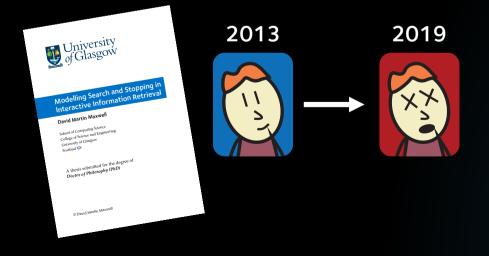


STOP

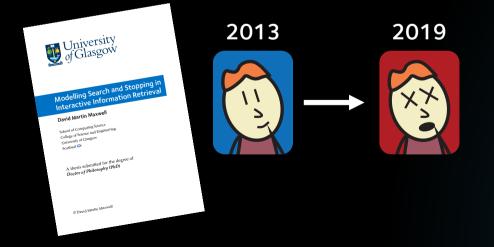
Searching, Stopping and User Modelling


November 25th, 2020

The Recent Past

- University of GlasgowPhD in IIR
- Supervised by
 Dr Leif Azzopardi

- TU Delft
- Postdoc Researcher
- Working with
 Dr Claudia Hauff


The Recent Past

University of GlasgowPhD in IIR

Supervised by
 Dr Leif Azzopardi

My 2020: Lockdown and Stroopwafels

BCS Informer, October 2020

Stopping Behaviour

"All good things must come to an end"

Searching and Stopping

- Search is an inherently interactive process¹
 - Searchers adapt their interactions based upon the perceived quality of a presented ranked list of results²

STOP

0 0

They must also decide when to stop their interactions, too!

Searching and Stopping

- Despite importance, only a limited number of studies have examined this phenomenon
 - People stop because what they find feels "good enough"¹ – but is that good enough for us?

Looking at Empirical Observations

Examining Theoretical Models

¹Zach (2005); echoed by other studies like Dostert and Kelly (2009)

Many different heuristics have been proposed
 From several scientific research areas

Number and Give-Up Heuristics

 Devised from an examination of foraging behaviour of Chickadees in the wild

Considers aspects/models of
 Optimal Foraging Theory (OFT)¹

Number Heuristic

 \bigcirc

Stop after finding x item(s)
Simple...but flawed?

I want

De

ADAPTIVE

Give-Up Heuristic

 \bigcirc

 Stop when I've not found anything after x second(s) have elapsed since the last find

STOP

 Many other (more complex) heuristics have been proposed/observed over time

Difference Threshold

Mental List (Items)

Magnitude Threshold Representational Stability

Satisfaction (Satiation)

 Check Section 3.2 of my thesis for a comprehensive survey of these heuristics

(I)IR Measures

Think about our measures in (I)IIR, too!
Whether to evaluate a system or user, they use some form of stopping model.

Intuitive-ness and Patches

Secreh highland whiskies

Dalwhinnie Distillery | Dalwhinnie Malt Whisky | Malts

https://www.malts.com/distilleries/dalwhinnie/ Dalwhinnie Distillery stands in the Cairngorm National Park at the heart of the Scottish Highlands in the village of Dalwhinnie. Finest scotch...

Laphroaig: Home

https://www.laphroaig.com/ Laphroaig Single Malt peated Whisky from Islay. The most richly flavoured scotch whisky in the World.

Scapa Whisky | Scapa The Orcadian

scapawhisky.com/ Scapa is an artisanal single malt whisky forged by the extreme elements of Orkney, Scotland.

Scotch whisky - Wikipedia

en.wikipedia.org/wiki/Scotch whisky Scotch whisky (Scottish Gaelic: uisge-beatha na h-Alba; often simply called whisky or Scotch) is malt whisky or grain whisky (or a blend

Irish Whiskey - Wikipedia

en.wikipedia.org/wiki/Irish whiskey

Single malt Irish whiskey Whiskeys made entirely from malted barley distilled in a pot still within a single distillery are referred to as single...

This is the Patch Model (Optimal Behaviour)

STOP

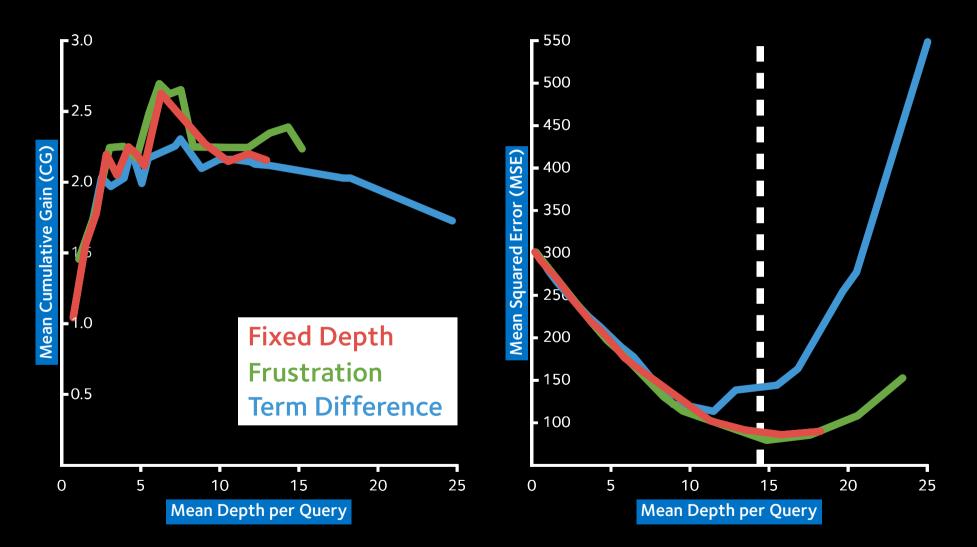
STOP

The Patch Model

 Describes what happens in the patch

Cumulative Gain (CG)

Heuristics approximate this stopping point


Time

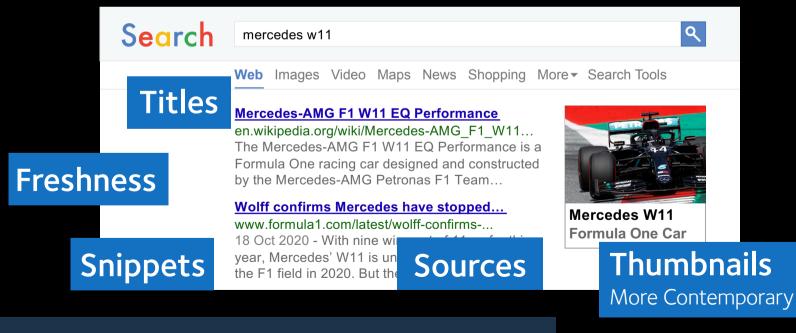
The Patch Model

User + Simulated Studies + Analyses Heuristic + Real-World Performance + Comparisons

Performance Approximations

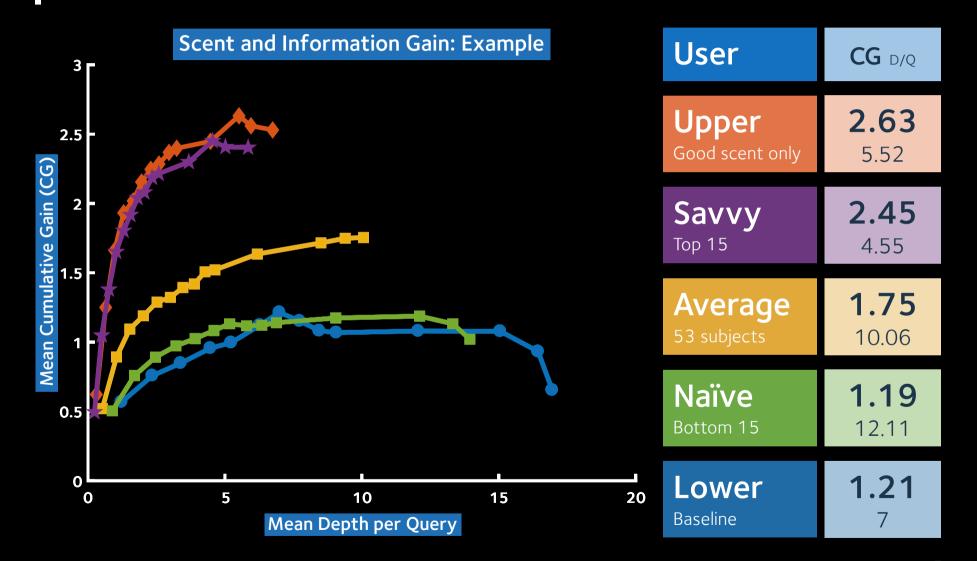
Part of Information Foraging Theory – Pirolli and Card (1999)

Following the Scent

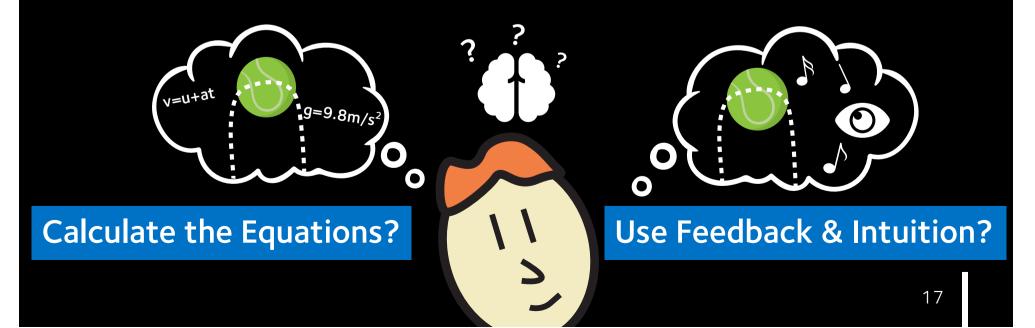


Part of Information Foraging Theory – Pirolli and Card (1999)

•


Information Scent and Cues

- Patches (typically) modelled as a SERP¹
- Scent determined by a series of proximal cues presented on the SERP²


¹For example, look at Ong et al. (2017), ²Pirolli & Card (1995)

Modelling Information Scent

Intuition vs. Cold, Hard Logic

- Do we really expect people to compute their gain as they search/forage?
- Or is stopping more aligned to some kind of internal tolerance? Or intuitiveness...

Concluding Thoughts

- People undoubtedly have different strategies and tolerances to stopping
- Scent also has an impact on searching and individuals pick up scent better than others
- With different learning tasks, how would behaviours change?
 - Biases could affect behaviours (e.g., paradox of choice, sunken cost fallacy)¹

Concluding Thoughts

Evaluation is also important

- How do you turn a naïve searcher into a savvy searcher? What can we do to help?
- What makes a user good at sniffing a scent?
- What if you actually want people to keep going rather than stop? ③
 - More eyeballs = more ad revenue!

Thanks!

- Interested in this research? www.dmax.org.uk/thesis
- E-mail me at maxwelld90@acm.org
- Postdoc research is starting to examine interactions within a heterogeneous SERP – pertaining to complex learning tasks

Modelling Search and Stopping in Interactive Information Retrieval

David Martin Maxwell

School of Computing Science College of Science and Engineering University of Glasgow Scotland ⋈

A thesis submitted for the degree of *Doctor of Philosophy (PhD)*

© David Martin Maxwell