
July 2024 v1.4

Unit code: L/618/8793

BCS LEVEL 4

SOFTWARE DEVELOPER
SYLLABUS

CONTENTS

Introduction

Qualification Suitability and Overview

Trainer Criteria

SFIA Levels

Learning Outcomes

Syllabus

Examination Format

Question Weighting

Recommended Reading

Document Change History

2.

3.

3.

4.

5.

6.

19.

20.

21.

22.

Introduction
Software touches every organisation, in every sector, either directly or indirectly through bespoke
development, the use of off-the-shelf business solutions, or the realisation of an idea. Software developers
turn requirements into reality, through a cycle of analysis, planning, building and testing, using a range of
tools and concepts.

This level 4 module covers the key concepts, skills and tools required of anyone working in a software
developer role, to be able to successfully undertake the tasks required for the development of quality
software solutions.

Find out more about the BCS Level 4 Digital Modular Programme qualification in the Qualification Guide.

2

https://www.bcs.org/media/7527/dmp-qualification-guide.pdf

3

Qualification Suitability and
Overview
This occupational module should be taken as part of the BCS Level 4 Diploma - Digital Modular
Programme in Software Development, and cannot be taken as a standalone qualification. Learners
must have successfully completed the exam for the BCS Level 4 Module in Digital Core within the last
12 months in order to undertake this module.

This qualification is suitable for learners who are looking to progress their career within a software
developer role. Learners must be aged 16+ to take this module, and will need a good standard of written
English and maths. Centres must ensure that learners have the potential and opportunity to gain the
qualification successfully.

This is an occupationally-focused qualification which will:

•	 Test a learner’s applied knowledge, skills and behaviours through a range of scenarios,
•	 Enable a learner to demonstrate a practical understanding of key concepts across the topic areas,
•	 Enable a learner to progress in their career.

Learners can study this module by attending a training course provided by a BCS-accredited training
provider, or through self-study.

 It is recommended that to effectively deliver this certification, trainers should possess:

•	 10 days’ training experience, or have a ‘train the trainer’ qualification.
•	 A minimum of three years’ practical experience in the subject area.

Trainer Criteria

Total Qualification
Time

Guided Learning
Hours

Independent
Learning

Assessment Time

340 hours 237 hours 102 hours 1.5 hours

SFIA Levels
This module provides learners with the level of knowledge highlighted within the table, enabling them to
develop the skills to operate successfully at the levels of responsibility indicated.

4

Level

K7
K6
K5
K4
K3
K2
K1

Levels of Knowledge

Evaluate
Synthesise
Analyse
Apply
Understand
Remember

Levels of Skill and Responsibility (SFIA)

Set strategy, inspire and mobilise
Initiate and influence
Ensure and advise
Enable
Apply
Assist
Follow

SFIA Plus
This syllabus has been linked to the SFIA
knowledge, skills and behaviours required at level
4 for an individual working in programming and
software development.

KSB15 Creativity:
Taking innovative approaches to problem solving
and/or devising inventive and creative solutions.

KSB19 Cross-Functional and Inter-
Disciplinary Awareness:
Understanding the needs, objectives and
constraints of those in other disciplines and
functions.

KSB24 Teamwork:
Working collaboratively with others to achieve a
common goal.

KSC19 Corporate, Industry and
Professional Standards:
Applying standards, practices, codes, and
assessment and certification programmes relevant
to the IT industry and the specific organisation or
business domain.

KSC22 Structured Reviews:
Methods and techniques for structured reviews,
including reviews of technical work products, test
plans, business cases, architectures and any other
key deliverables.

KSC23 Software Testing:
Testing techniques used to plan and execute
software tests of all application components
(functional and non-functional) to verify that the
software satisfies specified requirements and to
detect errors.

KSC84 Development Approach:
Understanding and application of different
development approaches e.g. iterative/
incremental methodologies (agile, XP, TDD,
SCRUM) or traditional sequential methodologies
(waterfall or V-model). Irrespective of
development methodology a DevOps approach
may also be taken where development and
operational staff work collaboratively.

Further detail regarding the SFIA Levels can be
found at www.bcs.org/levels.

https://www.bcs.org/media/5165/sfia-levels-knowledge.pdf

Learning Outcomes
Upon completion of the module, learners will be able to demonstrate a practical understanding of:

•	 How to use the software development lifecycle, and the roles of individuals within it
•	 How to use the project lifecycle, and the roles of individuals within it
•	 How to select and apply a suitable software development methodology
•	 How to use a combination of software development approaches and concepts to develop software in

line with organisational policies and procedures
•	 How to build and use algorithms and databases
•	 How and when to apply different types of testing

5

6

Syllabus

Learners will be able to apply the software development lifecycle to
solve a range of complex business problems and opportunities.

The software development lifecycle (also known as the systems
development lifecycle) provides structure to the management of
software, from initial feasibility and requirements identification to
ongoing maintenance.

1.	 The Software Development Lifecycle
 (10%) (K2)

Indicative content

a.	 Software development
lifecycle

b.	 Systems development
lifecycle

c.	 Facilitate the creation of
software

Guidance

Learners will be able to:

Implement the software development lifecycle in a business context.1.1

Learners will be able to breakdown and apply every stage of the
software development lifecycle.

Learners should appreciate that this lifecycle, although
appearing linear / waterfall in nature, can also be applied to Agile
environments, where stages may be revisited/looped back to in a
more iterative manner.

Indicative content

a.	 Feasibility study
b.	 Requirements analysis
c.	 Design
d.	 Code development
e.	 Testing
f.	 Deployment /

Implementation
g.	 Maintenance (including

supoorting legacy code)

Guidance

Apply the seven stages of the software development lifecycle to a business situation.1.2

Learners will be able to demonstrate their ability to undertake
the key tasks required of an individual in a software developer
role throughout each stage of the software development lifecycle,
interpreting and using UML, and development using the SDK (IDE,
compiler, debugger, Git).

Indicative content

a.	 Role of the software
developer

b.	 Software developer kit (SDK)
c.	 Solution design (UML)

Guidance

Implement the main activities expected of a software developer role at each stage of the software
development lifecycle.

1.3

Learners shall create the high-level deliverables required from
each stage of the software development lifecycle, in order to solve
a business problem. Such deliverables may include, for example,
the feasibility report which outlines the project plan and costings
created during the feasibility study, or the full documented analysis
of the problem and system created during requirements analysis.

Indicative content

a.	 Return on investment
b.	 Outcomes
c.	 Costs and benefits
d.	 Minimum viable product

Guidance

Produce the high-level deliverables from each stage of the software development lifecycle.1.4

7

8

2.	 The Roles and Responsibilities Within the Software Development Lifecycle
 (10%) (K3)

Learners will be able to:

Analyse the roles and duties of others, and relate them to the software development lifecycle.2.1

Learners will be able to clearly define the various roles and
responsibilities required throughout the software development
lifecycle, identifying relationships and dependences between roles.

Learners will be able to identify and explain the duties commonly
associated with these roles, including identifying the most suitable
role to undertake a particular task or responsibility, and the
relationships / dependancies between roles.

Note that the individual job titles may vary in workplaces, and some
titles used in an Agile development environment may encapsulate
other roles.

Indicative content

a.	 Requirements engineer
b.	 Business analyst
c.	 Software designer
d.	 Programmer/coder
e.	 Software tester
f.	 Software release engineer
g.	 Technical architect
h.	 Domain expert
i.	 Independent tester
j.	 Product owner
k.	 Project manager

Guidance

Indicative content

a.	 Roles from 2.1

Relate software development roles to the expected involvement in each stage of the software
development lifecycle.

2.2

Learners shall understand the need for each of the roles outlined
above and be able to describe their expected contribution and
output throughout each stage of the software development lifecycle
in a given business context. From the list provided in 2.1, learners
should be able to identify the roles that are required at each
stage of the software development lifecycle, what their expected
contribution is, and their reasoning for investment at that stage.

Guidance

Indicative content

a.	 Leadership
b.	 Creativity
c.	 Communication
d.	 Analytical skills
e.	 Team-work

Compare and contrast the skills required to fulfil each role within the software development
lifecycle.

2.3

Learners will be able to clearly explain the differences and
similarities between the skill sets required of each of the roles
outlined above, and how they contribute to successful development.

Guidance

9

Learners will be able to practically implement each stage of the
project lifecycle in a business context, describing the purpose and
scope of each stage, and the associated activities undertaken.

3.	 The Project Lifecycle
 (5%) (K2)

Indicative content

a.	 Initiation phase
b.	 Planning phase
c.	 Execution phase
d.	 Termination phase

Guidance

Learners will be able to:

Employ the phases of the project lifecycle.3.1

Learners should be aware of how the costs, risks and demands of
a project can vary throughout the project lifecycle, and the factors
which could influence these.

Indicative content

a.	 Cost
b.	 Staffing
c.	 Risk and uncertainty
d.	 Ability to accommodate

change

Guidance

Explain the characteristics of the project lifecycle.3.2

Learners will be able to identify the duties commonly associated
with these roles at each stage of the project lifecycle, explaining
the differences and similarities between roles, while identifying the
most suitable role to undertake a particular task or responsibility.

Indicative content

a.	 Project manager
b.	 Project team member
c.	 Project sponsor
d.	 Executive sponsor
e.	 Business analyst

Guidance

Compare and contrast the duties associated with each of the roles in the project lifecycle.3.3

Learners will be able to relate the project lifecycle to a given
situation or task, detailing the roles and activities at each stage in
that project.

Indicative content

a.	 Project lifecycle stages and
principles

Guidance

Explain how the principles of project lifecycle management were applied in a familiar software
development project.

3.4

10

4.	 Software Development Methodologies
 (10%) (K4)

Learners will be able to:

Implement the primary characteristics of software development methodologies.4.1

Learners will be able to understand and apply the key
characteristics of the given methodologies, as well as explain the
common uses, strengths and weaknesses of each approach.

Indicative content

a.	 Waterfall development
b.	 Agile development
c.	 DevOps deployment
d.	 Rapid application

development
e.	 Behaviour-driven

development
f.	 Test-driven development

Guidance

Indicative content

a.	 Methodologies from 4.1

Compare and contrast the respective strengths and weaknesses of each of the software
development methodologies listed in 4.1.

4.2

Referring to the methodologies listed above, learners should
be able to discuss the strengths, weaknesses, differences and
similarities in these methodologies and how they may be used to
complement or support one another.

Guidance

Indicative content

a.	 Methodologies from 4.1

Describe the circumstances under which the use of a particular software development
methodology would be appropriate.

4.3

Referring to the methodologies listed above, learners should be
able to explain and justify why a particular methodology would
be selected, and the expected outcome and output of using this
approach.

Guidance

11

Learners will be able to recognise that the understanding and
application of these concepts are fundamental to the process of
software design, and should be able to explain the purpose and
practical application of each concept.

5.	 Software Design Approaches and Solutions
 (10%) (K4)

Indicative content

a.	 Abstraction
b.	 Control hierarchy
c.	 Data structure
d.	 Information hiding
e.	 Modularity
f.	 Software architecture
g.	 Structural partitioning
h.	 Object-oriented, Functional,

Procedural

Guidance

Learners will be able to:

Explain the importance of the following software design concepts in a business context.5.1

By comparing the characteristics of the concepts listed, learners
should be able to assess the suitability of a given concept in line
with business and solution priorities and value, i.e. what is of the
greatest importance and value, versus the greatest risks.

Indicative content

a.	 Compatibility
b.	 Extensibility
c.	 Fault tolerance
d.	 Maintainability
e.	 Modularity
f.	 Performance
g.	 Portability
h.	 Reliability
i.	 Reusability
j.	 Robustness
k.	 Scalability
l.	 Usability

Guidance

Assess the importance of the following software characteristics to a given software product.5.2

Learners will be able to draw comparisons between design
patterns and frameworks in order to select the most suitable tools
for a particular solution. Learners will be able to identify these
patterns in use, including providing examples of when their use
would be required/appropriate.

Indicative content

a.	 Adapter
b.	 Decorator
c.	 Iterator
d.	 Observer
e.	 Singleton

Guidance

Choose the most appropriate software design pattern and framework.5.3

Learners should be able to understand how policy drives
procedures. For example, a policy may state that any code
developed should be “clean and maintainable”, and therefore a
procedure should exist to detail the acceptable standard of code,
any specific organisational requirements, and the steps required to
build it. Multiple procedures may exist to ensure compliance with a
single policy.

6.	 Organisational Policies and Procedures Relating to the Tasks Being
Undertaken (10%) (K2)

Indicative content

a.	 Difference between policy
and procedure

Guidance

Learners will be able to:

Describe the relationship between policies and procedures, and explain how different procedures
can implement the same policy.

6.1

The need for policy and procedure in an organisation may be
driven by a legal need, an industry standard, or an organisational
preference or style. Each policy or procedure will impact the way
a task or role is undertaken and the expected outcome. Learners
should be able to explain how to apply each of these, and recognise
examples of them in practice.

Indicative content

a.	 Governance
b.	 Legal requirements
c.	 Organisational culture
d.	 Customer satisfaction
e.	 Working and technical

standards

Guidance

Apply well-defined policies and procedures to ensure the effectiveness of an organisation’s
operations.

6.2

12

Learners should be able to provide examples of the types of
policies and procedures that are likely to exist in a software
development environment, and their purpose. This includes,
but is not limited to, the examples listed. Learners should also
understand the applied principles of security by design.

Indicative content

a.	 Naming conventions
b.	 Commenting of code
c.	 Source control (committing,

pulling, pushing, merging etc)
d.	 Secure development
e.	 Data protection

Guidance

Discuss the range of policies and procedures that might be implemented in a software
development environment.

6.3

Learners should understand that an algorithm is a set of
instructions provided in order to complete a given task. Learners
should be able to select an appropriate algorithm to assist with
processing large volumes of data, solve complex problems, and/or
automate tasks.

7.	 The Principles of Algorithms, Logic and Data Structures Relevant to
Software Development (15%) (K4)

Indicative content

a.	 Problem solving
b.	 Automation
c.	 Speed of processing

Guidance

Learners will be able to:

Analyse the role and purpose of different types of algorithms to meet a business need.7.1

As the building blocks for algorithms, learners should be able to
describe and create examples of these constructs.

Indicative content

a.	 Sequence
b.	 Selection
c.	 Iteration
d.	 Recursion

Guidance

Prepare examples of the use of sequence, selection, iteration and recursion in an algorithm.7.2

13

Learners will be able to identify and justify the use of abstract data
types, showing understanding of how this data can be manipulated
using different operations - for example, finding or adding to
existing lists.

Indicative content

a.	 Queue
b.	 Stack
c.	 List

Guidance

Analyse the use of abstract data types in the design and analysis of algorithms.7.3

Learners should be able to calculate the space and time complexity
(memory required to complete, time taken to run) of a given
algorithm using data provided.

Indicative content

a.	 Big O and Little O notation

Guidance

Calculate the space and time complexity of an algorithm.7.4

14

Learners will be able to recognise the need for single and/or
multidimensional arrays and their suitability for use in a given
solution or business context.

Indicative content

a.	 Access individual elements
b.	 Subscripts
c.	 Searchable - find specific

data

Guidance

Analyse the purpose and use of single and multidimensional arrays in programming.7.5

Learners should be able to compare the differences in uses
between a list and an array, including how and when one may be
more suitable than the other, considering their advantages and
disadvantages.

Indicative content

a.	 Linked lists
b.	 Making changes and

additions
c.	 Storage requirements
d.	 Searching versus subscripts

Guidance

Discuss the advantages and disadvantages of using a list in place of an array, and explain the way
in which a list may be implemented as a linked structure.

7.6

Learners should understand the role of stacks and queues, and
how to successfully implement them using a range of lists/linked
lists, arrays and pointers.

Indicative content

a.	 Stack - push, pop, empty
b.	 Queue - add, remove, empty

Guidance

Analyse the implementation of a stack and a queue using linked lists and/or arrays.7.7

Learners should be able to analyse the creation and role of a
tree structure and explain its purpose of storing and finding data,
including describing the individual roles of the roots, branches and
leaves.

Indicative content

a.	 Abstract data type
b.	 Single element - roots,

branches, leaves
c.	 Binary trees or N-ARY

Guidance

Analyse the implementation of a tree structure and discuss its use in software development.7.8

Learners should be able to develop graphs and highlight the
differences between directed and undirected graphs. Learners
should understand the role of the nodes and relationships in the
graph structure and how they are represented.

Indicative content

a.	 Permits loops
b.	 Nodes and relationships

Guidance

Show how a graph structure can be used to represent directed and undirected graphs, and
describe the basic operations provided by a graph structure.

7.9

With a number of sorting algorithms available, learners should
be able to explain how each works and its suitability in a given
business context, considering factors such as time, complexity and
storage requirements.

Indicative content

a.	 Bubble sort
b.	 Insertion sort
c.	 Quick sort

Guidance

Analyse the operation and implementation of common sorting algorithms.7.10

15

Different types of search algorithms exist, and learners should be
able to explain how each works and its suitability and effectiveness
in a given business context.

Indicative content

a.	 Linear search
b.	 Binary search
c.	 Tree search
d.	 List size - volume of data

Guidance

Analyse the operation and implementation of a number of common searching algorithms.7.11

Learners will be able to consider the role of hash tables as a
storage space and be able to assess the suitability of each type
of algorithm to perform a search. Factors to be considered may
include unique or duplicate values, collisions, and time.

Indicative content

a.	 Speed
b.	 Collisions

Guidance

Compare and contrast the use of hash tables with a range of search algorithms.7.12

Learners will be able to explain the role of a database as a storage
location for data, to which queries may be applied to find, link or
manipulate data. Learners will be able to assess the suitability of a
database in a business context.

8.	 The Principles and Uses of Relational and Non-relational Databases
 (10%) (K4)

Indicative content

a.	 Store and retrieve
b.	 Run queries

Guidance

Learners will be able to:

Analyse the use of database software for storing data.8.1

Learners should be able to describe the key characteristics of
a relational database and how it works, as listed. Learners will
be expected to understand the role of SQL in managing data in a
relational database.

Indicative content

a.	 Select/where from
statements

b.	 Based on tables
c.	 Relational algebra

Guidance

Discuss the characteristics of a relational database management system, its role in a business
context, and the nature of structured query language (SQL).

8.2

16

Learners should understand and describe the differences and
similarities in strengths, weaknesses and suitability of SQL
relational databases and NoSQL systems in a business context,
considering the factors listed.

Indicative content

a.	 NoSQL - graphs, documents
b.	 SQL - relational database.

Scalability, ease of use,
performance

Guidance

Compare and contrast the use of relational databases with the use of Not only SQL (NoSQL) systems.8.3

Learners should be able to draw comparisons between the
suitability, use, strengths and weaknesses of NoSQL databases,
from the list provided. Learners should be able to explain the
differences and similarities in the structure and purpose of these
database types.

Indicative content

a.	 Document-based
b.	 Key value
c.	 Graph-based

Guidance

Compare and contrast differing implementations of NoSQL databases.8.4

Learners should be able to build, complete and error check
flowcharts and pseudocode to represent a given design or process.

Learners should expect to be tested on items such as completing a
missing element or highlighting errors in existing items.

9.	 The Nature of Software Designs and Functional / Technical Specifications
 (10%) (K3)

Indicative content

a.	 UML flowchart - flowline,
terminal, process, decision,
input/output, pre-defined
process

b.	 Pseudocode - sequence,
selection and iteration

Guidance

Learners will be able to:

Produce flowcharts and pseudocode to represent a software design.9.1

Learners should be able to build, complete and error check a
functional specification, to represent the functional requirements
elicited from business stakeholders.

Indicative content

a.	 Functions that a component
must perform

b.	 Descriptions of system
requirements, input/output

Guidance

Produce a functional specification for a given requirements document.9.2

17

Learners should be able to build, complete and error check a
technical specification that represents the functional and non-
functional requirements elicited from business stakeholders.

Indicative content

a.	 Specific requirements of a
project

b.	 Language, hardware,
software, libraries

Guidance

Produce a technical specification for a given requirements document.9.3

Learners should be able to apply their knowledge of various
functional testing methods and compare their similarities,
differences and suitability in a given context. Learners must
understand how each form of testing is completed and its role in
the development process.

10.	 The Nature of Software Testing Frameworks and Methodologies
 (10%) (K4)

Indicative content

a.	 Unit testing, including white
box, black box, grey box and
dry runs

b.	 Integration testing
c.	 System testing
d.	 Acceptance testing

Guidance

Learners will be able to:

Compare and contrast functional testing methods.10.1

Learners should be able to apply their knowledge of various
non-functional testing methods and compare their similarities,
differences and suitability in a given context. Learners must
understand how each form of testing is completed and its role in
the development process.

Indicative content

a.	 Performance testing
b.	 Security testing
c.	 Usability testing
d.	 Compatibility testing

Guidance

Compare and contrast non-functional testing methods.10.2

18

Learners should be able to apply their understanding of common
testing frameworks to explain the differences, similarities and
suitability for a given context.

Indicative content

a.	 Linear automation
framework

b.	 Modular-based testing
framework

c.	 Library architecture
framework

d.	 Data-driven framework
e.	 Keyword-driven framework
f.	 Hybrid testing framework

Guidance

Compare and contrast commonly used software testing frameworks.10.3

19

Examination Format

Type

Duration
Supervised
Open Book
Passmark

Delivery

40 question online test, including:
•	 20 knowledge questions
•	 20 scenario-based questions

90 minutes
Yes
No (no materials can be taken into the examination room)
Pass - 26/40 (65%)
Distinction - 34/40 (85%)
Digital format only

This module is assessed through completion of an invigilated online assessment which learners will only
be able to access at the date and time they are registered to attend.

Adjustments and/or additional time can be requested in line with the BCS reasonable adjustments policy
for learners with a disability, or other special considerations, including English as a second language.

https://www.bcs.org/media/4718/reasonable-adjustments-policy.pdf

20

Question Weighting
Each major subject heading in this syllabus is assigned a percentage weighting. The purpose of this is:

Guidance on the proportion of content allocated to each topic area of an accredited course.
Guidance on the proportion of questions in the exam.

1.
2.

Syllabus Area

The Software Development
Lifecycle

The Roles and
Responsibilities Within the
Software Development

The Project Lifecycle

Software Development
Methodologies

Software Design
Approaches and Solutions

Organisational Policies and
Procedures Relating to the
Tasks Being Undertaken

The Principles of
Algorithms, Logic and Data
Structures Relevant to
Software Development

The Principles and Uses
of Relational and Non-
relational Databases

The Nature of Software
Designs and Functional /
Technical Specifications

The Nature of Software
Testing Frameworks and
Methodologies

Total

Question type

Multiple
question types
/ Scenario-
based
assessment.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

10%

10%

5%

10%

10%

10%

15%

10%

10%

10%

100%

21

Recommended Reading
The following titles are suggested reading for anyone undertaking this award. Learners should be
encouraged to explore other available sources.

Using BCS Books
Accredited training organisations may include excerpts from BCS books in the course materials. If you wish
to use excerpts from the books, you will need a license from BCS. To request a license, please contact the
Head of Publishing at BCS, outlining the material you wish to copy and the use to which it will be put.

Title:
Author:

Publisher:
Publication Date:

ISBN:

Software Development in Practice
Bernie Fishpool, Mark Fishpool
BCS
August 2020
1780174977

Document Change History
Any changes made to the syllabus shall be clearly documented with a change history log. This shall include
the latest version number, date of the amendment and changes made. The purpose is to identify quickly
what changes have been made.

Version Number

Version 1.0
Version 1.1
Version 1.2
Version 1.3
Version 1.4

Changes Made

Document creation.
Syllabus updated.
Updates to topic headings and passmark.
Document updated.
Amendments to introduction and overview sections, and grammatical
amendments throughout.

22

Copyright © BCS 2024
BCS Level 4 Software Developer v1.4

For further information please contact:

BCS
The Chartered Institute for IT
3 Newbridge Square
Swindon
SN1 1BY

T +44 (0)1793 417 445

www.bcs.org

© 2024 Reserved. BCS, The Chartered Institute for IT

All rights reserved. No part of this material protected by this copyright may be reproduced or utilised in any form,
or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and
retrieval system without prior authorisation and credit to BCS, The Chartered Institute for IT.

Although BCS, The Chartered Institute for IT has used reasonable endeavours in compiling the document it does not
guarantee nor shall it be responsible for reliance upon the contents of the document and shall not be liable for any
false, inaccurate or incomplete information. Any reliance placed upon the contents by the reader is at the reader’s
sole risk and BCS, The Chartered Institute for IT shall not be liable for any consequences of such reliance.

CONTACT

