38

FACS FACTS Issue 2021-2 July 2021

39

FACS FACTS Issue 2021-2 July 2021

40

FACS FACTS Issue 2021-2 July 2021

41

FACS FACTS Issue 2021-2 July 2021

42

FACS FACTS Issue 2021-2 July 2021

43

FACS FACTS Issue 2021-2 July 2021

44

FACS FACTS Issue 2021-2 July 2021

45

FACS FACTS Issue 2021-2 July 2021

46

FACS FACTS Issue 2021-2 July 2021

47

FACS FACTS Issue 2021-2 July 2021

48

FACS FACTS Issue 2021-2 July 2021

49

FACS FACTS Issue 2021-2 July 2021

50

FACS FACTS Issue 2021-2 July 2021

51

FACS FACTS Issue 2021-2 July 2021

52

FACS FACTS Issue 2021-2 July 2021

53

FACS FACTS Issue 2021-2 July 2021

54

FACS FACTS Issue 2021-2 July 2021

55

FACS FACTS Issue 2021-2 July 2021

56

FACS FACTS Issue 2021-2 July 2021

57

FACS FACTS Issue 2021-2 July 2021

58

FACS FACTS Issue 2021-2 July 2021

Understanding Programming Languages
By Cliff Jones, Springer 2020

Reviewed by: Adrian Johnstone

Royal Holloway and New College
University of London

July 2021

Cliff’s new book on programming language semantics is a distillation of the material
he has taught at Newcastle for over a decade now, using VDM-like notation to develop
(mostly) operational descriptions of (mostly) imperative programming languages.
Anybody who knows Cliff or has heard him speak will know what style to expect here –
confident, authoritative and challenging in the best way, so that good students are
encouraged to pursue their own ideas within a formal framework.

A particular strength is the emphasis on the semantics of concurrency. We all know
that reasoning informally about concurrency is very hard, and of course reasoning
about meta-concurrency (i.e. notations for expressing concurrent programs) is a whole
other level of challenge. This presents an educational opportunity. From the
perspective of folk who want to increase the formal content in undergraduate courses,
Cliff’s advanced chapters on concurrency are particularly helpful, since many
elementary books on programming language design and implementation struggle to
get past toy examples. Students thus become demotivated since they perceive the
entry price for formal methods as being high, but they then never get to see hard
problems being solved. Cliff does a fine job of showing how formal semantics can save
language designers from themselves, and in the process strengthens the case for
formal methods on undergraduate courses.

Before looking in detail at the contents, I should do that full-disclosure thing. This
cannot be an entirely objective review since I’ve known Cliff for many years, and some
time ago he sent me a signed copy of the book… In addition, Cliff solicited my review
comments on a draft, and was kind enough to mention me in the acknowledgements.
So, I have seen the work in progress and when Jonathan Bowen asked me if I would
review it, my inclination was to demure through lack of independence. On the other
hand, I teach semantics at undergraduate level too (though in a very different style)
and I want to see more mainstream courses and publicise the usefulness of this new
book. As a result, here is an unsurprisingly positive review that you might want to
leaven with an independent reading.

59

FACS FACTS Issue 2021-2 July 2021

The first thing to say to this BCS-FACS audience is that this is not a book about VDM.
Notationally, Cliff uses essentially a subset of VDM but since much of that comprises
standard mathematical notation for sets, first order predicate logic and partial
functions, supplemented with familiar square bracket notation for lists, sets of
bindings for maps and conventional notation for function signatures, I think that most
undergraduate finalists will be able to read these clauses easily. The notation is
introduced early on in digestible lumps, and there is an appendix that enumerates all
of the forms used in the book, with very useful pictorial representations of their
signatures. Thus the text stands alone and is self-contained.

Cliff’s first three chapters are scene-setters covering (1) the need for small meta-
languages with which we can reason about programming languages, (2) the
specification of and translation from concrete to abstract syntax and (3) operational
semantics, and in particular Structural Operational Semantics. This marks the real shift
in Cliff’s pedagogic approach: whereas his teaching at Manchester was based on VDM
and denotational semantics, this book is firmly SOS-oriented.

Cliff then looks at the core requirements of a sequential imperative language, with
chapters on: (4) types, data and representations of the store; (5) block structure,
control flow and procedures with parameter passing; and (6) objects, records, the
heap and functions including higher order functions.

This material is completed with a chapter on other forms of semantic description:
specifically denotational and axiomatic semantics. Cliff writes eloquently of the
distinction between model oriented styles (including SOS) in which machine state is
explicitly modelled, and property oriented approaches in which the semantics is
defined using properties of the program text.

He goes on to give a summary of the development of denotational ideas, describes the
difficulties that arise when procedures are passed to procedures, and their resolution
through Scott’s development of domain theory, wrapping up with a sequence of
pointers into the historical literature of denotational semantics.

Axiomatic semantics, refinement calculus and VDM as an aid to formal software
development and verification are discussed at some length, with a link to programming
language semantics. As might be expected, Cliff gives useful insights into the history
of these ideas that will motivate students’ reading.

For me, the most useful material is in the final three main chapters which look at (8)
shared variable concurrency, (9) concurrent object orientated languages and (10)
exceptions and continuations. Our students have grown up with languages that offer
pragmatic support for all of these features, yet early books on semantics rarely provide
ideas on how to model them formally.

A summary of the challenges presented by interacting parallel threads of computation,
and of several abstractions that have been developed to allow programmers to manage

60

FACS FACTS Issue 2021-2 July 2021

concurrency, is followed by an expansion of the SOS idea to cover nondeterministic small-
step rules which are used in the rest of the material to model concurrent programming
language structures. Recent research on Rely/Guarantee reasoning and Concurrent
Separation Logic is then described using these new tools.

The set piece of this book is an object-oriented language (COOL) that supports concurrency
via method calls, and which avoids data races by only allowing at most one method per
instance to be executing at a time. The motivation for the language, and the techniques
used to formally specify the constructs are laid out in detail, and an appendix summarises
the full semantics. The language would need some fleshing out to become general
purpose: the intention is to illustrate core concurrency issues in a few pages.

The section on exceptions and continuations mostly focusses on approaches to
generalising, and capturing formally, unstructured control flow. In just a few pages it is
hard to give more than an overview and pointers into the literature, which good students
will use as a springboard. Perhaps not surprisingly, Cliff labels this material optional.

I’ll conclude with some remarks on the pedagogic style, and the place that such a book
would find in the curriculum context I work in. A feature of the book is the identification of
some 46 Language issues and eight Challenges. These are sprinkled throughout the text in
the form of boxed asides, and each makes an excellent talking point for an interactive style
of teaching. Each could be expanded into a reading or implementation assignment, and
together they present a seasoned overview of the many facets of programming language
design. All those who have written a few examples in some putative new programming
language and then moved straight to a first implementation before getting lost in the
swamp of complexity would do well to have figured out their approach to these language
issues on paper before they started writing code…

Throughout, the treatment is brisk and I think that my weaker students would need some
further reading. In particular, compared to 40 years ago our students often grow up in a
coding monoculture where median students never really advance beyond their first
language. A second-year course on informal comparative programming languages, or a
thorough reading of (say) David Watt’s Programming Language Design Concepts would be
helpful in expanding students’ consciousness away from Java. Another area where
supplementary reading might be needed is in developing some design-level facility with
SOS. Cliff presents many elegant examples, but the conciseness of the text does not allow
much exploration of alternative formulations of the same core formal idea. A cookbook of
ideas that covers a broad spectrum of language features might be a useful adjunct – I like
Hans Huttel’s Transitions and Trees.

One of the great strengths of this book, though, is the continual reference to the research
culture, both contemporary and historical. There are voluminous references, copious
footnotes and a light-touch set of asides on the history of ideas in this field which I think
will strongly motivate the best students to read and fully engage with the topic, and to
understand that there are open questions and opportunities to make their own future
contributions.

61

FACS FACTS Issue 2021-2 July 2021

Dimensionally correct by construction: Type systems for
programs

Fredrik Nordvall Forsberg and Conor McBride
Mathematically Structured Programming Group

University of Strathclyde

Webinar presented: 15/06/2021
https://www.youtube.com/watch?v=DVDvIoz9vE0

Reported by: Keith Lines, NPL

Introduction
The last FACS talk before a summer break was a webinar presented by Fredrik Nordvall
Forsberg and Conor McBride of the Mathematically Structured Programming Group at
the University of Strathclyde. Fredrik and Conor are also joint appointees with the
National Physical Laboratory, working on a project concerned with increasing the
trustworthiness of software used in measurement systems.

The webinar introduced the concept of dependent types. It explained how dependent
types can be used to define versions of linear algebra operations, such as matrix
multiplication, that check the dimensions [1] of measured quantities as well as
calculate numeric values. Further details are provided in [2].

Fredrik and Conor at the whiteboard.

Instead of the usual slides, Fredrik and Conor provided a whiteboard-based double-act
and included a physics demonstration. This approach was very entertaining and much
appreciated.

62

https://www.youtube.com/watch?v=DVDvIoz9vE0
https://www.bcs.org/events/2021/june/webinar-dimensionally-correct-by-construction-type-systems-for-programs/
https://www.bcs.org/events/2021/june/webinar-dimensionally-correct-by-construction-type-systems-for-programs/

FACS FACTS Issue 2021-2 July 2021

Summary
A simple example, using Haskell, demonstrated how the type checking most
programmers are familiar with often does not help with writing trustworthy software.
Treating all elements of a type equally, when type checking, is an approximation that
can have serious consequences. Dependent types increase trustworthiness by including
contextual information, e.g. whether a number is being used as the index of an
element in an array.

A type definition for lists demonstrated how much type and proof checkers can leave
the programmer to implement and prove. E.g. list appending is an associative
operation, but such basic properties are not always “built in”.

A matrix where rows represent students, columns represent tests results and cells
contain exam results provided a further example of context. Each cell contains
information specific to a particular student and a particular exam.

Attention then turned to physics, in particular dimensional analysis. Mass (M), length
(L) and time (T) are amongst these dimensions. A practical demonstration showed how
dimensions can be used derive an expression for calculating the period of a pendulum.
Dimensions helped derive the expression in a way analogous to how types help with
writing software. The next stage was to bring these two concepts together.

As Andrew Kennedy noted in the 1990s there are strong similarities between
dimensions in physics and types in programming languages. Fredrik and Conor’s
research presented in this section of the webinar builds on Kennedy’s [3] and George
Hart’s [4] work.

A free abelian group on the set of fundamental dimensions, contains the dimensions
that can be assigned to quantities. Type checkers that implement all this theory
obviously relieve the programmer of having to implement and prove these concepts,
making software more trustworthy.

Question and answers
Topics covered included:

 The theory outlined in this talk is not only applicable to functional languages.
E.g. type theory has been introduced to PHP [5].

 The was a discussion about possible areas of applications and similar work
undertaken the past.

63

FACS FACTS Issue 2021-2 July 2021

References
1 BS EN ISO 80000-1:2013, Quantities and units

2 McBride C., Nordvall-Forsberg F., Type systems for programs respecting dimensions
(Jan 2021)
Retrieved 27th June 2021 from University of Strathclyde
https://pureportal.strath.ac.uk/en/publications/type-systems-for-programs-
respecting-dimensions

3 Kennedy A. J., Programming languages and dimensions (April 1996)
Retrieved 27th June 2021 from Cambridge University
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-391.pdf

4 George W. Hart, "Multidimensional Analysis: Algebras and Systems for Science and
Engineering", Springer, 1995

5 Hack, a dialect of PHP created for Facebook
Retrieved 27th June 2021 from hacklang.org
https://hacklang.org/

64

https://hacklang.org/
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-391.pdf
https://pureportal.strath.ac.uk/en/publications/type-systems-for-programs-respecting-dimensions
https://pureportal.strath.ac.uk/en/publications/type-systems-for-programs-respecting-dimensions

FACS FACTS Issue 2021-2 July 2021

ABZ 2021 Conference Report
Jonathan P. Bowen

Chair, BCS-FACS, June 2021

Introduction
The ABZ 2021 8th International Conference on Rigorous State Based Methods was
held entirely virtually during June 2021. This incorporated presentations of papers
from the planned ABZ 2020 conference, postponed due to the COVID-19 pandemic. It
was held during 9–11 June 2021, preceded by a Colloquium on the Occasion of Egon
Börger's 75th Birthday with an associated Festschrift volume, on 7 June 2021 and the
9th Rodin User and Developer Workshop with other sessions on 8 June 2021, making
five days of related online presentations in all. Thus, there were three associated
Springer LNCS (Lecture Notes in Computer Science) volumes for the Festschrift
(Raschke et al., 2021), ABZ 2020 (Raschke et al., 2020), and ABZ 2021 (Raschke &
Méry, 2021). The events were organized by the University of Ulm in Germany, using
Zoom for sessions and wonder.me for breaks, allowing online networking. There was
no registration fee due to sponsorship.

Old school meets new school with a whiteboard presentation on Zoom,
presenting work by Jean-Raymond Abrial and Dominique Cansell during the Rodin Workshop.

Colloquium on the Occasion of Egon Börger’s 75th Birthday
On 7 June 2021, a one-day celebration of Egon Börger’s 75th birthday with
presentations and an associated Festschrift volume (Raschke et al., 2021) was held
on Zoom. The event was organized through the University of Ulm in Germany by
Alexander Raschke, Elvinia Riccobene, and Klaus-Dieter Schewe. A previous

65

https://en.wikipedia.org/wiki/Egon_B%C3%B6rger
https://www.wonder.me/

FACS FACTS Issue 2021-2 July 2021

Festschrift celebration for Egon Börger’s 60th birthday was held in 2006 at Schloss
Dagstuhl in Germany (Abrial & Glässer, 2009). Egon Börger has been the leading
promulgator of the ASM (Abstract State Machines) formal method for much of his
career. He also has an interesting background in his academic advisor tree, leading
back to Hegel, Kant, and Leibniz, among others (Bowen, 2021).

Introduction to Egon Börger’s 75th Festschrift celebration by Alexander Raschke.

Discussions on Zoom during Egon Börger’s 75th Festschrift celebration.

66

FACS FACTS Issue 2021-2 July 2021

Using `wonder.me ’ during breaks.

Egon Börger speaking during his 75th Festschrift celebration.

ABZ 8th International Conference on Rigorous State Based Methods

The ABZ conference series was initiated in London during 2008, when the previous
ZB conference series on the Z notation and B-Method combined with the previous
ASM workshops to form “ABZ” (Börger et al., 2008). The series has gradually
expanded in its scope to include further state-based formal approaches such as
Alloy, TLA, and VDM. It is now open to any state-based formal (or “rigorous”) method.

During 9–11 June 2021, papers submitted for both the ABZ 2020 and ABZ 2021
conferences were presented, in short 15-minute and longer 30-minute formats on
Zoom. There were two keynote talks, each an hour in length, by Ana Cavalcanti

67

https://www.wonder.me/

FACS FACTS Issue 2021-2 July 2021

(Chair of FME, Formal Methods Europe) and Gilles Dowek of INRIA in France. It was
originally hoped to hold the first of these conferences in 2020 but due to the Covid-
19 pandemic this was delayed and eventually held completely online in combination
with ABZ 2021. The ABZ 2020 proceedings was edited by Alexander Raschke,
Dominique Méry, and Frank Houdek (Raschke et al., 2020) and the ABZ 2021
proceedings was edited by the first two of these editors (Raschke et al., 2021).

It is interesting to note the occurrence of various formal methods and tools in the
titles of papers in the two ABZ proceedings. Event-B tops the list with 14 papers. 11
papers mention the Rodin tool, providing Event-B tool support. Next there are nine
papers with ASM in the title (including two mentioning the ASMETA toolset). Alloy is
mentioned in three paper titles, as is the ProB tool providing tool support for B. The
Atelier B, UML-B, and UPPAAL tools are each mentioned in one title. Interestingly,
TLA, VDM, and Z are not mentioned in any paper titles. So, the “A” (ASM and Alloy)
and “B” (mainly Event-B with the associated Rodin and ProB tools) in “ABZ” live on,
especially strongly in the case of ASM and Event-B/Rodin. However, the “Z” part has
essentially disappeared and perhaps can now be considered as “the rest”. C’est la vie
(as we say in the UK!).

A break during ABZ 2021 before Ana Cavalcanti’s keynote talk.

Discussions on Zoom during ABZ 2021.

68

FACS FACTS Issue 2021-2 July 2021

Discussions on `wonder.me’ during ABZ 2021, including an impromptu presentation.

Conclusion
The events all went very well in the circumstances, although online networking is not
the same as at a real conference of course. Swapping between Zoom for
presentations and wonder.me for breaks was not ideal. In the future, perhaps Zoom
will develop to include better facilities for breaks in meetings, but wonder.me does
allow participants to easily join discussion groups in a visual way. The next ABZ 2023
conference is planned to be at Nancy, France, organized by Dominique Méry et al. at
LORIA, University of Lorraine. We hope that this can be a physical conference again!
Meanwhile, for further information on ABZ 2021, see: https://abz2021.uni-ulm.de

The three proceedings associated with the ABZ 2021 conference.

69

https://abz2021.uni-ulm.de/

FACS FACTS Issue 2021-2 July 2021

References
Abrial, J.-R. and Glässer, U. (eds.) (2009). Rigorous Methods for Software
Construction and Analysis: Essays Dedicated to Egon Börger on the Occasion of His
60th Birthday. Springer, Lecture Notes in Computer Science, volume 5115. DOI:
10.1007/978-3-642-11447-2

Börger, E., Butler, M., Bowen, J.P., and Boca, P. (eds.) (2008). Abstract State Machines,
B and Z: First International Conference, ABZ 2008, London, UK, September 16–18,
2008, Proceedings. Springer, Lecture Notes in Computer Science, volume 5238. DOI:
10.1007/978-3-540-87603-8

Bowen, J.P. (2021). Communities and Ancestors Associated with Egon Börger and
ASM. In Raschke et al. (2021), pages 96–120. DOI: 10.1007/978-3-030-76020-5_6

Raschke, A. and Méry, D. (eds.) (2021). Rigorous State-Based Methods: 8th
International Conference, ABZ 2021, Ulm, Germany, June 9–11, 2021, Proceedings.
Springer, Lecture Notes in Computer Science, volume 12709. DOI: 10.1007/978-3-
030-77543-8

Raschke, A., Méry, D., and Houdek, F. (eds.) (2020). Rigorous State-Based Methods:
7th International Conference, ABZ 2020, Ulm, Germany, May 27–29, 2020,
Proceedings. Springer, Lecture Notes in Computer Science, volume 12071. DOI:
10.1007/978-3-030-48077-6

Raschke, A., Riccobene, E., and Schewe, K.-D. (eds.) (2021). Logic, Computation and
Rigorous Methods: Essays Dedicated to Egon Börger on the Occasion of His 75th
Birthday. Springer, Lecture Notes in Computer Science, volume 12750. DOI:
10.1007/978-3-030-76020-5

70

https://doi.org/10.1007/978-3-030-76020-5
https://doi.org/10.1007/978-3-030-48077-6
https://doi.org/10.1007/978-3-030-77543-8
https://doi.org/10.1007/978-3-030-77543-8
https://doi.org/10.1007/978-3-030-76020-5_6
https://doi.org/10.1007/978-3-540-87603-8
https://doi.org/10.1007/978-3-642-11447-2

FACS FACTS Issue 2021-2 July 2021

Meeting Reports
Jonathan P. Bowen

Chair, BCS-FACS, May 2021

Introduction
FACS has moved online for its meetings using the Zoom facilities of the BCS. This
makes recording of talks easier, as well as enabling a more geographically dispersed
audience. Of course, the networking opportunities are reduced, and we aim to resume
meetings at the BCS London office when this is possible. It is then likely that talks will
be hybrid in nature, with a real audience and an online audience, hopeful the best of
both worlds. I understand that the BCS plan facilities at the BCS London office to
enable this, but no timescale has been set yet.

Keith Lines, NPL
On 6 April 2021, Keith Lines, a FACS committee member based at the National Physical
Laboratory (NPL), gave an interesting talk entitled, “NPL’s Experience with Formal
Aspects”, covering activities at NPL in the area of formal methods. He started with a
briefly introduction to perhaps NPL’s most famous “formal methods” person, indeed
“computer scientist”, although neither terms were used with their modern meanings at
the time, Alan Turing (1912–1954). The talk included Turing’s hand-written NPL
personnel record and NPL’s connections with Robert Milne and also Christopher
Strachey, a colleague of Turing and founder of the Programming Research Group at
Oxford. Brian Wichmann, a retired member of NPL, was in the audience and
contributed some interesting remarks during the talk. A video of the talk is available
online under: https://www.bcs.org/events/2021/april/webinar-npl-s-experience-with-formal-aspects/

Alan Turing’s NPL personnel record.

71

https://www.bcs.org/events/2021/april/webinar-npl-s-experience-with-formal-aspects/

FACS FACTS Issue 2021-2 July 2021

Robert Milne and Christopher Strachey.

Synopsis
The National Physical Laboratory’s pioneering role in modern-day computing is well
known; not least because of Alan Turing’s design of the ACE (Automatic Computing
Engine) and Donald Davies’ development of packet switching. NPL has also maintained
an interest in theoretical computer science and formal methods over the years. This
presentation summarised NPL’s work in this area, including: 1) exploring the use of
formal methods in the standardisation of communications protocols; 2) a survey
undertaken in the 1990s on the take up (or lack thereof) of formal methods within
industry; 3) work undertaken with the Department of Computer Science of the
University of York as part of the EU-funded Traceability for Computationally Intensive
Metrology (TraCIM) project. NPL continues formal aspects work through joint
appointments with universities. The presentation ended with a very brief overview of a
project, undertaken with the University of Strathclyde, on physical dimensions and
types, the subject of a FACS presentation from Strathclyde in June 2021.

Biography
Keith Lines applies experience gained in over 30 years of working with NPL’s scientists,
administrators, and support staff to help ensure that NPL activities in software
development continue to meet the requirements of NPL’s ISO 9001 and TickITplus
certifications. Formal aspects of computing have been an interest since he was a
student at the University of Kent in the mid-1980s. He is a member of the BCS.

72

FACS FACTS Issue 2021-2 July 2021

Marta Kwiatkowska, Oxford
Although not a FACS presentation, Marta Kwiatkowska of Oxford University delivered
the BCS Lovelace Lecture, entitled “Probabilistic Model Checking for the Data-rich
World”, on 5 May 2021. Marta has given previous lectures to FACS and was elected a
Fellow of the Royal Society (FRS) in 2019. The talk was introduced by Professor Dame
Muffy Calder DBE OBE, Professor of Formal Methods, Head of the College of Science
and Engineering, and Vice Principal of the University of Glasgow, as well as being
another former FACS speaker. Professor Steve Furber CBE FRS of the University of
Manchester chaired the talk, which concentrated on the PRISM probabilistic model
checker, developed by Marta and her group at Oxford. An impressive range of
applications was presented. A vote of thanks was given at the end of the talk by
Professor Tony Cohn of the University of Leeds. Information on the talk is available
online under:

https://www.bcs.org/events/2021/may/bcs-lovelace-lecture-202021-prof-marta-kwiatkowska/

Checking a large routine, by Alan Turing.

73

https://www.bcs.org/events/2021/may/bcs-lovelace-lecture-202021-prof-marta-kwiatkowska/

FACS FACTS Issue 2021-2 July 2021

Probabilistic model checking beyond PRISM.

Synopsis

Computing systems have become indispensable in our society, supporting us in almost
all tasks, from social interactions and online banking to robotic assistants and
implantable medical devices. Since software faults in such systems can have disastrous
consequences, methods based on mathematical logic, such as proof assistants or
model checking, have been developed to ensure their correctness. However, many
computing systems employ probability, for example as a randomisation technique in
distributed protocols, or to quantify uncertainty in the environment for AI and robotics
applications. Systems with machine learning components that make decisions based
on observed data also have a natural, Bayesian probabilistic interpretation. In such
cases, logic no longer suffices, and we must reason with probability. Probabilistic
model checking techniques aim to verify the correctness of probabilistic models
against quantitative properties, such as the probability or expectation of a critical
event. Exemplified through the software tool PRISM (www.prismmodelchecker.org),
they have been successfully applied in a variety of domains, finding and fixing flaws in
real-world systems. As today’s computing systems evolve to increasingly rely on
automated, strategic decisions learnt from rich sources of data, probabilistic model
checking has the potential to provide probabilistic robustness guarantees for machine
learning. Using illustrative examples from mobile communications, robotics, security,
autonomous driving and affective computing, this lecture gave an overview of recent
progress in probabilistic model checking, and highlighted challenges and opportunities
for the future.

74

http://www.prismmodelchecker.org/

FACS FACTS Issue 2021-2 July 2021

Biography

Marta Kwiatkowska is Professor of Computing Systems and Fellow of Trinity College,
University of Oxford. She is known for fundamental contributions to the theory and
practice of model checking for probabilistic systems. She led the development of the
PRISM model checker, the leading software tool in the area. Probabilistic model
checking has been adopted in diverse fields, including distributed computing, wireless
networks, security, robotics, healthcare, systems biology, DNA computing and
nanotechnology, with genuine flaws found and corrected in real-world protocols. Marta
Kwiatkowska was awarded two ERC Advanced Grants, VERIWARE and FUN2MODEL, and
is a coinvestigator of the EPSRC Programme Grant on Mobile Autonomy. She was
honoured with the Royal Society Milner Award in 2018 and the Lovelace Medal in 2019,
and is a Fellow of the Royal Society, ACM and BCS, and Member of Academia Europea.

Michael Leuschel, Düsseldorf, Germany
On 6 May 2021, Michael Leuschel, a professor at the Institut für Informatik of Heinrich-
Heine-Universität Düsseldorf in Germany, delivered a joint Formal Methods Europe
(FME) and FACS talk entitled “New Ways of Using Formal Models in Industry”. The talk
covered Michael’s extensive experience of liaising with industry in the use of formal
methods, mainly using the B-Method and especially Event-B, including the use of the
ProB animator and model checker tool developed by Michael and his colleagues. Ana
Cavalcanti, chair of FME, attended the talk, giving a brief introduction and welcome. A
video of the talk is available online under:

https://www.bcs.org/events/2021/may/webinar-evening-seminar-facs-sg/

Distribution of the industrial use of the B formal method around the world.

75

https://www.bcs.org/events/2021/may/webinar-evening-seminar-facs-sg/

FACS FACTS Issue 2021-2 July 2021

The 1st Conference on the B method.

A graphical history of the industrial use of the B-Method.

76

FACS FACTS Issue 2021-2 July 2021

ProB tool demonstration.

Synopsis
Advances in formal methods tools have enabled a wide variety of new ways of using
formal models and for increasing the added value of formal modelling. This talk
presented experience in using the B formal method for systems modelling and data
validation in the railway sector. The talk started out by situating the B-Method within
the realm of formal methods and providing a brief overview of twenty-five years of
industrial usage. The talk then discussed various lessons learnt during the speaker’s
experience with formal methods, in particular for the new hybrid-level 3 European train
control system specification. It discussed how to combine the various verification and
validation aspects, from proof to visualization, leading to new applications such as
executable prototypes or interactive requirements documents.

Biography
Michael Leuschel is full professor at the Institut für Informatik of Heinrich-Heine-
Universität Düsseldorf, Germany, where he leads the Software Engineering and
Programming Languages group. His research focusses on model-based problem
solving using symbolic model checking. He has been one of the main developers of
ProB, a successful animator, constraint solver and model checker for the B-Method.
ProB is certified T2 SIL4 according to the Cenelec EN 50128 standard. Michael’s
research is also behind the development of the ECCE system for partial deduction.

77

FACS FACTS Issue 2021-2 July 2021

Conclusion
We plan to continue to make FACS talks available on Zoom and then as videos via
YouTube after the talk if the speaker agrees. However, we also look forward to live
talks again when this is possible and aim to deliver these in hybrid mode, both at the
BCS London office and online. We are looking for a volunteer to join the FACS
committee and help in organizing FACS talks. This is an excellent opportunity to
enable talks by people you wish to hear. If you would like to take on this role, or
suggest a speaker and co-organize a single talk, please contact the Chair of FACS,
Jonathan Bowen, on: jonathan.bowen@lsbu.ac.uk

78

mailto:jonathan.bowen@lsbu.ac.uk

FACS FACTS Issue 2021-2 July 2021

Forthcoming events

Events Venue (unless otherwise specified):

BCS, The Chartered Institute for IT
Ground Floor, 25 Copthall Avenue, London, EC2R 7BP

The nearest tube station is Moorgate, but Bank and Liverpool Street are within walking
distance as well.

23 September,
5:15pm - 8:00pm

Webinar: Matrices of Sets

An introduction to Matrices of Sets

Speaker: Renaud Di Francesco, Sony Europe BV

Synopsis:

An introduction to Matrices of Sets, i.e. tables where the
position at line i and column j is occupied by a set M(i,j),
instead of a number.

https://www.bcs.org/events/2021/september/webinar-
matrices-of-sets-bcs-formal-aspects-of-computing-science-sg-
facs/

Details of all forthcoming events can be found online here:

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-
computing-science-group/

Please revisit this site for updates as and when further events are confirmed.

79

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/
https://www.bcs.org/events/2021/september/webinar-matrices-of-sets-bcs-formal-aspects-of-computing-science-sg-facs/
https://www.bcs.org/events/2021/september/webinar-matrices-of-sets-bcs-formal-aspects-of-computing-science-sg-facs/
https://www.bcs.org/events/2021/september/webinar-matrices-of-sets-bcs-formal-aspects-of-computing-science-sg-facs/

FACS FACTS Issue 2021-2 July 2021

FACS Committee

80

https://www.youtube.com/watch?v=PG2G5xSz0NQ

FACS FACTS Issue 2021-2 July 2021

FACS is always interested to hear from its members and keen to recruit additional
helpers. Presently we have vacancies for officers to help with fund raising, to liaise with
other specialist groups such as the Requirements Engineering group and the European
Association for Theoretical Computer Science (EATCS), and to maintain the FACS
website. If you are able to help, please contact the FACS Chair, Professor Jonathan
Bowen at the contact points below:

BCS-FACS
c/o Professor Jonathan Bowen (Chair)
London South Bank University
Email: jonathan.bowen@lsbu.ac.uk
Web: www.bcs-facs.org

You can also contact the other Committee members via this email address.

Mailing Lists
As well as the official BCS-FACS Specialist Group mailing list run by the BCS for FACS
members, there are also two wider mailing lists on the Formal Aspects of Computer
Science run by JISCmail.

The main list <facs@jiscmail.ac.uk> can be used for relevant messages by any
subscribers. An archive of messages is accessible under:

http://www.jiscmail.ac.uk/lists/facs.html

including facilities for subscribing and unsubscribing.

The additional <facs-event@jiscmail.ac.uk> list is specifically for announcement of
relevant events.

Similarly, an archive of announcements is accessible under:

http://www.jiscmail.ac.uk/lists/facs-events.html

including facilities for subscribing and unsubscribing.

BCS-FACS announcements are normally sent to these lists as appropriate, as well as the
official BCS-FACS mailing list, to which BCS members can subscribe by officially joining
FACS after logging onto the BCS website.

81

http://www.jiscmail.ac.uk/lists/facs-events.html
mailto:facs-event@jiscmail.ac.uk
mailto:facs-event@jiscmail.ac.uk
mailto:facs-event@jiscmail.ac.uk
http://www.jiscmail.ac.uk/lists/facs.html
mailto:facs@jiscmail.ac.uk
mailto:facs@jiscmail.ac.uk
mailto:facs@jiscmail.ac.uk
http://www.bcs-facs.org/
mailto:jonathan.bowen@lsbu.ac.uk

	The FACS FACTS Team
	References
	Haskell B Curry at War
	Curry on Programming
	ENIAC
	References
	Understanding Programming Languages
	By Cliff Jones, Springer 2020

	Dimensionally correct by construction: Type systems for programs
	Introduction
	Summary
	Question and answers

	References
	ABZ 2021 Conference Report
	Introduction
	Colloquium on the Occasion of Egon Börger’s 75th Birthday
	ABZ 8th International Conference on Rigorous State Based Methods
	Conclusion
	References
	Meeting Reports
	Jonathan P. Bowen Chair, BCS-FACS, May 2021

	Introduction
	Keith Lines, NPL
	Synopsis
	Biography

	Marta Kwiatkowska, Oxford
	Synopsis
	Biography

	Michael Leuschel, Düsseldorf, Germany
	Synopsis
	Biography

	Conclusion
	Forthcoming events
	Webinar: Matrices of Sets
	An introduction to Matrices of Sets
	Speaker: Renaud Di Francesco, Sony Europe BV
	Synopsis:
	Mailing Lists

