
Supply Chain Integrity

Andrew Hardie

Infrastructure Services Lead, R3

Chairman, BCS DevSecOps Expert Group

Longstanding London DevOps Regular

Presented at the meeting on 9th December 2021

109/12/2021



Threat Landscape

• Like weeds, the threats are everywhere…

• And, new ones keep popping up all the time…

• So, what to think, what to do, how to sleep at night, and so on…?

209/12/2021



Ground Rules

• Trust nothing

• Trust nobody

• Check everything

• Check everyone

• Assume nothing

309/12/2021



Ground Rules

• See, easy! 

• I can go home now… ☺

409/12/2021



Scope (at least, for here & now…)

• Everything from code commit to running production deployments

• All the code and tools used to achieve that – your DevOps pipeline

• All the components you import from external sources for that 

• No further here - direct attacks on running instances: out of scope

• But, it’s still a lot…!

509/12/2021



So, where to start…?

• Back to the meadow…

• Which plants do you not recognize?

• Which plants do you not want?

609/12/2021



Threat Matrix

Source: https://github.com/rung/threat-matrix-cicd

709/12/2021



Begin at the beginning…

• Who has access to the source code repo?

• Remember, in the “Everything as Code” world, trust shifts from who has 
root access to running systems to who has access to the code that will run 
as root, i.e. your infrastructure code!

• Are you controlling user write access to your Infrastructure as Code repos 
tightly enough? (many processes may need read-only access)

• Can those users prove to the system who they are? E.g. hardware token?

• Do you have signed tags/commits/merges?

• And, protected branches to enforce rules?

• And trusted timestamping? 

809/12/2021



So, you have a code commit/merge, now what?

• Third-party components problem, & local trust problem (SolarWinds)

• Modern code relies heavily on third-party libraries, plugins, etc.

• Much “application code” now can be little more than some business 
logic applied on top of libraries providing the real functionality

• The more “rich functionality” component provides, the bigger the risk

• Build process incorporates those components into the artefact build

• Hard/impossible to determine their safety a priori (i.e. theoretically)

• Have to rely on reported vulnerability discoveries: CVE libraries, etc.

909/12/2021



So, you have security in the build components

• Now, what about the build tools and the processes they run…?

• Can you be sure they haven’t been compromised?

• Have you used signatures to verify the binaries?

• Did you use source code protection principles for your pipeline code?

• If you are making a binary or library or runtime code, e.g. Java JAR, 
then that’s about as far as you can go to assure artefact integrity

• If you’re packaging your code into a container, you have more fun!

• CVE check of all imported container layers; layer substitution, etc.

1009/12/2021



So, you have artefacts you are confident of…

• Remember the artefact repo mantra: “only tested artefacts that are 
ready to be run at any time”; now you can add “security assured”

• But, that is assured at the time they were built – may not still be…

• Keep checking them, or keep re-building them with checks included

• Now, you have to deploy them…

• Same concerns as for the artefact build process re code & toolchain

• But, now you have environments to worry about, and policy

• Which processes are allowed to deploy which artefacts into which 
environments? (non-humans assumed as this is automated, right?)

1109/12/2021



So, your code is running in <some-random-environment>

• Now what? Promote towards production…

• How will environment promotion be policed and initiated?

• Is a manual step required to auth production deploy? Same concerns 
as a code commit or a Pull Request approval if using GitOps principles

• Same concerns as for the artefact build process re code & toolchain

• Plus, securing access to the target environments (e.g. restrict to local 
processes and actors that can be verified tightly for deployments)

• So, you’ve got it to production as carefully as you could…

• Happy now?

1209/12/2021



Not hardly!

• Remember that CVE reports are at a point in time; things can change!

• So, you can re-scan your artefact repo and if a new CVE shows up, 
then what do you do? Where is that artefact or component running? 
Which artefact repos, environments and functionalities are affected?

• Similar problems:
• If a third-party component author or their repo is compromised, where are 

those components running? Hiding somewhere up your “route to live”?

• If suspicion falls on one of your developers, where is their code running?

• And, if you have deployed any of the possibly tainted code to a client 
environment, now what…?!

1309/12/2021



Observability could be your friend

• A tool is needed that can:
• Maintain an audit trail of 

• Code authors 

• Third party components

• Third party suppliers

• Intermediate repos (e.g. CDNs)

• right the way through the build and deploy pipelines to live production

• and all the stops along the way…

• Anyone know one…?

• Carefully crafted log entries could be the answer, with rich tagging 

1409/12/2021



And your next headache..?

• Your clients!

• You sell them stuff…
• They want to be confident you’ve done your best to ensure and verify that

• You want to be sure you have and that they are confident…

• But, hard to do this alone, because of all the third-party components

• What to do about the upstream long tail all the way back to origins?

• What’s going on out there to address all this…?

• Let’s have a look…

1509/12/2021



Active areas

• April 2021 was National Supply Chain Integrity month!
• (just four months after the notorious SolarWinds compromise – and the FBI 

warned about SCI attacks in Feb 2020!)
• CISA (US Cybersecurity and Infrastructure Security Agency)
• DHS (US Department of Homeland Security)
• CDSE (US DoD Centre for the Development of Security Excellence)
• NCSC (US National Counterintelligence and Security Center – confusingly, not 

our National Cyber Security Centre…)

• At (our) NCSC – Principles of Supply Chain Security (note: principles!)
• 12 principles, grouped into Understand, Control, Check, Continuously Improve

• But what about Government & industry initiatives…?

1609/12/2021



Open Source and Community initiatives

• Sigstore (https://www.sigstore.dev/) 
“A new standard for signing, verifying and protecting software”
Supported by Google, RedHat, Linux Foundation and Purdue University

RFC3161 –assign 
Tamper resistant 
timestamps to 
hashed payloads

1709/12/2021

https://www.sigstore.dev/


Open Source and Community initiatives

• in-toto – “A framework to secure the integrity of software supply chains”
https://in-toto.io/
Open metadata standard that you can implement in your software's supply chain toolchain
Project is collaborating with Git, Debian, ArchLinux, Docker, SUSE, ControlPlane & Datadog
Supported by US National Science Foundation, DARPA and USAF Research Laboratory

• The Update Framework – “A framework for securing software update systems”
https://theupdateframework.io/
The Update Framework (TUF) helps developers maintain the security of software update systems, providing 
protection even against attackers that compromise the repository or signing keys. TUF provides a flexible 
framework and specification that developers can adopt into any software update system.
Managed by Linux Foundation and the CNCF

• in-toto and TUF can work together to deliver updates and their corresponding in-toto metadata

1809/12/2021

https://in-toto.io/
https://theupdateframework.io/


Doing the Google Salsa (https://slsa.dev)

• SLSA - Supply-chain Levels for 
Software Artifacts (Google, June 
2021)

• Key item is establishing 
Provenance – an attestation that 
some entity (builder) produced 
one of more artifacts (the 
subject of an in-toto attestation 
statement) by executing some 
invocation using some other 
artifacts as input (materials).

1909/12/2021



Start here…

• CNCF – Software Supply Chain Best Practices
https://project.linuxfoundation.org/hubfs/CNCF_SSCP_v1.pdf

45 pages of excellent advice you must read!

• NCSC (UK) Supply Chain Security Guidance
https://www.ncsc.gov.uk/collection/supply-chain-security

“Proposing a series of 12 principles…”

• CISA (US) Supply Chain Risk Management Essentials
https://www.cisa.gov/sites/default/files/publications/ict_scrm_essentials_508.pdf

Two page “Leader’s Guide”, summarizing six essential steps:
Identify, Mange, Assess, Know, Verify, Evaluate

2009/12/2021

https://project.linuxfoundation.org/hubfs/CNCF_SSCP_v1.pdf
https://www.ncsc.gov.uk/collection/supply-chain-security
https://www.cisa.gov/sites/default/files/publications/ict_scrm_essentials_508.pdf


CNCF Technology Radar
Report of a point in time, not predictions!

2109/12/2021



Are we there yet, now?

• Not quite, but it’s getting close… ☺

• Don’t forget:
• There is no endpoint, it’s an ever-ongoing battle with threats & actors

• You are having to project security & assurance outside your own boundaries

• So many things to consider, on top of “normal” IT security stuff…

• This stuff is complicated!

2209/12/2021



My head hurts…

• I feel like lying down in this warm meadow with then sun on my face…

• But, I might manage a few (simple) questions… ☺

2309/12/2021


