TF-Ranking

Learning-to-Rank in TensorFlow

Presenter: Michael Bendersky (on behalf of the TF-Ranking Team)

Google Research

Search Solutions Nov 25th, 2020

TF-Ranking: TensorFlow Ranking

- Deep learning library for learning-to-rank in TensorFlow
- Open source on GitHub under tensorflow/ranking
- Initial release in Dec. 2018
- Actively developed by the TF-Ranking team at Google Research

Industry Adoption

- Launched in products by many companies
 - LinkedIn
 - Grubhub
 - o Zhihu
 - o iQIYI
- Actively being experimented by
 - Uber
 - Walmart
 - Spotify
 - Airbnb
 - 0 ...

State of the Art on Public Benchmarks

- MS MARCO Leaderboard (as of Nov. 21, 2020)
 - No. 1 for Passage Re Ranking
 - No. 5 for Passage Full Ranking
- TREC-COVID19
 - No. 1 in <u>round 4</u> for 4 out 5 metrics.
 - No. 1 in <u>round 5</u> for all 5 metrics.

↓≣ ndcg@20	↓ ↑ P@20	↓ ↑ rbp_p5	↓ ↑ bpref	↓ † map
0.8496	0.8760	0.9197	0.6372	0.4718
0.8490	0.8690	0.9399	0.6378	0.4731
0.8311	0.8460	0.9361	0.5330	0.3922
0.8304	0.8380	0.9370	0.5280	0.3875

Learning-to-Rank (LTR)

Recommendation

Question Answering

Problem Formulation

Problem: Learning a scoring function *f* to sort a list of examples

- Input: context, list of examples, labels.
- Output: **f** that produces the optimal ordering of examples

$$\psi = (\mathbf{x}, \mathbf{y}) \in \mathcal{X}^n \times \mathbb{R}^n$$
$$\mathcal{L}(f) = \frac{1}{|\Psi|} \sum_{(\mathbf{x}, \mathbf{y}) \in \Psi} \ell(\mathbf{y}, f(\mathbf{x})).$$

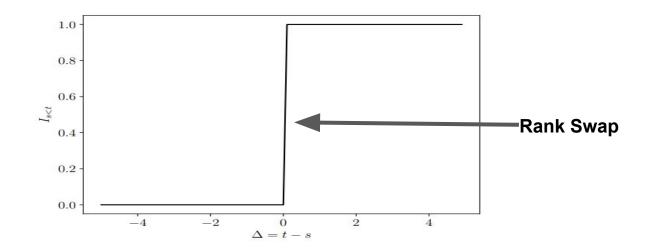
Training sample with relevance labels

Choose f* to minimize empirical loss

Ranking Metrics

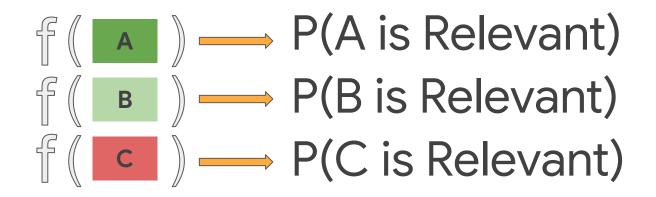
Standard ranking metrics are either **discontinuous** or **flat** everywhere

• Cannot be directly optimized with gradient descent



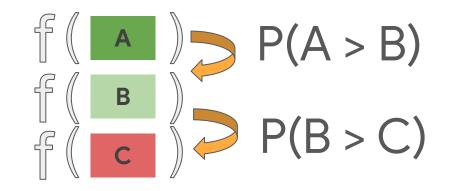
Pointwise LTR methods

- Documents are considered independently of each other
- Some examples: ordinal regression, classification, GBRT



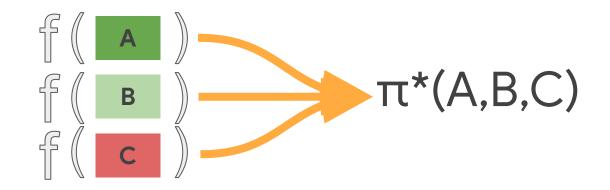
Pairwise LTR methods

- Document pairs are considered
- Some examples: *RankNet*, *RankSVM*, *RankBoost*



Listwise LTR methods

- Consider the ordering of the entire list
- Some examples: *LambdaMART*, *ApproxNDCG*, *List{Net, MLE*}



Traditional LTR Setting

- Handcrafted features based on <query, document>
 - 136 features in Web30K
 - tf-idf scores, BM25 scores
 - Inlink counts
 - URL length
 - Page quality
 - ·····
- Human relevance judgments
 - The largest datasets have tens of thousands of labeled examples
 - Web30K, Istella, Yahoo! ~30K queries

Why Deep Learning-to-Rank?

- Sparse features
 - Directly use query and document keywords as features
- Large-scale data
 - User interactions as labels (e.g., clicks)
- Advance of deep learning technologies
 - Attention models like Transformer
 - BERT
 - ResNet
 - o ...

Challenges Tackled by TF-Ranking

• Data representation: How to represent a document list of varying size

- tf.Example is not suitable for a list
- tf.Tensor is not friendly for varying size

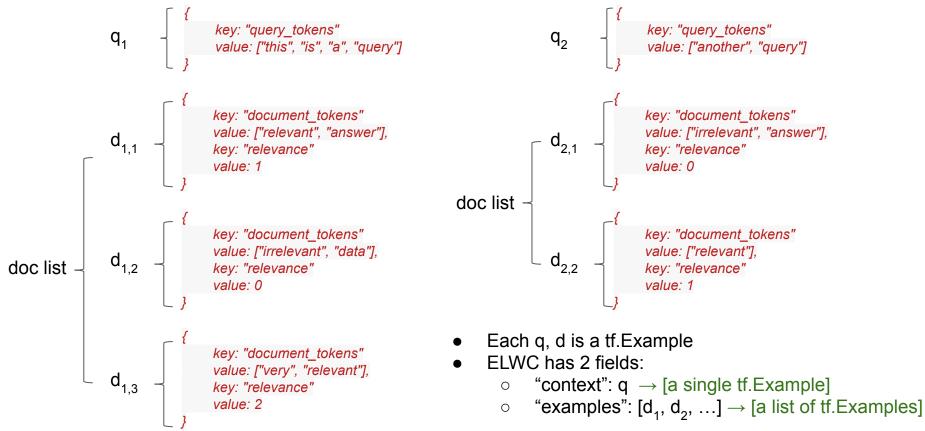
• Losses & Metrics

- No built-in ranking losses/metrics in TensorFlow
- Implementation should be based on Tensors and tf Ops

• Serving may differ from Training

- Training needs the whole list of documents
- Serving only needs a single document (and the query)

ELWC: ExampleListWithContext



Supported Components

- Losses: pointwise/pairwise/listwise losses
- Metrics: MRR, NDCG, MAP, etc.
- Sparse/Embedding features
- Unbiased learning-to-rank from biased data (e.g., clicks)

Supported Loss Examples (Binary Labels)

(Pointwise) Sigmoid Cross Entropy

$$\hat{\ell}(\bm{y}, \hat{\bm{y}}) = -\sum_{j=1}^{n} y_j \log(p_j) + (1 - y_j) \log(1 - p_j)$$

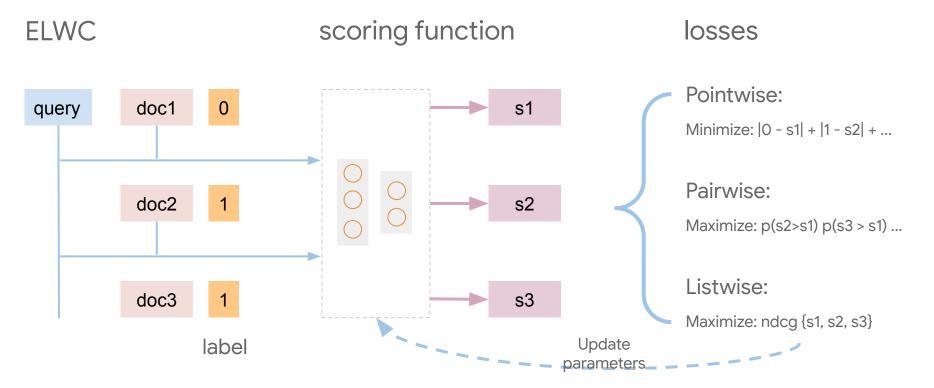
(Pairwise) Logistic Loss

$$\hat{\ell}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \sum_{j=1}^{n} \sum_{k=1}^{n} \mathbb{I}(y_j > y_k) \log(1 + \exp(\hat{y}_k - \hat{y}_j)))$$

(Listwise) Softmax Loss (aka ListNET)

$$\hat{\ell}(\boldsymbol{y}, \hat{\boldsymbol{y}}) = -\sum_{j=1}^{n} y_j \log(\frac{\exp(\hat{y}_j)}{\sum_{j=1}^{n} \exp(\hat{y}_j)})$$

TF-Ranking - How it works



New developments in TF-Ranking

New developments

1. **TFR-BERT**

• Advanced scoring functions

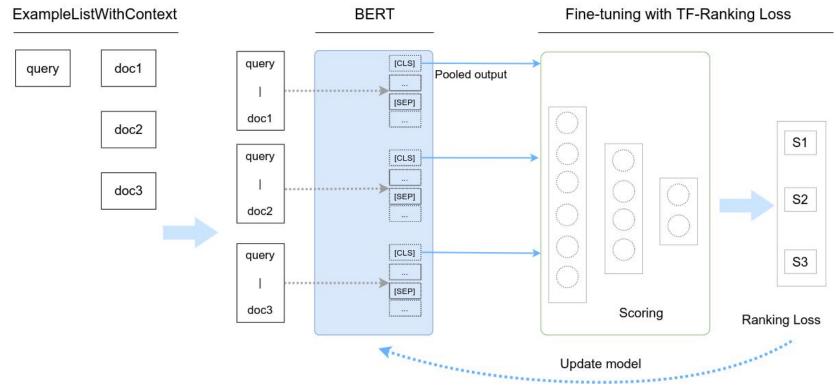
2. Neural GAMs

• Building interpretable & explainable models

3. Document Interaction Networks

• Modeling cross-document interactions

TFR-BERT



[Han et al. arXiv] Learning-to-Rank with BERT in TF-Ranking.

BERT with Ranking Loss

• The model is fine-tuned by "softmax loss":

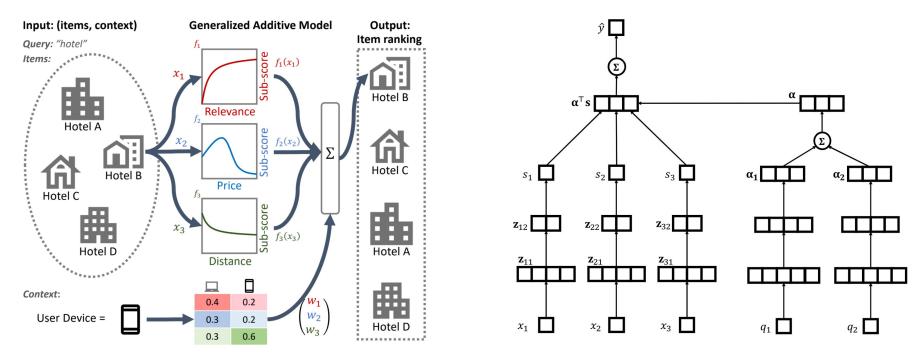
$$\ell_q = \sum_{d \in \mathcal{C}} \frac{y_d}{\sum_{d' \in \mathcal{C}} y_{d'}} \log \left(\frac{\exp(\mathrm{sc}_{\mathrm{BERT}}(d))}{\sum_{d' \in \mathcal{C}} \exp(\mathrm{sc}_{\mathrm{BERT}}(d'))} \right)$$

where y_d is the ground-truth label

- The loss function considers the other documents in the same list
 - Better ranking performances compared to **sigmoid cross-entropy loss**

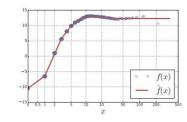
Best Ensemble model	38.77	Results on MS-Marco passage re-ranking
Softmax Loss	37.82	
Pairwise log-loss	37.18	
Sigmoid CE	37.16	

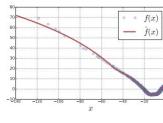
Interpretable LTR models: Neural GAM

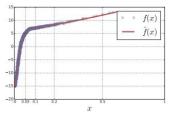


[Zhuang et al. WSDM2021] Interpretable Ranking with Generalized Additive Models.

Capabilities



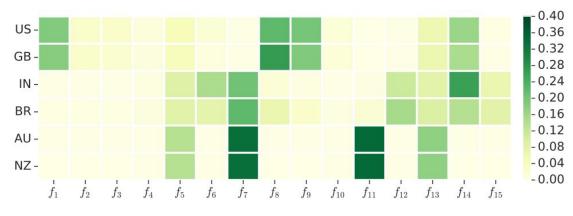




(a) min of term frequency (whole document) (b) LMIR.JM (body) (d n (v

(c) sum of stream length normalized term frequency (whole document)

(a) Distilling sub-models as piecewise curves



(b) Measuring the effect of context features

Performance

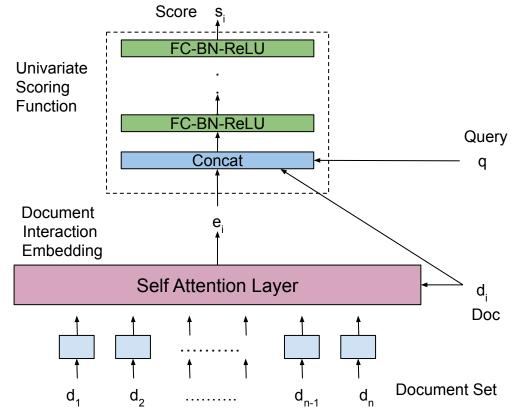
- Neural GAM performs better than or on par with other baselines
- Neural GAM handles context features well

Data set	Method	NDCG ₁	NDCG ₅	NDCG ₁₀
	Tree GAM	67.61	69.46	73.89
YAHOO	Neural GAM	67.63	69.62	73.98
	Tree RankGAM	69.12	71.03	75.04
	Neural RankGAM	69.36	71.32	75.33*
	Tree GAM	29.79	32.79	35.96
WEB30K	Neural GAM	30.59	33.55	36.54
WEDJUK-	Tree RankGAM	41.90	42.04	44.37
	Neural RankGAM	44.31*	43.29*	45.09 *
ľ	Tree GAM	19.74	32.91	36.72
	Neural GAM	20.09	34.01	38.60
CWS	Tree RankGAM	20.16	35.06	39.27
	Neural RankGAM	20.35	34.94	38.93
	Neural RankGAM+	24.43*	39.88*	42.84^{*}

[Pasumarthi et al. ICTIR2020]

Permutation Equivariant Document Interaction Network for Neural Learning to Rank

Document Interaction Network



Experiments on Web30K Benchmark

Method	NDCG@1	NDCG@5	NDCG@10
LambdaMART (RankLib)	45.35	44.59	46.46
LambdaMART (lightGBM)	50.75	49.66	51.48
LambdaMART + DLCM [1]	46.30	45.00	46.90
GSF(m=64) with Softmax loss [2]	44.21	44.46	46.77
FFNN with E[ApproxNDCG] [4]	49.51	48.20	49.96
TransformerEncoder w/o position [16]	48.58	48.04	50.15
attn-DIN with Softmax Loss	50.05	50.14 [△]	52.18 △

Recap

- TF-Ranking is a deep learning library for LTR
 - Commonly used ranking losses and metrics
 - Well suited for handling sparse features like text
 - Scales to massive datasets
- New state-of-the-art solutions for industry applications
 - TFR-BERT
 - Neural GAM
 - Document Interaction Network (coming soon)

Questions

Try it out: git.io/tf-ranking-demo