

Tackling toxic content

Mark Harwood, developer

Elastic

November 29th 2017 @elasticmark

Two approaches:

- **Proactive**
 - Root out content before it gathers an audience
- Reactive
 - Respond to complaints from the audience

Whose opinions do you trust?

Proactive challenge

How do we determine what is toxic?

Content based analysis is hard

- **Parsing is hard** content is often binary e.g. audio or video
- Limited metadata lack of descriptions or keywords

Easier to examine activity around content

Reuse the basis of recommendation engines - people who liked X also like Y

Recommendations recap: MovieLens data

http://files.grouplens.org/datasets/movielens/ml-10m-README.html

Random samples should hold no surprises

- 17% of all people like "Forrest Gump"
- In a random sample of people, 17% of them will also like "Forrest Gump"

Dull. But in non-random samples something interesting happens.....

Non-random sample: people who liked "Talladega nights"

sample

[8641]Anchorman: The Legend of Ron Burgundy (2004) Expected 1, got 55 (55/271 vs 374/69796)

In the set of "Talladega-likers", 20% of them like "Anchorman"

...a huge uplift in popularity from the norm!

% of all users who liked movie

Proactive demo

Reactive challenge

Whose opinions do we trust?

Allow end users to report toxic content

BUT - some user reports, like some content, can be questionable

Review fraud is a thing

- marketplace
- **Negative reviews** fake accounts or mob-rallying is used to sabotage the reputation of an innocent party.
- Tell-tale signs of collusion might include:
- A common IP address or user agent
- A common "hit list" of items being flagged \bullet
- A common phrase used in feedback
- The same time-of-day when logging requests
- The same site join-date

Positive reviews - "shill" or "sock puppet" accounts are used to artificially inflate the reputation of sellers in a

Components of a fraud detection stack

Cleansing, enriching normalisation

Entity resolution, filtering

anomaly detection, scoring

Task lists, case management, visualisation

Bad actors make strange shapes

It is hard for identity manipulators to avoid reusing resources (IP addresses, join dates, subject lists, phrases, time) . Fraudsters generate too many "coincidences".

Use the Graph API to gather related data then raise alerts on anomalies.

See example: http://bit.ly/es_fraud

Responding to alerts

	2 hits	New Save Open	Share Reporting
Δ	Search		۹
Ø	riskRating –	riskType	uri
ш	▶ 635	SockPuppetry	Show
3	▶ 4	SockPuppetry	Show

Kibana with the Graph plugin allows investigators to examine details behind alerts.

See example: http://bit.ly/es_fraud

