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Tackling toxic content



Business drivers for tackling toxic content

Pressure groups
Public shaming

Withdrawing ads

Advertisers

<

Hate speech

Fines, legal

restrictions Toxic content

Extremist
videos
Government Fake news Reputational damage,
KIoss of audience

Consumers
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How??



Two approaches:

* Proactive

How do your statft

determine what is
- Root out content before it gathers an audience "toxic™?

- Reactive

- Respond to complaints from the audience

Whose opinions do

you trust?
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Proactive challenge

How do we determine what is toxic?



Content based analysis is hard

- Parsing is hard - content is often binary e.g. audio or video

- Limited metadata - lack of descriptions or keywords
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Easier to examine activity around content

* Reuse the basis of recommendation engines - people who liked X also like Y
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Recommendations recap: MovielLens data

"movie": [260, 500, 1080...]
"user”: 8353

http.//files.grouplens.org/datasets/movielens/ml-10m-README.html
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http://files.grouplens.org/datasets/movielens/ml-10m-README.html

Random samples should hold no surprises

[356]Forrest Gump (1994) Expected 1190, got 1217 (1217/6831 vs 12165/69796)
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» 17% of all people like “Forrest Gump” %
+ In a random sample of people, 17% of &
them will also like “Forrest Gump” =
5

o

% of all users who liked movie

Dull. But in non-random samples something interesting happens.....

i‘ elastic 9



Non-random sample: people who liked "Talladega nights”

[8641]Anchorman: The Legend of Ron Burgundy (2004) Expected 1, got 55 (55/271 vs 374/69796)

Find all people who
liked movie #46970

"query" :

%

"aggs” : {
"keywords": {
"significant_terms": {
"field": "movie",
"si1ze": 50

}

"terms”:{"movie": [46970] } <0.5% of all people like “Anchorman”

In the set of “Talladega-likers”, 20% of
them like “Anchorman”

..a huge uplift in popularity from the norm!

Summarise how their
movie tastes differ
from everyone else % of all users who liked movie

% of random sample who liked Talladega nights
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Proactive demo



Reactive challenge

Whose opinions do we trust?



Allow end users to report toxic content

ifp 57K &1 3K & SHARE =i

Report
SUBSCRIBE 7 \

Add translations

r3
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BUT - some user reports, like some content, can be questionable

1+ Lets all report && on youtube so his fls&s# & gets auto banned .
Submitted 1 month ago by il .

comment share save hide report
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Review fraud is a thing

* Positive reviews - “shill” or “sock puppet” accounts are used to artificially inflate the reputation of sellers in a
marketplace

* Negative reviews - fake accounts or mob-rallying is used to sabotage the reputation of an innocent party.
- Tell-tale signs of collusion might include:

« + Acommon IP address or user agent

-+« Acommon "hit list" of items being flagged

-+ A common phrase used in feedback

 +  The same time-of-day when logging requests

-+ The same site join-date
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Components of a fraud detection stack

Linking Risk-scoring
Entity resolution, G rpi]glexglt tton, Task lists
filtering scoringy management, visua lisation
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Bad actors make strange shapes
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Investigation
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It is hard for identity manipulators to

avoid reusing resources (IP addresses,

join dates, subject lists, phrases, time) .

Fraudsters generate too many

“coincidences”.

Use the Graph API to gather related

data then raise alerts on anomalies.

See example: http://bit.ly/es fraud



Responding to alerts
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Kibana with the Graph plugin
allows investigators to examine
details behind alerts.

See example: http://bit.ly/es fraud




Demo



