
Underpinning mainstream engineering with mathematical semantics

Peter Sewell
University of Cambridge

LMS/BCS-FACS Evening Seminar

18 November 2021

This work was partially supported by the UK Government Industrial Strategy Challenge Fund (ISCF) under the Digital Security by Design (DSbD) Programme, to deliver a DSbDtech
enabled digital platform (grant 105694), ERC AdG 789108 ELVER, EPSRC programme grant EP/K008528/1 REMS, Arm iCASE awards, EPSRC IAA KTF funding, the Isaac Newton
Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge, Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates
Cambridge Trust. Approved for public release; distribution is unlimited. This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (“CTSRD”), FA8750-11-C-0249 (“MRC2”), HR0011-18-C-0016 (“ECATS”), and FA8650-18-C-7809 (“CIFV”), as part
of the DARPA CRASH, MRC, and SSITH research programs. The views, opinions, and/or findings contained in this report are those of the authors and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government.

1

Mainstream computer engineering

massively successful

elegant stack of abstractions

Image by Saffron Blaze - Own work, CC BY-SA 3.0

2

https://commons.wikimedia.org/w/index.php?curid=29651325
https://creativecommons.org/licenses/by-sa/3.0

...but if we look straight

constant danger of collapse

huge problems from the
legacy design choices

maintained only by constant
security patching

Image by Saffron Blaze - Own work, CC BY-SA 3.0

3

https://commons.wikimedia.org/w/index.php?curid=29651325
https://creativecommons.org/licenses/by-sa/3.0

Foundations?

4

Discrete Mathematics
Category Theory

Operational Semantics Domain Theory
Denotational Semantics

Lambda Calculus Type Systems
Type Theory

Concurrency Theory
Process Calculi Proof Assistants SMT

Program Logics
Model Checking

Complexity Theory
Automata Theory

Computability Theory

Static Analysis
Abstract Interpretation

Dynamic Analysis Formal Specification

Foundations?

Image by Saffron Blaze - Own work, CC BY-SA 3.0

5

https://commons.wikimedia.org/w/index.php?curid=29651325
https://creativecommons.org/licenses/by-sa/3.0

Foundations?

test-and-debug development

prose specifications
(at best)

HTTPS, TCP/IP
Linux, Windows
JavaScript, Python, Java
C, C++
Arm, x86

Image by Saffron Blaze - Own work, CC BY-SA 3.0

6

https://commons.wikimedia.org/w/index.php?curid=29651325
https://creativecommons.org/licenses/by-sa/3.0

7

I don’t mean to imply that our existing theory has no connection to practice – much does

But the fundamental abstractions that mainstream computing relies on, and the development
processes most programmers use, remain mostly oblivious to the theory we have.

And, to a significant extent, vice versa

8

Main Question

How can we develop mathematical semantics for the actual mainstream artifacts we rely on

(not just idealised or toy versions, or semantics just about how we think the world ought to be)

and apply it to improve the mainstream engineering of them?

9

Will look at this through the lens of several inter-related projects:
I network protocols
I relaxed-memory concurrency
I instruction-set architecture
I C
I CHERI

10

Part 1: NetSem – semantics of TCP and Sockets API

Part 1: NetSem – semantics of TCP and Sockets API 11

NetSem: Semantics of network protocols – TCP/IP and the Sockets API

Engineering with Logic: Rigorous Test-Oracle Specification
and Validation for TCP/IP and the Sockets API

STEVE BISHOP, University of Cambridge1 (1 when this work was done), UK

MATTHEW FAIRBAIRN, University of Cambridge1, UK

HANNES MEHNERT, robur.io, Center for the Cultivation of Technology, Germany

MICHAEL NORRISH, Data61, CSIRO and Australian National University, Australia

TOM RIDGE, University of Leicester, UK

PETER SEWELL, University of Cambridge, UK

MICHAEL SMITH, University of Cambridge1, UK

KEITH WANSBROUGH, University of Cambridge1, UK

Conventional computer engineering relies on test-and-debug development processes, with the
behaviour of common interfaces described (at best) with prose specification documents. But prose
specifications cannot be used in test-and-debug development in any automated way, and prose is a
poor medium for expressing complex (and loose) specifications.

The TCP/IP protocols and Sockets API are a good example of this: they play a vital role in
modern communication and computation, and interoperability between implementations is essential.
But what exactly they are is surprisingly obscure: their original development focussed on “rough
consensus and running code”, augmented by prose RFC specifications that do not precisely define
what it means for an implementation to be correct. Ultimately, the actual standard is the de facto
one of the common implementations, including, for example, the 15 000–20 000 lines of the BSD
implementation — optimised and multithreaded C code, time-dependent, with asynchronous event
handlers, intertwined with the operating system, and security-critical.

This paper reports on work done in the Netsem project to develop lightweight mathematically
rigorous techniques that can be applied to such systems: to specify their behaviour precisely
(but loosely enough to permit the required implementation variation) and to test whether these
specifications and the implementations correspond, with specifications that are executable as test
oracles. We developed post-hoc specifications of TCP, UDP, and the Sockets API, both of the
service that they provide to applications (in terms of TCP bidirectional stream connections), and of
the internal operation of the protocol (in terms of TCP segments and UDP datagrams), together
with a testable abstraction function relating the two. These specifications are rigorous, detailed,
readable, with broad coverage, and are rather accurate. Working within a general-purpose proof
assistant (HOL4), we developed language idioms (within higher-order logic) in which to write the
specifications: operational semantics with nondeterminism, time, system calls, monadic relational
programming, etc. We followed an experimental semantics approach, validating the specifications
against several thousand traces captured from three implementations (FreeBSD, Linux, and WinXP).
Many differences between these were identified, and a number of bugs. Validation was done using a
special-purpose symbolic model checker programmed above HOL4.

Having demonstrated that our logic-based engineering techniques suffice for handling real-world
protocols, we argue that similar techniques could be applied to future critical software infrastructure
at design time, leading to cleaner designs and (via specification-based testing) more robust and
predictable implementations. In cases where specification looseness can be controlled, this should
be possible with lightweight techniques, without the need for a general-purpose proof assistant, at
relatively little cost.

CCS Concepts: • Software and its engineering; • Networks → Protocol correctness; Network protocol
design; Transport protocols; • Theory of computation → Logic and verification; Automated reasoning;
Higher order logic; Semantics and reasoning ;

Revision of October 10, 2018. To appear in Journal of the ACM.

JACM 2018, FM 2008, ICNP 2006, POPL 2006, SIGCOMM 2005,
SIGOPS EW 2002, ESOP 2002, TACS 2001

Motivation: existing protocol specifications
(RFCs) are vague prose. Can we specify real
protocols precisely with honest maths?
(Original: better failure semantics for process calculi)

Part 1: NetSem – semantics of TCP and Sockets API 12

NetSem: Semantics of network protocols – TCP/IP and the Sockets API

Engineering with Logic: Rigorous Test-Oracle Specification
and Validation for TCP/IP and the Sockets API

STEVE BISHOP, University of Cambridge1 (1 when this work was done), UK

MATTHEW FAIRBAIRN, University of Cambridge1, UK

HANNES MEHNERT, robur.io, Center for the Cultivation of Technology, Germany

MICHAEL NORRISH, Data61, CSIRO and Australian National University, Australia

TOM RIDGE, University of Leicester, UK

PETER SEWELL, University of Cambridge, UK

MICHAEL SMITH, University of Cambridge1, UK

KEITH WANSBROUGH, University of Cambridge1, UK

Conventional computer engineering relies on test-and-debug development processes, with the
behaviour of common interfaces described (at best) with prose specification documents. But prose
specifications cannot be used in test-and-debug development in any automated way, and prose is a
poor medium for expressing complex (and loose) specifications.

The TCP/IP protocols and Sockets API are a good example of this: they play a vital role in
modern communication and computation, and interoperability between implementations is essential.
But what exactly they are is surprisingly obscure: their original development focussed on “rough
consensus and running code”, augmented by prose RFC specifications that do not precisely define
what it means for an implementation to be correct. Ultimately, the actual standard is the de facto
one of the common implementations, including, for example, the 15 000–20 000 lines of the BSD
implementation — optimised and multithreaded C code, time-dependent, with asynchronous event
handlers, intertwined with the operating system, and security-critical.

This paper reports on work done in the Netsem project to develop lightweight mathematically
rigorous techniques that can be applied to such systems: to specify their behaviour precisely
(but loosely enough to permit the required implementation variation) and to test whether these
specifications and the implementations correspond, with specifications that are executable as test
oracles. We developed post-hoc specifications of TCP, UDP, and the Sockets API, both of the
service that they provide to applications (in terms of TCP bidirectional stream connections), and of
the internal operation of the protocol (in terms of TCP segments and UDP datagrams), together
with a testable abstraction function relating the two. These specifications are rigorous, detailed,
readable, with broad coverage, and are rather accurate. Working within a general-purpose proof
assistant (HOL4), we developed language idioms (within higher-order logic) in which to write the
specifications: operational semantics with nondeterminism, time, system calls, monadic relational
programming, etc. We followed an experimental semantics approach, validating the specifications
against several thousand traces captured from three implementations (FreeBSD, Linux, and WinXP).
Many differences between these were identified, and a number of bugs. Validation was done using a
special-purpose symbolic model checker programmed above HOL4.

Having demonstrated that our logic-based engineering techniques suffice for handling real-world
protocols, we argue that similar techniques could be applied to future critical software infrastructure
at design time, leading to cleaner designs and (via specification-based testing) more robust and
predictable implementations. In cases where specification looseness can be controlled, this should
be possible with lightweight techniques, without the need for a general-purpose proof assistant, at
relatively little cost.

CCS Concepts: • Software and its engineering; • Networks → Protocol correctness; Network protocol
design; Transport protocols; • Theory of computation → Logic and verification; Automated reasoning;
Higher order logic; Semantics and reasoning ;

Revision of October 10, 2018. To appear in Journal of the ACM.

JACM 2018, FM 2008, ICNP 2006, POPL 2006, SIGCOMM 2005,
SIGOPS EW 2002, ESOP 2002, TACS 2001

Success: defined in HOL4 an envelope of
allowed behaviour for TCP/IP and Sockets,
with clear and experimentally testable rela-
tionship to production impls.

...can cope with real artifacts, without ideal-
isation or much restriction

...learned a lot about experimental seman-
tics, testing, and working at scale

Part 1: NetSem – semantics of TCP and Sockets API 13

NetSem: Approach
Experimental approach: validating semantics against existing implementations
(the de facto standards)

Forms of semantics:
I paper – supports hand proof
I mechanised

I in a prover – supports mechanised proof
I executable – can run as a (maybe slow) implementation
I executable as a test oracle – can decide whether some observable behaviour is allowed or not

Part 1: NetSem – semantics of TCP and Sockets API 14

NetSem: Approach
Experimental approach: validating semantics against existing implementations
(the de facto standards)

Forms of semantics:
I paper – supports hand proof
I mechanised

I in a prover – supports mechanised proof
I executable – can run as a (maybe slow) implementation
I executable as a test oracle – can decide whether some observable behaviour is allowed or not

Need the last:
I to validate semantics against implementations (without full impl correctness proof)
I to test implementations against semantics – to make directly usable for engineers in

standard test-and-debug development

Part 1: NetSem – semantics of TCP and Sockets API 15

NetSem: Approach
Experimental approach: validating semantics against existing implementations
(the de facto standards)

Forms of semantics:
I paper – supports hand proof
I mechanised

I in a prover – supports mechanised proof
I executable – can run as a (maybe slow) implementation
I executable as a test oracle – can decide whether some observable behaviour is allowed or not

Need the last:
I to validate semantics against implementations (without full impl correctness proof)
I to test implementations against semantics – to make directly usable for engineers in

standard test-and-debug development

Key technical challenge: achieving this in the face of specification looseness/nondeterminism
For TCP/IP: did so with custom symbolic evaluation in HOL4
Part 1: NetSem – semantics of TCP and Sockets API 16

NetSem: Reflections
Working at scale: 9k LoS, 9 person-years. More like code than classic maths.

Have to deal both with
I “fundamental” systems complexity – it’s a subtle protocol, for good engineering reasons
I contingent complexity, from historical accidents and mistakes

To be useful, need both! Not just some idealisation enough for a single paper.

Part 1: NetSem – semantics of TCP and Sockets API 17

NetSem: Reflections
Failure? Stopped too soon:

...didn’t produce turnkey system, usable by practitioners

...used fancy tools, making that hard (in hindsight, could be much simpler)

...didn’t influence standards

...didn’t get to point of proving substantial theorems about the protocol

...problem wasn’t sufficiently widely appreciated?

Part 1: NetSem – semantics of TCP and Sockets API 18

Part 2: Relaxed-memory concurrency

Part 2: Relaxed-memory concurrency 19

Relaxed-memory concurrency

2007: Susmit Sarkar arrives as new postdoc in Cambridge

We want to work on hypervisor verification (Xen)

...but what’s the underlying hardware programming model?

Part 2: Relaxed-memory concurrency 20

Relaxed-memory concurrency

2007: Susmit Sarkar arrives as new postdoc in Cambridge

We want to work on hypervisor verification (Xen)

...but what’s the underlying hardware programming model?

...impossible to tell

Part 2: Relaxed-memory concurrency 21

What is relaxed-memory concurrency?

Naively, shared-memory concurrency has sequentially consistent semantics:

Threads are interleaved in some arbitrary sequential order, consistent with program order
within each thread, with each read reading from the most recent write to the same location.

Thread Thread

Shared Memory

Most theory has assumed that.

Part 2: Relaxed-memory concurrency 22

What is relaxed-memory concurrency?
In reality, mainstream architectures and programming languages give much weaker guarantees
for low-level concurrent code. Consider e.g.

MP+ctrl Pseudocode
Thread 0 Thread 1

x=1 while ((r1=y)==0) {}
y=1 r2=x
Initial state: x=0, y=0
Final:1:r1=1, 1:r2=0

Test MP+ctrl

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

rf

rf

Observable (and allowed) on ARMv7, Armv8-A, IBM Power, and RISC-V (not on x86)
So you can’t reason in terms of a simple global-time model

Part 2: Relaxed-memory concurrency 23

What is relaxed-memory concurrency?
In reality, mainstream architectures and programming languages give much weaker guarantees
for low-level concurrent code. Consider e.g.

MP+ctrl Pseudocode
Thread 0 Thread 1

x=1 while ((r1=y)==0) {}
y=1 r2=x
Initial state: x=0, y=0
Final:1:r1=1, 1:r2=0

Test MP+ctrl

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

rf

rf

Observable (and allowed) on ARMv7, Armv8-A, IBM Power, and RISC-V (not on x86)
So you can’t reason in terms of a simple global-time model

Why? Observable effects of microarchitecture and compiler optimisations:
I pipeline: out-of-order and speculative execution
I storage subsystem: write propagation in either order
I compiler: common subexpression elimination

Part 2: Relaxed-memory concurrency 24

How do we tell what behaviour is allowed?
Approach #1: examine vendor architecture documentation of the time

Part 2: Relaxed-memory concurrency 25

How do we tell what behaviour is allowed?
Approach #1: examine vendor architecture documentation of the time

“Principle 5. Intel 64 memory ordering ensures transitive visibility of stores —
i.e. stores that are causally related appear to execute in an order consistent with
the causal relation” [Intel White Paper, 2007]

Part 2: Relaxed-memory concurrency 26

How do we tell what behaviour is allowed?
Approach #1: examine vendor architecture documentation of the time

IBM Power barriers (ARMv7 text similar):

“For each applicable pair ai ,bj of storage accesses such that ai is in A and bj is in B, the memory barrier
ensures that ai will be performed with respect to any processor or mechanism, to the extent required
by the associated Memory Coherence Required attributes, before bj is performed with respect to that
processor or mechanism.

I A includes all applicable storage accesses by any such processor or mechanism that have been
performed with respect to P1 before the memory barrier is created.

I B includes all applicable storage accesses by any such processor or mechanism that are performed
after a Load instruction executed by that processor or mechanism has returned the value stored by
a store that is in B.”

Part 2: Relaxed-memory concurrency 27

How do we tell what behaviour is allowed?
Approach #1: examine vendor architecture documentation of the time

IBM Power barriers (ARMv7 text similar):

“For each applicable pair ai ,bj of storage accesses such that ai is in A and bj is in B, the memory barrier
ensures that ai will be performed with respect to any processor or mechanism, to the extent required
by the associated Memory Coherence Required attributes, before bj is performed with respect to that
processor or mechanism.

I A includes all applicable storage accesses by any such processor or mechanism that have been
performed with respect to P1 before the memory barrier is created.

I B includes all applicable storage accesses by any such processor or mechanism that are performed
after a Load instruction executed by that processor or mechanism has returned the value stored by
a store that is in B.”

l

Part 2: Relaxed-memory concurrency 28

How do we tell what behaviour is allowed?
Approach #1: examine vendor architecture documentation of the time

I presumes the documentation expresses a coherent model

Part 2: Relaxed-memory concurrency 29

Approach #2: look at previous research, 1978–2008
• L. M. Censier and P. Feautrier. A new solution to coherence problems in multicache systems. IEEE Trans. Comput., 27(12):1112–1118, December 1978.

• L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans. Comput., C-28(9):690–691, 1979.

• William W. Collier. Principles of architecture for systems of parallel processes. Technical Report TR 00.3100, IBM Poughkeepsie, 1981.

• Michel Dubois, Christoph Scheurich, and Faye A. Briggs. Memory access buffering in multiprocessors. In Proc. ISCA ’86, pages 434–442, 1986.

• J. Misra. Axioms for memory access in asynchronous hardware systems. ACM Trans. Program. Lang. Syst., 8(1):142–153, 1986.

• Dennis Shasha and Marc Snir. Efficient and correct execution of parallel programs that share memory. ACM Trans. Program. Lang. Syst., 10(2):282–312, April 1988.

• James R. Goodman. Cache consistency and sequential consistency. Technical Report Technical Report 61, IEEE Scalable Coherent Interface (SCI) Working Group, March 1989.

• Sarita V. Adve and Mark D. Hill. Weak ordering — a new definition. In Proc. ISCA ’90, pages 2–14. ACM, 1990.

• Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and John Hennessy. Memory consistency and event ordering in scalable shared-memory multiprocessors. In Proc. ISCA ’90,
pages 15–26. ACM, 1990.

• William W. Collier. Reasoning About Parallel Architectures. Prentice-Hall, Inc., 1992.

• Pradeep S. Sindhu, Jean-Marc Frailong, and Michel Cekleov. Formal Specification of Memory Models, pages 25–41. Springer US, 1992.

• Prince Kohli, Gil Neiger, and Mustaque Ahamad. A characterization of scalable shared memories. In ICPP: International Conference on Parallel Processing, pages 332–335, 1993.

• F. Corella, J. M. Stone, and C. M. Barton. A formal specification of the PowerPC shared memory architecture. Technical Report RC18638, IBM, 1993.

• David L Dill, Seungjoon Park, and Andreas G. Nowatzyk. Formal specification of abstract memory models. In Proceedings of the 1993 Symposium on Research on Integrated Systems, pages 38–52. MIT Press, 1993.

• The SPARC Architecture Manual, Version 9. SPARC Int., Inc., 1994.

• Hagit Attiya and Roy Friedman. Programming DEC-Alpha based multiprocessors the easy way (extended abstract). In Proc. SPAA, pages 157–166, New York, NY, USA, 1994. ACM.

• José M. Bernabéu-Aubán and Vicente Cholvi-juan. Formalizing memory coherency models. Journal of Computing and Information, 1:653–672, 1994.

• K. Gharachorloo. Memory consistency models for shared-memory multiprocessors. WRL Research Report, 95(9), 1995.

• Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. Causal memory: definitions, implementation, and programming. Distributed Computing, 9(1):37–49, 1995.

• Lisa Higham, Jalal Kawash, and Nathaly Verwaal. Weak memory consistency models. Part I: Definitions and comparisons. Technical report, Department of Computer Science, University of Calgary, 1998.

• Prosenjit Chatterjee and Ganesh Gopalakrishnan. Towards a formal model of shared memory consistency for Intel Itaniumtm. In 19th International Conference on Computer Design (ICCD 2001), September 2001,
Austin, TX, USA, pages 515–518, 2001.

• Intel. A formal specification of Intel Itanium processor family memory ordering, 2002. http://download.intel.com/design/Itanium/Downloads/25142901.pdf.

• A. Adir, H. Attiya, and G. Shurek. Information-flow models for shared memory with an application to the PowerPC architecture. IEEE Trans. Parallel Distrib. Syst., 14(5):502–515, 2003.

• Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom, and Konrad Slind. Nemos: A framework for axiomatic and executable specifications of memory consistency models. In 18th International Parallel and Distributed
Processing Symposium (IPDPS), Santa Fe, New Mexico, USA, 2004.

• Lisa Higham, LillAnne Jackson, and Jalal Kawash. Programmer-centric conditions for Itanium memory consistency. In Proceedings of the 8th International Conference on Distributed Computing and Networking,
ICDCN’06, pages 58–69. Springer-Verlag, 2006.

• Arvind Arvind and Jan-Willem Maessen. Memory model = instruction reordering + store atomicity. In Proc. ISCA ’06, pages 29–40. IEEE Computer Society, 2006.

• N. Chong and S. Ishtiaq. Reasoning about the ARM weakly consistent memory model. In MSPC, 2008.

...and language-level work, especially around JMM and early work towards C/C++11 (Manson, Pugh, Boehm, Adve)

Part 2: Relaxed-memory concurrency 30

http://download.intel.com/design/Itanium/Downloads/25142901.pdf

Approach #2: look at previous work, 1978–2008

x86 (Intel, AMD) ?
IBM Power ?
ARMv7 ?
ARMv8 didn’t exist yet
RISC-V didn’t exist yet
SPARC TSO X
SPARC RMO, PSO X not used?
Itanium X
MIPS ?
Alpha gone

Part 2: Relaxed-memory concurrency 31

Approach #3

Part 2: Relaxed-memory concurrency 32

Approach #3
I experiment (following TCP ideas)

Part 2: Relaxed-memory concurrency 33

Approach #3
I experiment (following TCP ideas)

I build hardware test harness, litmus
(Maranget; early versions by Braibant and Zappa Nardelli, and by Sarkar)

I make models executable as test oracles in various tools
I hand-write and auto-generate libraries of interesting tests

(auto-generation with diy, Alglave & Maranget)
I find various hardware bugs in production silicon along the way

Part 2: Relaxed-memory concurrency 34

Approach #3
I experiment (following TCP ideas)

I build hardware test harness, litmus
(Maranget; early versions by Braibant and Zappa Nardelli, and by Sarkar)

I make models executable as test oracles in various tools
I hand-write and auto-generate libraries of interesting tests

(auto-generation with diy, Alglave & Maranget)
I find various hardware bugs in production silicon along the way

I talk with vendors (mainly IBM + Arm) to find out what they intend
I hard to find right people and get their time
I presumes they know what they mean (for architectural envelope, not just what they build)

– prose specs didn’t give them the tools to think about that clearly
I but their architectural intent is primary

Part 2: Relaxed-memory concurrency 35

Approach #3
I experiment (following TCP ideas)

I build hardware test harness, litmus
(Maranget; early versions by Braibant and Zappa Nardelli, and by Sarkar)

I make models executable as test oracles in various tools
I hand-write and auto-generate libraries of interesting tests

(auto-generation with diy, Alglave & Maranget)
I find various hardware bugs in production silicon along the way

I talk with vendors (mainly IBM + Arm) to find out what they intend
I hard to find right people and get their time
I presumes they know what they mean (for architectural envelope, not just what they build)

– prose specs didn’t give them the tools to think about that clearly
I but their architectural intent is primary

I iterate: compare models and hardware, relate to language models, prove things, discuss
with vendors, work with RISC-V TG, refine models

Part 2: Relaxed-memory concurrency 36

Approach #3
I experiment (following TCP ideas)

I build hardware test harness, litmus
(Maranget; early versions by Braibant and Zappa Nardelli, and by Sarkar)

I make models executable as test oracles in various tools
I hand-write and auto-generate libraries of interesting tests

(auto-generation with diy, Alglave & Maranget)
I find various hardware bugs in production silicon along the way

I talk with vendors (mainly IBM + Arm) to find out what they intend
I hard to find right people and get their time
I presumes they know what they mean (for architectural envelope, not just what they build)

– prose specs didn’t give them the tools to think about that clearly
I but their architectural intent is primary

I iterate: compare models and hardware, relate to language models, prove things, discuss
with vendors, work with RISC-V TG, refine models

hence (working with IBM, Arm, RISC-V) create precise architectural abstractions
[POPL 2009, DAMP 2009, TPHOLs 2009, CACM 2010, CAV 2010, ECOOP 2010, PLDI 2011, TACAS 2011, POPL 2012, PLDI 2012, CAV
2012, TOPLAS 2014 (A,M,T), MICRO 2015, POPL 2016, POPL 2017, POPL 2018, POPL 2019, ESOP 2020, Arm ARM, RISC-V spec]
Part 2: Relaxed-memory concurrency 37

Architectural relaxed-memory concurrency, 2021

x86 (Intel, AMD) X user: de facto
IBM Power X user: de facto
ARMv8-new X user: official system: in progress
RISC-V X user: official
SPARC TSO X

ARMv8-old Xish
ARMv7 Xish
SPARC RMO, PSO X not used
Itanium X going
Alpha gone
MIPS ?

Part 2: Relaxed-memory concurrency 38

What kind of semantics do we end up with?

I 1. Abstract-microarchitectural operational models

abstract machines that capture the hardware intuition, to explain what’s going on, with
explicit out-of-order and speculative execution, but without the complexity of real
hardware. Incrementally executable

Part 2: Relaxed-memory concurrency 39

What kind of semantics do we end up with?Thread semantics: out-of-order, speculative execution abstractly
Our thread semantics has to account for out-of-order and speculative execution.

finished
in progress

� instructions can be fetched before predecessors finished
� instructions independently make progress
� branch speculation allows fetching successors of branches
� multiple potential successors can be explored

NB actual hardware implementations can and do speculate even more, e.g. beyond
strong barriers, so long as it is not observable
Contents 4.4 Armv8-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 345

Part 2: Relaxed-memory concurrency 40

What kind of semantics do we end up with?Operational model

� each thread has a tree of instruction instances;

� no register state;

� threads execute in parallel above a flat memory state:
mapping from addresses to write requests

� for Power: need more complicated memory state to handle non-MCA

Thread Subsystem Storage Subsystem

0: Write 0x00000000

1: Write 0x00000000

2: Write 0x00000000
. . .

read/write

responses

(For now: plain memory reads, writes, strong barriers. All memory accesses same size.)

Contents 4.4 Armv8-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 348

Part 2: Relaxed-memory concurrency 41

What kind of semantics do we end up with?Commit Barrier

Condition:
A barrier instruction i in state Plain (Barrier(barrier kind, next state�)) can be
committed if:

1. all po-previous conditional branch instructions are finished;
2. (BO) if i is a dmb sy instruction, all po-previous memory access instructions and

barriers are finished.

Contents 4.4 Armv8-A, IBM Power, and RISC-V: Armv8-A/RISC-V operational model 360

Really: functional code that computes allowed transitions

Part 2: Relaxed-memory concurrency 42

What kind of semantics do we end up with?

Part 2: Relaxed-memory concurrency 43

What kind of semantics do we end up with?

Part 2: Relaxed-memory concurrency 44

What kind of semantics do we end up with?

Part 2: Relaxed-memory concurrency 45

What kind of semantics do we end up with?

Part 2: Relaxed-memory concurrency 46

What kind of semantics do we end up with?

Part 2: Relaxed-memory concurrency 47

What kind of semantics do we end up with?

I 2. Axiomatic: predicates on candidate complete execution graphs

typically forbidding certain cycles using various relations over those graphs. More concise,
further from hardware intuition, not incrementally executable

Part 2: Relaxed-memory concurrency 48

What kind of semantics do we end up with?Example: speculative execution

MP+fen+ctrl

Wx=1a:

Wy=1c:

Thread 0

fen

R y=1d:

R x=0e:

Thread 1

ctrl
rfe

rf

fre

acyclic pos | fr | co | rf

let obs = rfe | fre | coe

let dob = addr | data

| ctrl; [W]

| addr; po; [W]

| (ctrl | data); coi

| (addr | data); rfi

...

let bob = po; [dmb.sy]; po

...

let ob = obs | dob | aob | bob

acyclic ob

Allowed. The edges form a cycle, but ctrl;[R] to read events is not in ob
Contents 4.5 Armv8-A, IBM Power, and RISC-V: Armv8-A/RISC-V axiomatic model 392

Part 2: Relaxed-memory concurrency 49

What kind of semantics do we end up with?

Part 2: Relaxed-memory concurrency 50

What kind of semantics do we end up with?Write forwarding from an unknown-address write

PPOAA

Wx=1a:

Wy=1c:

Thread 0

fen

R y=1d:

Wz=1e:

R z=1f:

R x=0g:

Thread 1

addr

po

addr

rfe

rfi

rf

fre

acyclic pos | fr | co | rf

let obs = rfe | fre | coe

let dob = addr | data

| ctrl; [W]

| addr; po; [W]

| (ctrl | data); coi

| (addr | data); rfi

...

let bob = po; [dmb.sy]; po

...

let ob = obs | dob | aob | bob

acyclic ob

Forbidden. ob includes addr;rfi: forwarding is only possible when the address is
determined
Contents 4.5 Armv8-A, IBM Power, and RISC-V: Armv8-A/RISC-V axiomatic model 393

Part 2: Relaxed-memory concurrency 51

What kind of semantics do we end up with?Write forwarding on a speculative path

PPOCA

Wx=1a:

Wy=1c:

Thread 0

fen

R y=1d:

Wz=1e:

R z=1f:

R x=0g:

Thread 1

ctrl

ctrl
po ctrl

addr

rfe

rfi

rf

fre

acyclic pos | fr | co | rf

let obs = rfe | fre | coe

let dob = addr | data

| ctrl; [W]

| addr; po; [W]

| (ctrl | data); coi

| (addr | data); rfi

...

let bob = po; [dmb.sy]; po

...

let ob = obs | dob | aob | bob

acyclic ob

Allowed. Forwarding is allowed: rfi (and ctrl;rfi and rfi;addr) not in ob

(compare x86-TSO)
Contents 4.5 Armv8-A, IBM Power, and RISC-V: Armv8-A/RISC-V axiomatic model 394

Part 2: Relaxed-memory concurrency 52

What kind of semantics do we end up with?

I 3. Promising-Arm Operational (more abstract, not much like hardware – but still
incrementally executable) [Pulte, Pichon-Pharabod, Kang, Lee, Hur]

All useful, for different purposes

Proved equivalent:
I Abstract-microarchitectural and axiomatic [Pulte]
I Axiomatic and Promising-Arm operational [P,P-P,K,L,H]

Part 2: Relaxed-memory concurrency 53

How do we make the semantics executable as test oracles?

Operational:
I rmem tool [Flur, Pulte, French, Gray, Sarkar, Sewell, ...]

exhaustively find all abstract-machine executions
(optimising to avoid exploring trivial interleavings)

Axiomatic:
I herd tool [Alglave, Maranget]

exhaustively find all candidate execution graphs (optimised), and check axiomatic-model
predicate for each

I isla-axiomatic [Armstrong, Simner, Campbell]

use SMT solver on combination of axiomatic model and Isla symbolic execution of ISA

Part 2: Relaxed-memory concurrency 54

Arm systems concurrency: ifetch, IC, DC, etc. in isla-axiomatic

Part 2: Relaxed-memory concurrency 55

Arm systems concurrency: relaxed virtual memory

TLB caching needs explicit synchronisation: on Armv8-A, break-before-make. This is the
‘break’ side of break-before-make, but without an ISB at the end on the same thread, so it is
not guaranteed that the po-later translations for this core are restarted.

Thread 0

Initial State

e1: T s1:l3pte(x)

 trf

a: str x0, [x1]: W s1:l3pte(x) = 0x0
 co

b: dsb sy

c: tlbi vae1is, x5: page=page(x)

 same-va-page d: dsb sy

e2: ldr x2, [x3]: R pa1 = 0x0 iio

 tfr

AArch64 CoWinvT.EL1+dsb−tlbiis−dsb

Page table setup:
physical pa1 pa2;

x 7→ pa1;

x ?-> invalid;

identity 0x1000 with code;

Initial state:
PSTATE.EL=0b01

R0=0b0

R1=pte3(x,page_table_base)

R3=x

R5=page(x)

VBAR_EL1=0x1000

Thread 0
STR X0,[X1]

DSB SY

TLBI VAE1IS,X5

DSB SY

MOV X2,#0

LDR X2,[X3]

thread0 el1 handler
0x1000:

MOV X2, #1

MRS X13,ELR_EL1

ADD X13,X13,#4

MSR ELR_EL1,X13

ERET

Final state: 0:R2=0

Part 2: Relaxed-memory concurrency 56

Architectural relaxed-memory concurrency, people

Susmit Sarkar Scott Owens Francesco Zappa Nardelli Jade Alglave Luc Maranget

Derek Williams
Richard Grisenthwaite () Shaked Flur Christopher Pulte Will Deacon ()

Kathy Gray Jon French

Ben Simner

Alasdair Armstrong Jean Pichon-Pharabod

Major contributors for our joint x86, IBM Power, ARM h/w models, chronologically. See also much other work
by Alglave et al., by Lustig and other RISC-V TG members, and by others for GPUs, transactions, persistence
Part 2: Relaxed-memory concurrency 57

Programming-language relaxed-memory concurrency

Similar but harder problem: union of hardware models, plus compiler optimisations

Worked with ISO C++ WG21 Concurrency Group to formalise and partially fix the design for
C/C++11 concurrency

[Mark Batty, Scott Owens, Susmit Sarkar, Tjark Weber, Peter Sewell; and later by others]

Axiomatic model, based on DRF-SC

Executable-as-test oracle semantics in cppmem and Cerberus-BMC

Experiment much harder here – but proof of implementation schemes (not full impls!) more
feasible

Part 2: Relaxed-memory concurrency 58

Relaxed-memory reflections

Success:
I helped clarify what behaviour these major industry abstractions allow (x86, Armv8-A,

IBM Power, RISC-V, C, C++; JavaScript, WebAssembly)
I revealing implicit complexity contributed to substantial revisions of some of these
I mathematical relaxed-memory semantics and tools based on it now routinely used in

industry
I theory and verification researchers can build on these models (and fix them where

needed), with program logics, model-checking, models for other features, ...

Part 2: Relaxed-memory concurrency 59

Relaxed-memory reflections
I addressing an area where industry knew it had problems

I established credibility through finding early specification ambiguities (asking hard
to-the-point questions) and finding hardware bugs

I had to take seriously industry incentives and concerns, balancing with academic
publication

I invented semantics as appropriate – turned out quite unlike traditional concurrency
semantics

I emphasis on understanding what the architectural abstraction is, not on traditional
formal verification of implementations, or on bug-finding
(though we did find some h/w bugs, and prove correctness of implementation schemes)

I as for TCP, had to take seriously both fundamental and contingent complexity of existing
artifacts

I blending science and engineering
I had to make semantics and tools that are mature and useful, not just enough for a paper

– in it for the long haul
I invest research and engineering effort in proportion to the problem size

Part 2: Relaxed-memory concurrency 60

Relaxed-memory reflections
I addressing an area where industry knew it had problems
I established credibility through finding early specification ambiguities (asking hard

to-the-point questions) and finding hardware bugs

I had to take seriously industry incentives and concerns, balancing with academic
publication

I invented semantics as appropriate – turned out quite unlike traditional concurrency
semantics

I emphasis on understanding what the architectural abstraction is, not on traditional
formal verification of implementations, or on bug-finding
(though we did find some h/w bugs, and prove correctness of implementation schemes)

I as for TCP, had to take seriously both fundamental and contingent complexity of existing
artifacts

I blending science and engineering
I had to make semantics and tools that are mature and useful, not just enough for a paper

– in it for the long haul
I invest research and engineering effort in proportion to the problem size

Part 2: Relaxed-memory concurrency 61

Relaxed-memory reflections
I addressing an area where industry knew it had problems
I established credibility through finding early specification ambiguities (asking hard

to-the-point questions) and finding hardware bugs
I had to take seriously industry incentives and concerns, balancing with academic

publication

I invented semantics as appropriate – turned out quite unlike traditional concurrency
semantics

I emphasis on understanding what the architectural abstraction is, not on traditional
formal verification of implementations, or on bug-finding
(though we did find some h/w bugs, and prove correctness of implementation schemes)

I as for TCP, had to take seriously both fundamental and contingent complexity of existing
artifacts

I blending science and engineering
I had to make semantics and tools that are mature and useful, not just enough for a paper

– in it for the long haul
I invest research and engineering effort in proportion to the problem size

Part 2: Relaxed-memory concurrency 62

Relaxed-memory reflections
I addressing an area where industry knew it had problems
I established credibility through finding early specification ambiguities (asking hard

to-the-point questions) and finding hardware bugs
I had to take seriously industry incentives and concerns, balancing with academic

publication
I invented semantics as appropriate – turned out quite unlike traditional concurrency

semantics

I emphasis on understanding what the architectural abstraction is, not on traditional
formal verification of implementations, or on bug-finding
(though we did find some h/w bugs, and prove correctness of implementation schemes)

I as for TCP, had to take seriously both fundamental and contingent complexity of existing
artifacts

I blending science and engineering
I had to make semantics and tools that are mature and useful, not just enough for a paper

– in it for the long haul
I invest research and engineering effort in proportion to the problem size

Part 2: Relaxed-memory concurrency 63

Relaxed-memory reflections
I addressing an area where industry knew it had problems
I established credibility through finding early specification ambiguities (asking hard

to-the-point questions) and finding hardware bugs
I had to take seriously industry incentives and concerns, balancing with academic

publication
I invented semantics as appropriate – turned out quite unlike traditional concurrency

semantics
I emphasis on understanding what the architectural abstraction is, not on traditional

formal verification of implementations, or on bug-finding
(though we did find some h/w bugs, and prove correctness of implementation schemes)

I as for TCP, had to take seriously both fundamental and contingent complexity of existing
artifacts

I blending science and engineering
I had to make semantics and tools that are mature and useful, not just enough for a paper

– in it for the long haul
I invest research and engineering effort in proportion to the problem size

Part 2: Relaxed-memory concurrency 64

Relaxed-memory reflections
I addressing an area where industry knew it had problems
I established credibility through finding early specification ambiguities (asking hard

to-the-point questions) and finding hardware bugs
I had to take seriously industry incentives and concerns, balancing with academic

publication
I invented semantics as appropriate – turned out quite unlike traditional concurrency

semantics
I emphasis on understanding what the architectural abstraction is, not on traditional

formal verification of implementations, or on bug-finding
(though we did find some h/w bugs, and prove correctness of implementation schemes)

I as for TCP, had to take seriously both fundamental and contingent complexity of existing
artifacts

I blending science and engineering
I had to make semantics and tools that are mature and useful, not just enough for a paper

– in it for the long haul
I invest research and engineering effort in proportion to the problem size

Part 2: Relaxed-memory concurrency 65

Relaxed-memory reflections
I addressing an area where industry knew it had problems
I established credibility through finding early specification ambiguities (asking hard

to-the-point questions) and finding hardware bugs
I had to take seriously industry incentives and concerns, balancing with academic

publication
I invented semantics as appropriate – turned out quite unlike traditional concurrency

semantics
I emphasis on understanding what the architectural abstraction is, not on traditional

formal verification of implementations, or on bug-finding
(though we did find some h/w bugs, and prove correctness of implementation schemes)

I as for TCP, had to take seriously both fundamental and contingent complexity of existing
artifacts

I blending science and engineering

I had to make semantics and tools that are mature and useful, not just enough for a paper
– in it for the long haul

I invest research and engineering effort in proportion to the problem size

Part 2: Relaxed-memory concurrency 66

Relaxed-memory reflections
I addressing an area where industry knew it had problems
I established credibility through finding early specification ambiguities (asking hard

to-the-point questions) and finding hardware bugs
I had to take seriously industry incentives and concerns, balancing with academic

publication
I invented semantics as appropriate – turned out quite unlike traditional concurrency

semantics
I emphasis on understanding what the architectural abstraction is, not on traditional

formal verification of implementations, or on bug-finding
(though we did find some h/w bugs, and prove correctness of implementation schemes)

I as for TCP, had to take seriously both fundamental and contingent complexity of existing
artifacts

I blending science and engineering
I had to make semantics and tools that are mature and useful, not just enough for a paper

– in it for the long haul

I invest research and engineering effort in proportion to the problem size

Part 2: Relaxed-memory concurrency 67

Relaxed-memory reflections
I addressing an area where industry knew it had problems
I established credibility through finding early specification ambiguities (asking hard

to-the-point questions) and finding hardware bugs
I had to take seriously industry incentives and concerns, balancing with academic

publication
I invented semantics as appropriate – turned out quite unlike traditional concurrency

semantics
I emphasis on understanding what the architectural abstraction is, not on traditional

formal verification of implementations, or on bug-finding
(though we did find some h/w bugs, and prove correctness of implementation schemes)

I as for TCP, had to take seriously both fundamental and contingent complexity of existing
artifacts

I blending science and engineering
I had to make semantics and tools that are mature and useful, not just enough for a paper

– in it for the long haul
I invest research and engineering effort in proportion to the problem size

Part 2: Relaxed-memory concurrency 68

Part 3: Instruction-set architecture semantics

Part 3: Instruction-set architecture semantics 69

Instruction-set architecture (ISA) semantics

Architecture semantics

≈ Concurrency model subtle but small, as above
+ Instruction-set-architecture (ISA) semantics more straightforward but large
+ other system-on-chip (SoC) semantics ...ignore still

Part 3: Instruction-set architecture semantics 70

Instruction-set architecture (ISA) semantics
ISA semantics traditionally paper pseudocode (at best), in vendor manuals

Armv8-A
I Alastair Reid et al. made the Arm-internal ASL mechanised, within Arm
I we translate it into our custom ISA definition language, Sail
I and thence to provers and C, validating against AVS
I 100k LoS

RISC-V
I we hand-wrote an ISA semantics in Sail
I adopted by RISC-V International as their official formal spec
I 10k LoS

Both complete enough to boot an OS or hypervisor, and pretty authoritative
Part 3: Instruction-set architecture semantics 71

Sail

Sequential

Emulator (C)

Sequential

Emulator (OCaml)

Test

Generation

Coq

Isabelle

HOL4

(CHERI ARM)
ASL

Morello

G
e
n
e
ra

te
d
 A

rtifa
c
ts

ISA Security Properties

(Machine−checked proofs)

Framemaker export

parse, analyse, patch

Sail

Framemaker

XMLSail

asl_to_sail

Sail

Sail Sail

(CHERI ARM)
Morello

LaTeX

fragments
Sequential Execution

Concurrent Execution

Lem

IS
A

 D
e
fin

itio
n
s

X

asl_to_sail

ASL

Sail

Armv8−A

Armv8−A

Sail

Power 2.06B

Power 2.06B

Sail

Documentation
CHERI−RISC−V
CHERI−MIPS

Prover Definitions

ISA Tests

Lem
ELF model

Sail

RISC−V

isla SMT

symbolic evaluator

Power (core)

ARM (core)CHERI RISC−V

concurrency concurrency

Concurrency models

Operational, Lem

isla−axiomatic RMEM

tool

MIPS x86 (core)

Concurrency models

CHERI−MIPS

Axiomatic, Cat

tool

Part 3: Instruction-set architecture semantics 72

ISA Semantics: People

Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray,
Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christopher Pulte, Shaked
Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell.

Part 3: Instruction-set architecture semantics 73

ISA Semantics: Reflections

I Different kind of problem: not asking what the semantics is
I ...but rather, how can we make it practical to work with these large formal definitions
I ...not just for researchers, but also for conventional engineers

I Solution: Sail language design and engineering
I not much nondetermism in sequential spec

...so can make executable as test oracle “just” with translations to C and OCaml

Part 3: Instruction-set architecture semantics 74

Part 4: C Semantics

Part 4: C Semantics 75

C Semantics

C semantics

≈ Sequential thread-local semantics subtle and large, but largely in ISO
+ Memory object model subtle and small; unknown
+ Relaxed memory model subtle and small; see above

Cerberus C semantics: Kayvan Memarian, Victor Gomes, Stella Lau, Kyndylan Nienhuis,
Justus Matthiesen, Peter Sewell

More complex interaction with industry, via ISO C/C++ committees and Clang/GCC
communities

Part 4: C Semantics 76

Part 5: CHERI

Part 5: CHERI 77

Computers are still terrible (even if we can define them more precisely)

Those legacy design choices:
I systems languages that don’t enforce protection (C/C++)
I hardware that only enforces coarse-grain protection, using virtual memory

Baked in to the critical systems codebase and the entire industry.

Result, in today’s adversarial environment:
I programming errors can often lead to exploitable vulnerabilities
I 50%+ (?) of security problems involve a memory safety violation

Part 5: CHERI 78

from 2018-12-17 19-32-35.png

Cerberus C semantics:
Exploring C Semantics and Pointer Provenance. Memarian, Gomes, Davis, Kell, Watson, Sewell. In POPL 2019

http://www.cl.cam.ac.uk/users/pes20/cerberus/cerberus-popl2019.pdf

from 2018-12-17 19-35-56.png

from 2018-12-17 19-36-30.png

from 2018-12-17 19-36-50.png

from 2018-12-17 19-43-16.png
So what happens if we compile and run it?

Hmm. That’s not good...

How can we (practically) make things better?

How can we use semantics to increase assurance and ease engineering, at design time rather
than post facto?

Part 5: CHERI 85

CHERI Security

CHERI: architecture extensions to support hardware-enforced
I fine-grain memory protection
I secure encapsulation

using unforgeable capabilities

Hardware/software co-design since 2010: Robert N. M. Watson, Simon W. Moore, Peter G.
Neumann, ...

Hardware/software/semantics co-design since 2014

I Main CHERI page: www.cheri-cpu.org
I An Introduction to CHERI. Watson, Moore, Sewell, Neumann. UCAM-CL-TR-941, 2019.

Part 5: CHERI 86

www.cheri-cpu.org
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf

CHERI basic idea: add hardware support for capabilities
ISO C CHERI C

#include <stdio.h>

int x=1;

int secret_key = 4091;

int main() {

int *p = &x;

p = p+1;

int y = *p ;

printf("%d\n",y);

}

 x: signed int [@3, 0x14]
 1

 secret_key: signed int [@4, 0x18]
 4091

 p: signed int* [@5, 0x20]

 0x18

 x: signed int [@3, 0x14]
 1

 secret_key: signed int [@4, 0x18]
 4091

 p: signed int* [@5, 0x20]

address 0x18

base 0x14

length 0x4

perms R/W

tag 1

Part 5: CHERI 87

CHERI basic idea: add hardware support for capabilities
ISO C CHERI C

#include <stdio.h>

int x=1;

int secret_key = 4091;

int main() {

int *p = &x;

p = p+1;

int y = *p ;

printf("%d\n",y);

}

 x: signed int [@3, 0x14]
 1

 secret_key: signed int [@4, 0x18]
 4091

 p: signed int* [@5, 0x20]

 0x18

 x: signed int [@3, 0x14]
 1

 secret_key: signed int [@4, 0x18]
 4091

 p: signed int* [@5, 0x20]

address 0x18

base 0x14

length 0x4

perms R/W

tag 1

Part 5: CHERI 88

UB/Exploit

CHERI basic idea: add hardware support for capabilities
ISO C CHERI C

#include <stdio.h>

int x=1;

int secret_key = 4091;

int main() {

int *p = &x;

p = p+1;

int y = *p ;

printf("%d\n",y);

}

 x: signed int [@3, 0x14]
 1

 secret_key: signed int [@4, 0x18]
 4091

 p: signed int* [@5, 0x20]

 0x18

 x: signed int [@3, 0x14]
 1

 secret_key: signed int [@4, 0x18]
 4091

 p: signed int* [@5, 0x20]

address 0x18

base 0x14

length 0x4

perms R/W

tag 1

Part 5: CHERI 89

UB/Exploit Trap

CHERI architecture key design points

I encoding allocation data and permissions within capability permits fast checking at
access-time, without a lookup or TLB pressure

I ISA design lets code shrink capabilities, but never grow them
I non-addressable tags prevent forging (one bit per capability-sized/aligned unit of

memory, cleared by any non-capability write, and one bit per register)
I compressed 128-bit encoding reduces extra memory cost
I can use capabilities either for all pointers (“pure cap”), or just when desired
I co-exists nicely with existing C and C++, existing ISAs, existing virtual memory (when

desired)
I additional sealed capabilities for secure encapsulation (skip today)
I initial focus was on spatial memory safety, but CHERI also supports

various temporal memory safety approaches (skip today)

Part 5: CHERI 90

CHERI C/C++ fine-grained pure-capability protection
This is using capabilities instead of integer pointers throughout an address space, protecting
from exploitable coding errors

Initial power-on universal capability successively refined by the kernel, run-time linker,
compiler-generated code, heap allocator, ...

Spatial protection automatically applied at two levels:

Language-level pointers to stack and heap allocations, global variables,
TLS variables, subobjects

Language implementation pointers stack pointers, return addresses,
C++ vtable pointers, GOT pointers, PLT entry pointers, vararg array
pointers, ELF aux arg pointers, ...

‘nice’ C/C++ gets all this just from a recompile
Part 5: CHERI 91

CHERI C/C++ secure encapsulation

How about interaction between mutually untrusting components?

Classic virtual memory protection ok for processes, but doesn’t scale well, e.g. for browser
tabs, mail-readers, and server-side code handling untrusted data, with controlled sharing

Use CHERI capabilities (including the sealing mechanism and/or default capabilities) for this,
e.g. to encapsulate instances of untrusted libraries, and for co-processes – a different way of
using CHERI (and can combine with fine-grain protection)

No need to update MMU mappings, so very low domain-crossing cost

Part 5: CHERI 92

Does it work?

Software porting cost: ranging down to 0.04% LoC for well-behaved C

Vulnerabilities: MSRC estimate large fraction of their critical vulnerabilities would be
deterministically mitigated

Performance: encouraging – but hard to know for sure from academic studies

Part 5: CHERI 93

CHERI People

Robert N. M. Watson1, Simon W. Moore1, Peter Sewell1, Peter G. Neumann7

Arm: Graeme Barnes2, Richard Grisenthwaite2, Lee Eisen2, and many more

Hesham Almatary1, Jonathan Anderson1∗, Alasdair Armstrong1, Peter Blandford-Baker1, John Baldwin7,
Hadrien Barrel1, Thomas Bauereiss1, Ruslan Bukin1, Brian Campbell3, David Chisnall1∗,11, Jessica Clarke1,
Nirav Dave7∗, Brooks Davis7, Lawrence Esswood1, Nathaniel W. Filardo1∗,11, Franz Fuchs1, Khilan Gudka1∗,
Brett Gutstein1, Alexandre Joannou1, Robert Kovacsics1∗, Ben Laurie5, A. Theo Markettos1, J. Edward
Maste1∗, Alfredo Mazzinghi1, Alan Mujumdar1∗, Prashanth Mundkur7, Steven J. Murdoch1∗, Edward
Napierala1, Kyndylan Nienhuis1, Robert Norton-Wright1∗,11, Philip Paeps1∗, Lucian Paul-Trifu1∗, Allison
Randal1, Ivan Ribeiro1, Alex Richardson1∗,5, Michael Roe1, Colin Rothwell1∗, Peter Rugg1, Hassen Saidi7,
Thomas Sewell1, Stacey Son1∗, Ian Stark3, Domagoj Stolfa1∗, Andrew Turner1, Munraj Vadera1∗, Jonathan
Woodruff1, Hongyan Xia1∗, Vadim Zaliva1, Bjoern A. Zeeb1∗,

1 University of Cambridge, 2 Arm, 3 University of Edinburgh, 4 Seoul National University, 5 Google, 6 KAIST,
7 SRI International, 8 University of St. Andrews, 9 Inria Paris, 10 Aarhus University, 11 Microsoft Research, *
previously

Part 5: CHERI 94

Academic CHERI

SRI + Cambridge over 11 years + 3 DARPA programs (∼$26M), EPSRC (£7.4M);
Innovate UK (£2.7M); Google / DeepMind / Arm / HPE ... (∼£1M)

Architecture design:
I CHERI-MIPS, CHERI-RISC-V

Hardware implementations (BSV/FPGA):
I CHERI-MIPS and extensions of BSV RISC-V cores (Piccolo, Flute, Toooba)
I ...and Qemu emulator

Software stack:
I LLVM, linker, FreeBSD, FreeRTOS, temporal safety, ...

Semantics:
I lightweight and heavyweight “rigorous engineering”

Part 5: CHERI 95

“Rigorous Engineering”

Lightweight:
I use formal ISA semantics, in L3 and Sail, as central design documents

(owned by CHERI researchers and engineers)
I use in architecture specification

(readable)
I make executable as a test oracle, auto-translating Sail/L3 to C/OCaml/SML

(∼ 400KIPS, booting FreeBSD in 4 min)
I use for testing hardware against
I use for software bring-up

(supporting existing engineering practice)

I use for fast exploration of design alternatives
I use for automatic test generation
I auto-translate to SMT and use to check properties

Part 5: CHERI 96

What does CHERI guarantee?

Q. But how do we know the architecture does enforce the intended security protections?

Q. How can we even state them precisely?

Part 5: CHERI 97

What does CHERI guarantee?

Q. But how do we know the architecture does enforce the intended security protections?

Q. How can we even state them precisely?

A. Use L3 and Sail infrastructure to enable machine-checked mathematical proof that specific
precise properties always hold

Part 5: CHERI 98

CHERI security properties
Theorem
For any intra-domain trace, the reachable capabilities from the final state are no greater than
those of the initial state.

Theorem
Any trace within a properly set-up compartment cannot affect other memory, and can exit the
compartment only in controlled ways.

Properties of arbitrary code above the CHERI-MIPS ISA.
Mechanised Isabelle proofs above L3 model
Rigorous engineering for hardware security: Formal modelling and proof in the CHERI design and implementation
process. Nienhuis, Joannou, Bauereiss, Fox, Roe, Campbell, Naylor, Norton, Moore, Neumann, Stark, Watson, Sewell.
In Security and Privacy 2020.

Adapted proofs as ISA evolved (“regression proof”)

(“Heavyweight Rigorous Engineering” – but not hw or sw verif)
Part 5: CHERI 99

https://www.cl.cam.ac.uk/users/pes20/cheri-formal.pdf
https://www.cl.cam.ac.uk/users/pes20/cheri-formal.pdf

Industrial CHERI?

Central question for adoption: does CHERI provide good protection at acceptable
performance and software-porting cost?

Academic evaluation very encouraging – Arm and others interested and involved – but it’s not
evaluated in a modern high-end superscalar core

Hard for industry to commit without that – but hard to get industry-scale evidence without
major investment in demonstrator

Part 5: CHERI 100

ISCF Digital Security by Design (UKRI)
5-year Digital Security by Design UKRI program: £70M UK
gov. funding, £117M industrial match, to create CHERI-Arm
(“Morello”) prototype architecture, hardware implementation,
demonstrator SoC + board, software, and proofs

Leap over that supply-chain gap that makes adopting new archi-
tecture difficult – validating concepts in microarchitecture, archi-
tecture, and software at scale

Arm, UCam, U.Ed., Linaro, and additional industrial and academic
R&D (EPSRC, ESRC, Innovate UK)

2020 emulation models; 2021/2022 Morello board delivery.

Part 5: CHERI 101

ISCF Digital Security by Design (UKRI)
5-year Digital Security by Design UKRI program: £70M UK
gov. funding, £117M industrial match, to create CHERI-Arm
(“Morello”) prototype architecture, hardware implementation,
demonstrator SoC + board, software, and proofs

Leap over that supply-chain gap that makes adopting new archi-
tecture difficult – validating concepts in microarchitecture, archi-
tecture, and software at scale

Arm, UCam, U.Ed., Linaro, and additional industrial and academic
R&D (EPSRC, ESRC, Innovate UK)

2020 emulation models; 2021/2022 Morello board delivery.
As of last month: pure-capability CheriBSD kernel boots on silicon!

(c) Arm 2021

Part 5: CHERI 102

42 2019 Arm Limited

The Morello Board
• An Industrial Demonstrator of a Capability architecture

• Uses a prototype capability extension to the Arm Architecture
• Prototype is a “superset” of what could be adopted into the Arm architecture

• Use of a superset of the architecture is very unusual
• Also unrealistic as a commercial product – there will be some frequency effects
• However, there are tight timescales so architecture is nearly complete now

• The superset of the architecture will allow a lot of software experimentation
• Various different mechanisms for compartmentalisation
• Collection of features for which the justification is unclear
• Techniques for holding the capability tag bit

• Architecture will have formally proved security properties (with UoC and UoE)

• Morello Board will be the ONLY physical implementation of this prototype architecture
• Learnings from these experiments will be adopted into a mainstream extension to the Arm architecture
• NO COMMITMENT TO FULL BINARY COMPATIBILITY TO THE PROTOTYPE ARCHITECTURE

– But successful concepts are expected to be carried forward into the architecture and can be reused there

43 2019 Arm Limited

Morello Board overview (subject to change)

• Quad core bespoke high-end CPU with prototype capability extensions
• Backwards compatibility with v8.2 AArch64-only
• Based on Neoverse N1 core

– Multi-issue out-of-order superscalar core with 3 levels of cache
• Build in 7nm process
• Targeting clock frequency around 2GHz

• Reasonable performance GPU and Display controller
• Standard Mali architecture core – not extended with capability
• Supports Android

• PCIe and CCIx interfaces including to FPGA based accelerators

• FPGA for peripheral expansion

• SBSA compliant system

• 16GB of System Memory (expandable to 32GB – tbc)

Morello software stacks
Complete open-source CHERI-enabled software stack from bare metal up,
to validate and evaluate design, and support future R&D:

Open-source application suite (WebKit, Python, OpenSSH, nginx, PostgresQL, ...)

CheriBSD/Morello (SRI/Cambridge)

I FreeBSD kernel + userspace, application stack
I Kernel spatial and referential memory protection
I Userspace spatial, referential, and temporal memory

protection
I Intra-process compartmentalization
I Co-process IPC
I Armv8-A 64-bit binary compatibility for legacy binaries

Android (Arm)

CHERI-extended Google Hafnium hypervisor (Morello only)

CHERI Clang/LLVM compiler suite, LLD, LLDB, GDB

Part 5: CHERI 105

Morello ISA verification

Morello ISA designed by Arm, with detailed discussion. In ASL, extending Armv8-A

We [Bauereiss, Campbell, Thomas Sewell, Armstrong]:
I auto-translate that 62k LoS ASL into Sail (from weekly drops)
I use Sail to generate Isabelle (210k LoS) and SMT
I use Sail+SMT symbolic evaluation (Isla) to generate tests for h/w and QEMU
I use Isabelle for mechanised proof of general security properties

Found various security holes, including one not previously known

Machine-checked mathematical proofs of security properties of full-scale industry architecture

Verified security for the Morello capability-enhanced prototype Arm architecture. Bauereiss, Campbell, T.Sewell, Armstrong, Esswood, Stark,
Barnes, Watson, Sewell. UCAM-CL-TR-959, Sept. 2021.

Part 5: CHERI 106

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-959.pdf

Conclusion

Conclusion 107

Conclusion: back to the main question

(How) can we develop mathematical semantics for the actual mainstream artifacts we rely on,
and apply it to improve the mainstream engineering of them?

Yes, we can

How?

I (partly) exploit advances in computational power and proof tools
I (mostly) focus on interfaces
I (especially where there’s a need for more clarity)
I ...on executable-as-test-oracle semantics for them,
I ...inventing new semantics as appropriate, and
I ...on engaging with mainstream artifacts and engineering processes

Conclusion 108

Conclusion: back to the main question

(How) can we develop mathematical semantics for the actual mainstream artifacts we rely on,
and apply it to improve the mainstream engineering of them?

Yes, we can

How?
I (partly) exploit advances in computational power and proof tools

I (mostly) focus on interfaces
I (especially where there’s a need for more clarity)
I ...on executable-as-test-oracle semantics for them,
I ...inventing new semantics as appropriate, and
I ...on engaging with mainstream artifacts and engineering processes

Conclusion 109

Conclusion: back to the main question

(How) can we develop mathematical semantics for the actual mainstream artifacts we rely on,
and apply it to improve the mainstream engineering of them?

Yes, we can

How?
I (partly) exploit advances in computational power and proof tools
I (mostly) focus on interfaces

I (especially where there’s a need for more clarity)
I ...on executable-as-test-oracle semantics for them,
I ...inventing new semantics as appropriate, and
I ...on engaging with mainstream artifacts and engineering processes

Conclusion 110

Conclusion: back to the main question

(How) can we develop mathematical semantics for the actual mainstream artifacts we rely on,
and apply it to improve the mainstream engineering of them?

Yes, we can

How?
I (partly) exploit advances in computational power and proof tools
I (mostly) focus on interfaces
I (especially where there’s a need for more clarity)

I ...on executable-as-test-oracle semantics for them,
I ...inventing new semantics as appropriate, and
I ...on engaging with mainstream artifacts and engineering processes

Conclusion 111

Conclusion: back to the main question

(How) can we develop mathematical semantics for the actual mainstream artifacts we rely on,
and apply it to improve the mainstream engineering of them?

Yes, we can

How?
I (partly) exploit advances in computational power and proof tools
I (mostly) focus on interfaces
I (especially where there’s a need for more clarity)
I ...on executable-as-test-oracle semantics for them,

I ...inventing new semantics as appropriate, and
I ...on engaging with mainstream artifacts and engineering processes

Conclusion 112

Conclusion: back to the main question

(How) can we develop mathematical semantics for the actual mainstream artifacts we rely on,
and apply it to improve the mainstream engineering of them?

Yes, we can

How?
I (partly) exploit advances in computational power and proof tools
I (mostly) focus on interfaces
I (especially where there’s a need for more clarity)
I ...on executable-as-test-oracle semantics for them,
I ...inventing new semantics as appropriate, and

I ...on engaging with mainstream artifacts and engineering processes

Conclusion 113

Conclusion: back to the main question

(How) can we develop mathematical semantics for the actual mainstream artifacts we rely on,
and apply it to improve the mainstream engineering of them?

Yes, we can

How?
I (partly) exploit advances in computational power and proof tools
I (mostly) focus on interfaces
I (especially where there’s a need for more clarity)
I ...on executable-as-test-oracle semantics for them,
I ...inventing new semantics as appropriate, and
I ...on engaging with mainstream artifacts and engineering processes

Conclusion 114

Conclusion: back to the main question
(How) can we develop mathematical semantics for the actual mainstream artifacts we rely on,
and apply it to improve the mainstream engineering of them?

Yes, we can

How?
I (partly) exploit advances in computational power and proof tools
I (mostly) focus on interfaces
I (especially where there’s a need for more clarity)
I ...on executable-as-test-oracle semantics for them,
I ...inventing new semantics as appropriate, and
I ...on engaging with mainstream artifacts and engineering processes

And with collaboration with many excellent colleagues
Conclusion 115

