
Qtpi: Simulating (Concurrent) Quantum Systems

Richard Bornat

(Emeritus) Department of Computer Science, Middlesex University, London, UK

BCS FACS, 19th October 2021

1



To begin

Communicating Quantum Processes (Gay and Nagarajan, POPL
2005) describes a programming language.

An Introduction to Quantum Computing for Non-Physicists (Rieffel
and Polak, ACM Computing Surveys, 2000) explains quantum
calculation.

Qtpi is an implementation of modified CQP, with a symbolic quantum
calculator.

It’s available on github at mdxtoc/qtpi, with lots of examples and
documentation. Can do BB84 QKD and other protocols, Grover’s
algorithm, W state calculation, and more.

2



To begin

Communicating Quantum Processes (Gay and Nagarajan, POPL
2005) describes a programming language.

An Introduction to Quantum Computing for Non-Physicists (Rieffel
and Polak, ACM Computing Surveys, 2000) explains quantum
calculation.

Qtpi is an implementation of modified CQP, with a symbolic quantum
calculator.

It’s available on github at mdxtoc/qtpi, with lots of examples and
documentation. Can do BB84 QKD and other protocols, Grover’s
algorithm, W state calculation, and more.

2



To begin

Communicating Quantum Processes (Gay and Nagarajan, POPL
2005) describes a programming language.

An Introduction to Quantum Computing for Non-Physicists (Rieffel
and Polak, ACM Computing Surveys, 2000) explains quantum
calculation.

Qtpi is an implementation of modified CQP, with a symbolic quantum
calculator.

It’s available on github at mdxtoc/qtpi, with lots of examples and
documentation. Can do BB84 QKD and other protocols, Grover’s
algorithm, W state calculation, and more.

2



To begin

Communicating Quantum Processes (Gay and Nagarajan, POPL
2005) describes a programming language.

An Introduction to Quantum Computing for Non-Physicists (Rieffel
and Polak, ACM Computing Surveys, 2000) explains quantum
calculation.

Qtpi is an implementation of modified CQP, with a symbolic quantum
calculator.

It’s available on github at mdxtoc/qtpi, with lots of examples and
documentation. Can do BB84 QKD and other protocols, Grover’s
algorithm, W state calculation, and more.

2



What’s interesting?

1. Quantum stuff

2. Language

3. Symbolic calculator

4. Probabilistic execution

5. Resource accounting for qubits

6. Qbit collections

7. Overloaded operators

8. Sparse matrix tricks

9. Iterative constructs

10. Demos

3



Protocol steps

A protocol agent can:

I obtain a qubit;
I put a qubit (or qubits) through a quantum gate;
I measure a qubit;
I send or receive a qubit;
I send or receive a classical value, such as a list of numbers or bits;
I do some classical calculation.

4



Protocol steps

A protocol agent can:

I obtain a qubit;

I put a qubit (or qubits) through a quantum gate;
I measure a qubit;
I send or receive a qubit;
I send or receive a classical value, such as a list of numbers or bits;
I do some classical calculation.

4



Protocol steps

A protocol agent can:

I obtain a qubit;
I put a qubit (or qubits) through a quantum gate;

I measure a qubit;
I send or receive a qubit;
I send or receive a classical value, such as a list of numbers or bits;
I do some classical calculation.

4



Protocol steps

A protocol agent can:

I obtain a qubit;
I put a qubit (or qubits) through a quantum gate;
I measure a qubit;

I send or receive a qubit;
I send or receive a classical value, such as a list of numbers or bits;
I do some classical calculation.

4



Protocol steps

A protocol agent can:

I obtain a qubit;
I put a qubit (or qubits) through a quantum gate;
I measure a qubit;
I send or receive a qubit;

I send or receive a classical value, such as a list of numbers or bits;
I do some classical calculation.

4



Protocol steps

A protocol agent can:

I obtain a qubit;
I put a qubit (or qubits) through a quantum gate;
I measure a qubit;
I send or receive a qubit;
I send or receive a classical value, such as a list of numbers or bits;

I do some classical calculation.

4



Protocol steps

A protocol agent can:

I obtain a qubit;
I put a qubit (or qubits) through a quantum gate;
I measure a qubit;
I send or receive a qubit;
I send or receive a classical value, such as a list of numbers or bits;
I do some classical calculation.

4



Process notation
Based on Milner’s pi calculus. Very stark.

procdef ::= p(x, ... , z) = P

P ::= IO . P
 qstep . P

 (binder) . P p(E, ... ,E)
 par

 alt
 cond

 0
IO ::= C ! E, ... ,E

 C ? (x, ... , z)
qstep ::= Q, ... ,Q >> G

 q /_ (x)
binder ::= new c

 newq q
 newq q = E

 let pat = E
par ::= [ | ] P | ... | P
alt ::= [ + ] IO . P + ... + IO . P

cond ::= if E then P else P
 match E . pat.P + ... + pat.P

Communication channels can be sent and received in messages; so
can qubits.

Qtpi is strongly typed (Hindley-Milner). Explicit typing is optional
(but, for simplicity, not described).

5



Process notation
Based on Milner’s pi calculus. Very stark.

procdef ::= p(x, ... , z) = P
P ::= IO . P

 qstep . P
 (binder) . P

 p(E, ... ,E)
 par

 alt
 cond

 0
IO ::= C ! E, ... ,E

 C ? (x, ... , z)
qstep ::= Q, ... ,Q >> G

 q /_ (x)
binder ::= new c

 newq q
 newq q = E

 let pat = E
par ::= [ | ] P | ... | P
alt ::= [ + ] IO . P + ... + IO . P

cond ::= if E then P else P
 match E . pat.P + ... + pat.P

Communication channels can be sent and received in messages; so
can qubits.

Qtpi is strongly typed (Hindley-Milner). Explicit typing is optional
(but, for simplicity, not described).

5



Process notation
Based on Milner’s pi calculus. Very stark.

procdef ::= p(x, ... , z) = P
P ::= IO . P

 qstep . P
 (binder) . P p(E, ... ,E)

 par
 alt

 cond
 0

IO ::= C ! E, ... ,E
 C ? (x, ... , z)

qstep ::= Q, ... ,Q >> G
 q /_ (x)

binder ::= new c
 newq q

 newq q = E
 let pat = E

par ::= [ | ] P | ... | P
alt ::= [ + ] IO . P + ... + IO . P

cond ::= if E then P else P
 match E . pat.P + ... + pat.P

Communication channels can be sent and received in messages; so
can qubits.

Qtpi is strongly typed (Hindley-Milner). Explicit typing is optional
(but, for simplicity, not described).

5



Process notation
Based on Milner’s pi calculus. Very stark.

procdef ::= p(x, ... , z) = P
P ::= IO . P

 qstep . P
 (binder) . P p(E, ... ,E)

 par
 alt

 cond
 0

IO ::= C ! E, ... ,E
 C ? (x, ... , z)

qstep ::= Q, ... ,Q >> G
 q /_ (x)

binder ::= new c
 newq q

 newq q = E
 let pat = E

par ::= [ | ] P | ... | P
alt ::= [ + ] IO . P + ... + IO . P

cond ::= if E then P else P
 match E . pat.P + ... + pat.P

Communication channels can be sent and received in messages; so
can qubits.

Qtpi is strongly typed (Hindley-Milner). Explicit typing is optional
(but, for simplicity, not described).

5



Process notation
Based on Milner’s pi calculus. Very stark.

procdef ::= p(x, ... , z) = P
P ::= IO . P

 qstep . P
 (binder) . P p(E, ... ,E)

 par
 alt

 cond
 0

IO ::= C ! E, ... ,E
 C ? (x, ... , z)

qstep ::= Q, ... ,Q >> G
 q /_ (x)

binder ::= new c
 newq q

 newq q = E
 let pat = E

par ::= [ | ] P | ... | P
alt ::= [ + ] IO . P + ... + IO . P

cond ::= if E then P else P
 match E . pat.P + ... + pat.P

Communication channels can be sent and received in messages; so
can qubits.

Qtpi is strongly typed (Hindley-Milner). Explicit typing is optional
(but, for simplicity, not described).

5



Process notation
Based on Milner’s pi calculus. Very stark.

procdef ::= p(x, ... , z) = P
P ::= IO . P

 qstep . P
 (binder) . P p(E, ... ,E)

 par
 alt

 cond
 0

IO ::= C ! E, ... ,E
 C ? (x, ... , z)

qstep ::= Q, ... ,Q >> G
 q /_ (x)

binder ::= new c
 newq q

 newq q = E
 let pat = E

par ::= [ | ] P | ... | P
alt ::= [ + ] IO . P + ... + IO . P

cond ::= if E then P else P
 match E . pat.P + ... + pat.P

Communication channels can be sent and received in messages; so
can qubits.

Qtpi is strongly typed (Hindley-Milner). Explicit typing is optional
(but, for simplicity, not described).

5



Process notation
Based on Milner’s pi calculus. Very stark.

procdef ::= p(x, ... , z) = P
P ::= IO . P

 qstep . P
 (binder) . P p(E, ... ,E)

 par
 alt

 cond
 0

IO ::= C ! E, ... ,E
 C ? (x, ... , z)

qstep ::= Q, ... ,Q >> G
 q /_ (x)

binder ::= new c
 newq q

 newq q = E
 let pat = E

par ::= [ | ] P | ... | P
alt ::= [ + ] IO . P + ... + IO . P

cond ::= if E then P else P
 match E . pat.P + ... + pat.P

Communication channels can be sent and received in messages; so
can qubits.

Qtpi is strongly typed (Hindley-Milner). Explicit typing is optional
(but, for simplicity, not described).

5



Process notation
Based on Milner’s pi calculus. Very stark.

procdef ::= p(x, ... , z) = P
P ::= IO . P

 qstep . P
 (binder) . P p(E, ... ,E)

 par
 alt

 cond
 0

IO ::= C ! E, ... ,E
 C ? (x, ... , z)

qstep ::= Q, ... ,Q >> G
 q /_ (x)

binder ::= new c
 newq q

 newq q = E
 let pat = E

par ::= [ | ] P | ... | P
alt ::= [ + ] IO . P + ... + IO . P

cond ::= if E then P else P
 match E . pat.P + ... + pat.P

Communication channels can be sent and received in messages

; so
can qubits.

Qtpi is strongly typed (Hindley-Milner). Explicit typing is optional
(but, for simplicity, not described).

5



Process notation
Based on Milner’s pi calculus. Very stark.

procdef ::= p(x, ... , z) = P
P ::= IO . P

 qstep . P
 (binder) . P p(E, ... ,E)

 par
 alt

 cond
 0

IO ::= C ! E, ... ,E
 C ? (x, ... , z)

qstep ::= Q, ... ,Q >> G
 q /_ (x)

binder ::= new c
 newq q

 newq q = E
 let pat = E

par ::= [ | ] P | ... | P
alt ::= [ + ] IO . P + ... + IO . P

cond ::= if E then P else P
 match E . pat.P + ... + pat.P

Communication channels can be sent and received in messages; so
can qubits.

Qtpi is strongly typed (Hindley-Milner). Explicit typing is optional
(but, for simplicity, not described).

5



Process notation
Based on Milner’s pi calculus. Very stark.

procdef ::= p(x, ... , z) = P
P ::= IO . P

 qstep . P
 (binder) . P p(E, ... ,E)

 par
 alt

 cond
 0

IO ::= C ! E, ... ,E
 C ? (x, ... , z)

qstep ::= Q, ... ,Q >> G
 q /_ (x)

binder ::= new c
 newq q

 newq q = E
 let pat = E

par ::= [ | ] P | ... | P
alt ::= [ + ] IO . P + ... + IO . P

cond ::= if E then P else P
 match E . pat.P + ... + pat.P

Communication channels can be sent and received in messages; so
can qubits.

Qtpi is strongly typed (Hindley-Milner). Explicit typing is optional
(but, for simplicity, not described).

5



Expression notation

There’s a functional notation for calculation, which looks like
Miranda ...

but it’s eager.

To deal with qubit accounting, functions can’t have anything to do
with qubits.

6



Expression notation

There’s a functional notation for calculation, which looks like
Miranda ... but it’s eager.

To deal with qubit accounting, functions can’t have anything to do
with qubits.

6



Expression notation

There’s a functional notation for calculation, which looks like
Miranda ... but it’s eager.

To deal with qubit accounting, functions can’t have anything to do
with qubits.

6



What’s interesting (again)?

1. Quantum stuff

2. Language

3. Symbolic calculator

4. Probabilistic execution

5. Resource accounting for qubits

6. Qbit collections

7. Overloaded operators

8. Sparse matrix tricks

9. Iterative constructs

10. Demos

7



Demo

Teleportation, queen of the baby protocols

8



BB84, queen of the QKD protocols

Alice (?Eve?) Bob

quantum

(signed) classical

I generate a one-time code without transmitting it.

I Alice chooses 1000 bits (say);
I Alice sends them as 1000 qubits, randomly choosing diagonal

(|+〉, |−〉) or normal (|0〉, |1〉) encoding for 0 and 1;
I Bob measures them, randomly as diagonal or normal (50/50 he

guesses right on each);
I They compare notes (classically) about their random choices;
I If Eve has not intervened, they share ∼500 secret bits;
I Bob sends Alice (classically) a random sample of n of his bits;
I Only a (3

4)
n chance that Eve has meddled and those bits match;

I Otherwise A & B share a (500-n)-bit secret one-time code;
I Alice uses it to XOR the message and send it classically.

9



BB84, queen of the QKD protocols

Alice (?Eve?) Bob

quantum

(signed) classical

I generate a one-time code without transmitting it.
I Alice chooses 1000 bits (say);

I Alice sends them as 1000 qubits, randomly choosing diagonal
(|+〉, |−〉) or normal (|0〉, |1〉) encoding for 0 and 1;

I Bob measures them, randomly as diagonal or normal (50/50 he
guesses right on each);

I They compare notes (classically) about their random choices;
I If Eve has not intervened, they share ∼500 secret bits;
I Bob sends Alice (classically) a random sample of n of his bits;
I Only a (3

4)
n chance that Eve has meddled and those bits match;

I Otherwise A & B share a (500-n)-bit secret one-time code;
I Alice uses it to XOR the message and send it classically.

9



BB84, queen of the QKD protocols

Alice (?Eve?) Bob

quantum

(signed) classical

I generate a one-time code without transmitting it.
I Alice chooses 1000 bits (say);
I Alice sends them as 1000 qubits, randomly choosing diagonal

(|+〉, |−〉) or normal (|0〉, |1〉) encoding for 0 and 1;

I Bob measures them, randomly as diagonal or normal (50/50 he
guesses right on each);

I They compare notes (classically) about their random choices;
I If Eve has not intervened, they share ∼500 secret bits;
I Bob sends Alice (classically) a random sample of n of his bits;
I Only a (3

4)
n chance that Eve has meddled and those bits match;

I Otherwise A & B share a (500-n)-bit secret one-time code;
I Alice uses it to XOR the message and send it classically.

9



BB84, queen of the QKD protocols

Alice (?Eve?) Bob

quantum

(signed) classical

I generate a one-time code without transmitting it.
I Alice chooses 1000 bits (say);
I Alice sends them as 1000 qubits, randomly choosing diagonal

(|+〉, |−〉) or normal (|0〉, |1〉) encoding for 0 and 1;
I Bob measures them, randomly as diagonal or normal (50/50 he

guesses right on each);

I They compare notes (classically) about their random choices;
I If Eve has not intervened, they share ∼500 secret bits;
I Bob sends Alice (classically) a random sample of n of his bits;
I Only a (3

4)
n chance that Eve has meddled and those bits match;

I Otherwise A & B share a (500-n)-bit secret one-time code;
I Alice uses it to XOR the message and send it classically.

9



BB84, queen of the QKD protocols

Alice (?Eve?) Bob

quantum

(signed) classical

I generate a one-time code without transmitting it.
I Alice chooses 1000 bits (say);
I Alice sends them as 1000 qubits, randomly choosing diagonal

(|+〉, |−〉) or normal (|0〉, |1〉) encoding for 0 and 1;
I Bob measures them, randomly as diagonal or normal (50/50 he

guesses right on each);
I They compare notes (classically) about their random choices;

I If Eve has not intervened, they share ∼500 secret bits;
I Bob sends Alice (classically) a random sample of n of his bits;
I Only a (3

4)
n chance that Eve has meddled and those bits match;

I Otherwise A & B share a (500-n)-bit secret one-time code;
I Alice uses it to XOR the message and send it classically.

9



BB84, queen of the QKD protocols

Alice (?Eve?) Bob

quantum

(signed) classical

I generate a one-time code without transmitting it.
I Alice chooses 1000 bits (say);
I Alice sends them as 1000 qubits, randomly choosing diagonal

(|+〉, |−〉) or normal (|0〉, |1〉) encoding for 0 and 1;
I Bob measures them, randomly as diagonal or normal (50/50 he

guesses right on each);
I They compare notes (classically) about their random choices;
I If Eve has not intervened, they share ∼500 secret bits;

I Bob sends Alice (classically) a random sample of n of his bits;
I Only a (3

4)
n chance that Eve has meddled and those bits match;

I Otherwise A & B share a (500-n)-bit secret one-time code;
I Alice uses it to XOR the message and send it classically.

9



BB84, queen of the QKD protocols

Alice (?Eve?) Bob

quantum

(signed) classical

I generate a one-time code without transmitting it.
I Alice chooses 1000 bits (say);
I Alice sends them as 1000 qubits, randomly choosing diagonal

(|+〉, |−〉) or normal (|0〉, |1〉) encoding for 0 and 1;
I Bob measures them, randomly as diagonal or normal (50/50 he

guesses right on each);
I They compare notes (classically) about their random choices;
I If Eve has not intervened, they share ∼500 secret bits;
I Bob sends Alice (classically) a random sample of n of his bits;

I Only a (3
4)

n chance that Eve has meddled and those bits match;
I Otherwise A & B share a (500-n)-bit secret one-time code;
I Alice uses it to XOR the message and send it classically.

9



BB84, queen of the QKD protocols

Alice (?Eve?) Bob

quantum

(signed) classical

I generate a one-time code without transmitting it.
I Alice chooses 1000 bits (say);
I Alice sends them as 1000 qubits, randomly choosing diagonal

(|+〉, |−〉) or normal (|0〉, |1〉) encoding for 0 and 1;
I Bob measures them, randomly as diagonal or normal (50/50 he

guesses right on each);
I They compare notes (classically) about their random choices;
I If Eve has not intervened, they share ∼500 secret bits;
I Bob sends Alice (classically) a random sample of n of his bits;
I Only a (3

4)
n chance that Eve has meddled and those bits match;

I Otherwise A & B share a (500-n)-bit secret one-time code;
I Alice uses it to XOR the message and send it classically.

9



BB84, queen of the QKD protocols

Alice (?Eve?) Bob

quantum

(signed) classical

I generate a one-time code without transmitting it.
I Alice chooses 1000 bits (say);
I Alice sends them as 1000 qubits, randomly choosing diagonal

(|+〉, |−〉) or normal (|0〉, |1〉) encoding for 0 and 1;
I Bob measures them, randomly as diagonal or normal (50/50 he

guesses right on each);
I They compare notes (classically) about their random choices;
I If Eve has not intervened, they share ∼500 secret bits;
I Bob sends Alice (classically) a random sample of n of his bits;
I Only a (3

4)
n chance that Eve has meddled and those bits match;

I Otherwise A & B share a (500-n)-bit secret one-time code;

I Alice uses it to XOR the message and send it classically.

9



BB84, queen of the QKD protocols

Alice (?Eve?) Bob

quantum

(signed) classical

I generate a one-time code without transmitting it.
I Alice chooses 1000 bits (say);
I Alice sends them as 1000 qubits, randomly choosing diagonal

(|+〉, |−〉) or normal (|0〉, |1〉) encoding for 0 and 1;
I Bob measures them, randomly as diagonal or normal (50/50 he

guesses right on each);
I They compare notes (classically) about their random choices;
I If Eve has not intervened, they share ∼500 secret bits;
I Bob sends Alice (classically) a random sample of n of his bits;
I Only a (3

4)
n chance that Eve has meddled and those bits match;

I Otherwise A & B share a (500-n)-bit secret one-time code;
I Alice uses it to XOR the message and send it classically.

9


