Formal Modelling,

Programming &

Verification of

Quantum Systems

Richard Bornat
Rajagopal Nagarajan

Middlesex University London

BCS FACS October 19, 2021

se e e,

°

so®®®0aq,

<

e0000e,,
ee®000g,

®e
©
®e

....0....
L AAAAL)

e ®
gb

Motivation

Formal Verification for reasoning about correctness
and security of classical systems is used routinely by
Microsoft, Intel, NASA, Amazon, Facebook, etc.

Can we do something similar for Quantum Computing
and Quantum Cryptography?

General purpose, large-scale, Quantum Computers
some years away. RSA not believed to be under threat
at the moment.

Big push recently by companies such as IBM, Google,
Intel, Honeywell for “quantum supremacy”.

» —~ ¥
l‘ u/\wa

IBM Q

Vg
S
Q
4+
D)
@8
-
O
O

NISQ

Google Bristlecone Rigetti

NISQ

Compute 'S e Small number of quantum bits (50—75)

* Noisy, prone to errors

* Emerging applications to quantum molecular
simulation, quantum machine learning,
optimisation

Full Stack

(Rigetti)

Apps

PyQuil®

QCs™

Control System

QPU

QPU Design

* Each component as well as the whole system need to work

correctly.

* Quantum Communication and Cryptography mature field.

* Sending secret keys encoded in photons; eavesdropper will
be detected. Not much computation.

* QKD unconditionally secure. How about implementations?

Quantum

Communication
anc
Cryptography

SeCoQC QKD
Network

-

- .

- . L
™~

: _

Ui

%]
Bury St
Newmarket i
Edmunds
Cambridge i
‘ 2 = : —
. vwrhom s e
U K QK D = | A] R Adastral
| — pry oo Ipswich Park
m 5 T
(413 oy

B

Network

* Real-world experience for well over a year.
* Commercial id Quantique QKD equipment.

* Installation over BT fibre optic cables and
through BT exchanges.

* Recent announcement by BT and Toshiba
about a metro QKD network across London

 China launched a satellite Micius for secure
Other QKD communication using QKD.

Networks

* BT interested in testing and formal
verification.

Given basis states [0) and [1), the state of a
guantum system is given by a linear
combination of the two (superposition):

W) =al0)+pB[1)

where a and 8 are complex numbers with
jo* +1BI* = 1.

Example: v0.3 |0) +v0.7 |1)

A qubit or quantum state in superposition

W) =al0)+pB[1)

when measured (or observed) collapses to a

Measurement classical state |0) with probability |ot* or the
state |1) with probability |B|* .

If you measure v0.3 [0) + 0.7 [1), you get |0)
with probability 0.3 and |1) with probability
0.7.

The
Hadamard

Gate

* The Hadamard gate acts on one qubit, and

places it in an equal superposition of |0) and

1)
H|0) = = (]0) + [1))

1
HI1)=E(I0>— 1))

* The Pauli gates act on one qubit, as follows:

 bit flip, X:
X(a [0y + B 1)) = o [1) + B |0)

The Pa U || * phase shift, Z:
gates Z(c [0} +B (1) =0 [0) - B |1)

* phase shift and bit flip, Y:
Y(a [0)+B (1)) =a [1) - 0)

* identity, I, does not change the input

* The CNot gate acts on two qubits:

The
Controlled

CNot(00)) = |00)
CNot([01)) = [01)
Not Gate CNot([10)) = [11)

CNot([11)) = [10)

* Unlike classical states, there exist two-qubit
guantum states that cannot be decomposed
into a combination of two single-qubit states.

Example:
1
= (100) + |11))

Entanglement

* Measuring one qubit always fixes the state of
the other instantaneously, even though they
might be some distance apart.

* Sending an unknown qubit from Alice to Bob
without a quantum channel.

* Alice and Bob share prior entanglement.

Quantum

* They also have a classical channel for
communication

Teleportation

* The original qubit is destroyed.

do

Quantum
Teleportation

g — H

on IBM Q B

crz

Crx

Quantum Teleportation on IBM Q

File Edit View Run Kernel Tabs Settings Help
W teleportation.ipynb X
B + > O & D O & ¢ Markdown v Qiskit v0.30.1 (ipykernel) o8y 1

5.2 Executing

IBMQ.load_account()
provider = IBMQ.get_provider (hub="ibm-q")

ibmgfactory.load_account:WARNING:2021-10-16 20:27:32,466: Credentials are already in use. The existing
account in the session will be replaced.

from giskit.providers.ibmg import least_busy
from giskit.tools.monitor import job_monitor
backend = least_busy(provider.backends(filters=lambda b: b.configuration().n_qubits >= 3 and
not b.configuration().simulator and b.status().operational==True))
t_qc = transpile(qc, backend, optimization_level=3)
job = backend.run(t_qc)
job_monitox(job)

Job Status: job has successfully run

Quantum
Teleportation

on IBM Q

+

Get the results and display them
exp_result = job.result()

exp_counts = exp_result.get_counts(qc)
print(exp_counts)
plot_histogram(exp_counts)

1'0': 621, '1': 403%

0.606

o
H
w

0.394

Probabilities
o
w
o

0.15 1

0.00 -

* Need special purpose programming

languages
Pyt h on IS th e * Enables type-checking
FO RT RAN f e Reasoning about program correctness
O Communicating Quantum Processes (CQP),
QU ad ntu m based on pi-calculus. Linear types enforce
. no-cloning.
Programming + Published in POPL 2005, MSCS journal

 Similar efforts: QPL/Quipper, Microsoft Q#
(not for distributed computation)

Introduction to
Formal
Verification

Specification - What is a system supposed to do?

Verification - Does the system do what it is
supposed to do?

“Formal Verification” is the act

of proving or disproving the correctness of
intended algorithms underlying a system with
respect to a certain formal specification or
property, using formal mathematics

Algorithms (software) for checking if the
system satisfies the specification

The Failure of
the Arianne 5
Rocket

There were two main reasons behind the failure of the
rocket:

» Software failure occurred when an attempt to convert
a 64 bit floating point number to a 16 bit signed
integer failed due to overflow and raised an exception

Why did the flow and risec an
* There was no exception handling for this and so

Arl a NN e 5 the system exception handling routines were
invoked which shut down the system

Fail ?

* Inertial reference system failed and the system
backup shutdown

* Diagnostic commands were sent to the engine
which interpreted them as real commands

Failure of the
Patriot

I\/l iSSi | es * The missile system failed to track and
target an incoming Scud missile

* The problem in the missiles tracked
to “accumulating linear error of .003433

seconds per 1 hour of uptime”

 This caused 28 US soldiers to lose their lives

* Therac—25(1985-87): A computer-controlled
radiation therapy system massively overdosed 6

eople
Other PEom
Exa M p|es Qf * Pentium — FDIV bug (1994): Mistake in the

implementation of division algorithm in Pentium,

leading to incorrect answers in some situations at or
SOftwa e beyond 4 digits, this cost them around $475 million
errors

* “Program testing can be used to show
the presence of bugs, but never to show their
absence!” ~“Edsger W. Dijkstra

Successes of
Formal

Verification

Formal Verification has been successfully
applied in numerous cases

* The CompCert project investigated the
formal verification of realistic compilers for
critical embedded software. The main result
of this project was the CompCert C verified
compiler, a high assurance compiler for
almost all of the C language.

* The Paris Metro line 14 employed a formal
verification method called B-Method in order
to automate processes.

* Routinely used by large companies.

Formal
Verification
Technigues

Model Checking:

This state-based method involves analysing the
properties of a model of the proposed system. This
algorithm can provide a counter-example if a property
is not satisfied.

Theorem Proving:

Theorem-proving involves the creation of a
mathematical model for the system as definitions in
mathematical logic. It then derives the properties of
system as proofs from the mathematical definition.

Equivalence Checking:

Equivalence Checking is a method of formal
verification which attempts to verify whether two
systems (hardware or software) are functionally the
same.

Model Checking

This is a method of automated verification.

It consists in mechanically proving that a model, o,
expressed in a suitable modelling language, satisfies
a (temporal) logic formula ¢, written o |= ¢.
Otherwise a counterexample can be produced.

Gavin Lowe used a model checker to detect a subtle
security flaw in the Needham Schroeder public key
protocol.

Classical security protocols are frequently verified
using model checking.

Analysis of
Quantum
Cryptographic

Protocols and
Systems

" Protocols for quantum key distribution are
ideal targets for verification

o Possible detection of subtle flaws (cf.
Needham-Schroder PKCS protocol)

= Availability of commercial QKD systems and
networks

o Need for tools for validating
implementations

o Verification of classical pre- and post-
processing procedures

o Verification of classical hardware and
interface components

29

* In order to perform model-checking of
guantum protocols, we need to consider the
following issues:

* The state space of a single qubit is
infinite

Model-
checking

* The state space of an n—qubit system
grows exponentially with n

Ch d | ‘e ﬂgeS * There are infinitely many possible

quantum operators

* Quantum measurement is probabilistic

30

* Initial work used a probabilistic model checker (PRISM) to
analyse the BB84 QKD protocol.

* We can compute, for example, the probability of detecting
an eavesdropper when N qubits are transmitted; and the

probability that the eavesdropper obtains certain number of

Qu ad nt um transmitted bit values.
Model

* QMC is a verification tool comprising:

C h e C ke r e Atyped, concurrent specification language for

quantum protocols

* A polynomial-time simulator for quantum
computations involving Clifford operators on stabilizer
states

* An evaluator for the logic QCTL (quantum computation
tree logic) [Chadha, Mateus,... 2006]

31

Step 1: System Model

Specify protocol behaviour using a modelling language,
eg: QMCLang

Step 2: Property Description

Describe protocol properties (desirable & undesirable
QU d ntu m behaviour)
MOdel logic: EQPL/QCTL

Checker Step 3: Verification

Pass the model and properties into model-checking tool
which will check whether

1Y) cl=¢

32

* The logic QCTL [Baltazar, Chadha, Mateus 08]
is a CTL variant.

Quantum * built atop quantum propositional logic

\VileYol=)

(EQPL) [Mateus & Sernadas 06].

 QCTL allows us to reason about properties of
Checker quantum state.

e We can check whether two states are
entangled, for example.

Proposed the application of Formal Verification to
Quantum Systems about 19 years ago.

* Model-checking (CAV ‘08, CUP Book Chapter),
with Simon Gay and Nikolaos Papanikolaou

* Equivalence checking (TACAS’13, TACAS ‘14, ACM
ToCL), with Simon Gay and Ebrahim Ardeshir-

Publications Larijani.

* Theorem proving using Coq (QIP ‘14 poster, QPL
‘15), with Jaap Boender and Florian Kammueller.

e gtpi, implementation with a symbolic simulator
(TACAS ‘20, ICoQC ‘18, AQIS ’19 poster), with
Richard Bornat and others.

* Property-based Testing (QSE ‘20), with
Mohammad Mousavi and Shahin Honarvar.

QMC: A Quantum Model Checker.

QEC: A Quantum Equivalence Checker.
(http://www.dcs.gla.ac.uk/~simon/gec/).

Software

Qtpi: A symbolic simulator for CQP.
TOOlS (https://github.com/mdxtoc/qtpi).

QSharpCheck: Property-based testing of Q#
programs.
(https://github.com/ShahinHonarvar/QSharp
Check).

http://www.dcs.gla.ac.uk/~simon/qec/
https://github.com/mdxtoc/qtpi
https://github.com/ShahinHonarvar/QSharpCheck

