
Formal Modelling,

Programming &

Verification of

Quantum Systems

Richard Bornat

Rajagopal Nagarajan

Middlesex University London

BCS FACS October 19, 2021

Motivation

• Formal Verification for reasoning about correctness
and security of classical systems is used routinely by
Microsoft, Intel, NASA, Amazon, Facebook, etc.

• Can we do something similar for Quantum Computing
and Quantum Cryptography?

• General purpose, large-scale, Quantum Computers
some years away. RSA not believed to be under threat
at the moment.

• Big push recently by companies such as IBM, Google,
Intel, Honeywell for “quantum supremacy”.

NISQ
Computers

IBM Q

NISQ
Computers

Google Bristlecone Rigetti

• Small number of quantum bits (50—75)

• Noisy, prone to errors

• Emerging applications to quantum molecular
simulation, quantum machine learning,
optimisation

Full Stack
(Rigetti)

• Each component as well as the whole system need to work
correctly.

Quantum
Communication
and
Cryptography

• Quantum Communication and Cryptography mature field.

• Sending secret keys encoded in photons; eavesdropper will
be detected. Not much computation.

• QKD unconditionally secure. How about implementations?

SeCoQC QKD
Network

UK QKD
Network

• Real-world experience for well over a year.

• Commercial id Quantique QKD equipment.

• Installation over BT fibre optic cables and
through BT exchanges.

Other QKD
Networks

• Recent announcement by BT and Toshiba
about a metro QKD network across London

• China launched a satellite Micius for secure
communication using QKD.

• BT interested in testing and formal
verification.

Qubits

Given basis states  and  the state of a
quantum system is given by a linear
combination of the two (superposition):

 =   +  

where  and  are complex numbers with

2 + 2 = .

Example: 0.3  + 0.7 

Measurement

A qubit or quantum state in superposition

 =   +  

when measured (or observed) collapses to a
classical state  with probability 2 or the
state  with probability 2 .

If you measure 0.3  + 0.7  you get 

with probability 0.3 and  with probability
0.7.

The
Hadamard
Gate

• The Hadamard gate acts on one qubit, and
places it in an equal superposition of  and


H|0 =
1

2
(|0 + |1)

H|1 =
1

2
(|0 − |1)

H

The Pauli
gates

• The Pauli gates act on one qubit, as follows:

• bit flip, X:

X(  +  ) =   +  

• phase shift, Z:

Z(  +  ) =   -  

• phase shift and bit flip, Y:

Y(  +  ) =   -  

• identity, I, does not change the input

The
Controlled
Not Gate

• The CNot gate acts on two qubits:

CNot() = 

CNot() = 

CNot() = 

CNot() = 

Entanglement

• Unlike classical states, there exist two-qubit
quantum states that cannot be decomposed
into a combination of two single-qubit states.

Example:
1

2
(|00 + |11)

• Measuring one qubit always fixes the state of
the other instantaneously, even though they
might be some distance apart.

Quantum
Teleportation

• Sending an unknown qubit from Alice to Bob
without a quantum channel.

• Alice and Bob share prior entanglement.

• They also have a classical channel for
communication

• The original qubit is destroyed.

Quantum
Teleportation
on IBM Q

Quantum Teleportation on IBM Q

Quantum
Teleportation
on IBM Q

Python is the
FORTRAN of
Quantum
Programming

• Need special purpose programming
languages

• Enables type-checking

• Reasoning about program correctness

• Communicating Quantum Processes (CQP),
based on pi-calculus. Linear types enforce
no-cloning.

• Published in POPL 2005, MSCS journal

• Similar efforts: QPL/Quipper, Microsoft Q#
(not for distributed computation)

Introduction to
Formal
Verification

• Specification - What is a system supposed to do?

• Verification - Does the system do what it is
supposed to do?

• “Formal Verification” is the act
of proving or disproving the correctness of
intended algorithms underlying a system with
respect to a certain formal specification or
property, using formal mathematics

• Algorithms (software) for checking if the
system satisfies the specification

The Failure of
the Arianne 5
Rocket

Why did the
Arianne 5
Fail?

There were two main reasons behind the failure of the
rocket:

• Software failure occurred when an attempt to convert
a 64 bit floating point number to a 16 bit signed
integer failed due to overflow and raised an exception

• There was no exception handling for this and so
the system exception handling routines were
invoked which shut down the system

• Inertial reference system failed and the system
backup shutdown​

• Diagnostic commands were sent to the engine
which interpreted them as real commands

Failure of the
Patriot
Missiles • The missile system failed to track and

target an incoming Scud missile​

• The problem in the missiles tracked
to “accumulating linear error of .003433
seconds per 1 hour of uptime”​

• This caused 28 US soldiers to lose their lives

Other
Examples of
Software
errors

• Therac – 25 (1985-87) ​: A computer-controlled
radiation therapy system massively overdosed 6
people

• Pentium – FDIV bug (1994): Mistake in the
implementation of division algorithm in Pentium,
leading to incorrect answers in some situations at or
beyond 4 digits​, this cost them around $475 million

• “Program testing can be used to show
the presence of bugs, but never to show their
absence!” ~Edsger W. Dijkstra

Successes of
Formal
Verification

Formal Verification has been successfully
applied in numerous cases

• The CompCert project investigated the
formal verification of realistic compilers for
critical embedded software. The main result
of this project was the CompCert C verified
compiler, a high assurance compiler for
almost all of the C language.

• The Paris Metro line 14 employed a formal
verification method called B-Method in order
to automate processes.

• Routinely used by large companies.

Formal
Verification
Techniques

Model Checking:
This state-based method involves analysing the
properties of a model of the proposed system. This
algorithm can provide a counter-example if a property
is not satisfied.

Theorem Proving:
Theorem-proving involves the creation of a
mathematical model for the system as definitions in
mathematical logic. It then derives the properties of
system as proofs from the mathematical definition.

Equivalence Checking:
Equivalence Checking is a method of formal
verification which attempts to verify whether two
systems (hardware or software) are functionally the
same.

Model Checking

• This is a method of automated verification.

• It consists in mechanically proving that a model, σ,
expressed in a suitable modelling language, satisfies
a (temporal) logic formula φ, written σ |= φ.
Otherwise a counterexample can be produced.

• Gavin Lowe used a model checker to detect a subtle
security flaw in the Needham Schroeder public key
protocol.

• Classical security protocols are frequently verified
using model checking.

Analysis of
Quantum
Cryptographic
Protocols and
Systems

▪ Protocols for quantum key distribution are
ideal targets for verification

 Possible detection of subtle flaws (cf.
Needham-Schröder PKCS protocol)

▪ Availability of commercial QKD systems and
networks

 Need for tools for validating
implementations

 Verification of classical pre- and post-
processing procedures

 Verification of classical hardware and
interface components

29

Model-
checking
Challenges

• In order to perform model-checking of
quantum protocols, we need to consider the
following issues:

• The state space of a single qubit is
infinite

• The state space of an n–qubit system
grows exponentially with n

• There are infinitely many possible
quantum operators

• Quantum measurement is probabilistic

30

Quantum
Model
Checker

• Initial work used a probabilistic model checker (PRISM) to

analyse the BB84 QKD protocol.

• We can compute, for example, the probability of detecting

an eavesdropper when N qubits are transmitted; and the

probability that the eavesdropper obtains certain number of

transmitted bit values.

• QMC is a verification tool comprising:

• A typed, concurrent specification language for

quantum protocols

• A polynomial-time simulator for quantum

computations involving Clifford operators on stabilizer

states

• An evaluator for the logic QCTL (quantum computation

tree logic) [Chadha, Mateus,… 2006]

31

32

Step 1: System Model
Specify protocol behaviour using a modelling language,
eg: QMCLang

Step 2: Property Description
Describe protocol properties (desirable & undesirable
behaviour)
logic: EQPL/QCTL

Step 3: Verification
Pass the model and properties into model-checking tool
which will check whether

Quantum
Model
Checker

• The logic QCTL [Baltazar, Chadha, Mateus 08]
is a CTL variant.

• built atop quantum propositional logic
(EQPL) [Mateus & Sernadas 06].

• QCTL allows us to reason about properties of
quantum state.

• We can check whether two states are
entangled, for example.

Quantum
Model
Checker

Publications

Proposed the application of Formal Verification to
Quantum Systems about 19 years ago.

• Model-checking (CAV ‘08, CUP Book Chapter),
with Simon Gay and Nikolaos Papanikolaou

• Equivalence checking (TACAS’13, TACAS ‘14, ACM
ToCL), with Simon Gay and Ebrahim Ardeshir-
Larijani.

• Theorem proving using Coq (QIP ‘14 poster, QPL
‘15), with Jaap Boender and Florian Kammueller.

• qtpi, implementation with a symbolic simulator
(TACAS ‘20, ICoQC ‘18, AQIS ’19 poster), with
Richard Bornat and others.

• Property-based Testing (QSE ‘20), with
Mohammad Mousavi and Shahin Honarvar.

Software
Tools

QMC: A Quantum Model Checker.

QEC: A Quantum Equivalence Checker.
(http://www.dcs.gla.ac.uk/~simon/qec/).

Qtpi: A symbolic simulator for CQP.
(https://github.com/mdxtoc/qtpi).

QSharpCheck: Property-based testing of Q#
programs.
(https://github.com/ShahinHonarvar/QSharp
Check).

http://www.dcs.gla.ac.uk/~simon/qec/
https://github.com/mdxtoc/qtpi
https://github.com/ShahinHonarvar/QSharpCheck

