Issue 2022-1
January 2022

The Newsletter of the
Formal Aspects of Computing Science
(FACS) Specialist Group

ISSN 0950-1231

FACS FACTS Issue 2022-1 January 2022

About FACS FACTS

FACS FACTS (ISSN: 0950-1231) is the newsletter of the BCS Specialist Group on Formal
Aspects of Computing Science (FACS). FACS FACTS is distributed in electronic form to
all FACS members.

Submissions to FACS FACTS are always welcome. Please visit the newsletter area of the

BCS FACS website for further details at:

https://www.bcs.org/membership/member-communities/facs-formal-aspects-
of-computing-science-group/newsletters/

Back issues of FACS FACTS are available for download from:

https://www.bcs.org/membership/member-communities/facs-formal-aspects-
of-computing-science-group/newsletters/back-issues-of-facs-facts/

The FACS FACTS Team

Newsletter Editors:
Tim Denvir timdenvir@bcs.org
Brian Monahan briangmonahan@googlemail. com

Editorial Team:
Jonathan Bowen, John Cooke, Tim Denvir, Brian Monahan, Margaret West.

Contributors to this issue:
Richard Bornat, Jonathan Bowen, Tim Denvir, Renaud Di Francesco, Egon Borger,
Rainer Glaschick, Keith Lines, Brian Monahan, Rajagopal Nagarajan,
Peter Sewell, John Tucker, Margaret West, Glynn Winskel

BCS-FACS websites

BCS: http://www.bcs-facs.org

LinkedIn: https://www.linkedin.com/groups/2427579/

Facebook: http://www.facebook.com/pages/BCS-FACS/120243984688255
Wikipedia: http://en.wikipedia.org/wiki/BCS-FACS

If you have any questions about BCS-FACS, please send these to Jonathan Bowen

at jonathan.bowen@lsbu.ac.uk.

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/
mailto:jonathan.bowen@lsbu.ac.uk
http://en.wikipedia.org/wiki/BCS-FACS
http://www.facebook.com/pages/BCS-FACS/120243984688255
https://www.linkedin.com/groups/2427579/
http://www.bcs-facs.org/
mailto:brianqmonahan@googlemail.com
mailto:timdenvir@bcs.org
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/back-issues-of-facs-facts/
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/back-issues-of-facs-facts/

FACS FACTS Issue 2022-1 January 2022

Editorial

Dear readers,

Welcome to issue 2022-1 of the FACS FACTS newsletter. This being our first issue after
the 2021 AGM, we begin with our chairman, Jonathan Bowen’s report for the last year,
strait-jacketed into the required BCS format.

Our journal, Formal Aspects of Computing, published by Springer for the last 32 years,
is from this year onwards going to be published by the ACM. The press announcement
follows Jonathan Bowen’s report.

This newsletter, including its contributions, is edited, composed, and prepared by well-
informed volunteers with formal methods and computing science backgrounds. Unlike
the journal, we encourage a less traditional style of article that invites open discussion
and reflection instead of review-style commentary. Even the best traditional papers
have some of this style of sharing thoughts, rather than making proclamations. A great
example of this, among others, can be seen in the works of the late Robin Milner, we
feel.

This policy naturally means that, from time to time, we receive articles for which we
cannot conduct as rigorous a review as we might otherwise desire but for which we
nonetheless see there is sufficiently interesting content. A case in point in this
newsletter is Richard Bornat’s report of his own seminar on aspects of Quantum
Computation. He shares his thought processes as he mulls over a number of questions,
and invites conversation, unlike a traditional paper, which might assert a claim or
position. We therefore invite, indeed urge, responses to this and other contributions:
we greatly hope that conversation will ensue!

There is, therefore, an element of trust between us, the newsletter team, and readers,
that published articles are worth reading and at least have something interesting to
say. The absence of review means that we inevitably must rely on you, the vigilant
reader, to actively help spot potentially controversial or debatable issues that arise -
and then for readers to provide considered responses, as occasion demands.

We consider all contributions as being potentially suitable for publication—and, as ever,
we endeavour to do our best in exercising our judgement in that regard. We shall
continue to support a broad range of document formats for contributions - currently,
basic text, Word/ODF, LaTeX, and PDF - however, we may have to start limiting the
length of contributions, particularly for those in LaTeX and PDF formats, to around 40
pages or so. We are also considering some alternatives to make the production
process less time consuming.

Besides the chairman’s report and the ACM announcement, in this issue there are
reports of various FACS and related seminars, two book reviews, a further report from

3

FACS FACTS Issue 2022-1 January 2022

the History of Computing collection at Swansea, and a feature on the Turing Tradition
at the Logic School of Miinster. A table of contents (with links) follows on the next page.

We hope you enjoy FACS FACTS issue 2022-1.

Tim Denvir
Brian Monahan

PS: At the recent Annual Landin Lecture this year, Tim set a
one-question Christmas quiz:

A little scurrilous. But this is the last meeting of FACS this
year. 2821 is a very special year, the Llike of which will not be
seen again during our Lifetimes or the lifetimes of our
descendants, nor the Llifetimes of our ancestors for many
generations. The Last time there was a year Like 2621 was 1763,
and the next will not be for over four centuries in 2491. So, a
one-question Christmas quiz: what is special about 2621 and those
other years?

{Answer at foot of page 48)

FACS FACTS Issue 2022-1 January 2022

Table of Contents

7 (o) 4 17 3
BCS-FACS Specialist Group 2021 CRQIr's REPOFTeeuieuiiiiiiiieiiiiieieieie et n e 6
News Release: ACM to publish BCS FACS JOUFNAIc..couveneeiieiiiiieiiiiieeieeeeeeeeeieeaeeen 9

Seminar/Meeting Reports:
Matrices of Sets
by Renaud Di Francesco, [Report: Keith LINES] ...uieueeeureueeneeneeeeeneeneeneaeeaeneneaaeaenenanns 12

How to Play at Quantum Computing (including QKD)
by Richard Bornat and Rajagopal Nagarajance.eeueeeuieueeesiueeeeeeeieneeeaneneeneneeneens 15

LMS-FACS Evening Seminar 2021
Underpinning mainstream engineering with mathematical semantics,
by Peter Sewell, [Report: ROD HIErONS] veuuerureuieeeiueeneeeeeneeseeeeseeneeneeaeenaeaeneeneneeneens 40

SEFM 2021 Conference Report
[REPOIt: JONATNAN BOWEN]. . uiuieisineeietaenee et et e ea e e e e s e e e s s enesraenenrnenensansansaneans 44

Short Reports: CALCO 2021, MFPS 2021, and FMAS 2021
[REPOIt: MArgaret WeSt] e e uue e esesesnsesssannnssssannnesssannesssssnnesssssnnnsssssssnsssnsnnnnnnnnnnnnnnnnns 49

Annual BCS-FACS Landin Memorial Seminar 2021
Making Concurrency Functional
by Glynn Winskel, [Report: Brian MONahan]eiiiiiiiiiii i i eeeieeae et eaneeaeeeneeaneeanens 50

Book Reviews:

Essays Dedicated to Egon Bérger on the Occasion of His 75th Birthday
Eds: Alexander Raschke, Elvinia Riccobene, Klaus-Dieter Schewe
[REPOIT: T DNVIE] tuttuuttttneinetisetnssseassesstaastasesetssssnsasssaneassssseansssssanssnssnnsensennssnns 54

Combinators: A Centennial View

by Stephen Wolfram, [Report: Jonathan BOWEN] «...ucueeieeuiiire s et v e e vaeeaeeneaeeaeeaeanenn 56
Features:

Unfinished Business: Abstract Data Types and Computer Arithmetic

3V Lo o 4 TN IV Tl =T 60

Logic and Machines: Turing Tradition at the Logic School of Munster
by Egon Borger and Rainer Glaschickcooiiiiiiiiiiiiii e 69

FACS FACTS Issue 2022-1

January 2022

BCS-FACS Specialist Group 2021 Chair's Report

Member Group Name:

FACS Specialist Group

Year: 2021

Report By: Jonathan Bowen
Group Chair: Jonathan Bowen
Group Treasurer: John Cooke
Group Secretary: Roger Carsley
Group Inclusion Officer: Margaret West

Other Committee Members:

Ana Cavalcanti (FME Liaison), Tim Denvir (FACS FACTS
newsletter co-editor), Brijesh Dongol (Refinement Workshop
Liaison), Rob Hierons (LMS Liaison), Keith Lines
(Government and Standards Liaison), Brian Monahan
(FACS FACTS newsletter co-editor)

Successes

Success

Additional Comments

1. Continued evening seminars online, with The BCS Zoom facilities and recording

recordings on YouTube

transfer to YouTube have widened access to
FACS seminars. Thank you to Keith Lines,
Ana Cavalcanti, and Rob Hierons, for help
with organising 2021 seminars.

2. Publication of FACS FACTS newsletters We now aim for two major newsletters each

year, published online in PDF format. Thank
you to Tim Denvir and Brian Monahan for
sterling work in editing the 2021 newsletters.

3. Move to hybrid (online and in-person) The last two 2021 seminars at the London
evening seminars at the end of 2021 Mathematical Society (November) and our

major Peter Landin Semantics Seminar at the
BCS London office (December) are being
delivered in hybrid format.

FACS FACTS Issue 2022-1

January 2022

Planned Activity

Additional Comments

1. Continued hybrid evening seminars

The BCS facilities for hybrid talks should
enable this mode of delivery.

2. At least two FACS FACTS newsletters

We aim for January and probably July as
months of publication.

3. Collaboration with Formal Methods Europe
(FME) and London Mathematical Society
(LMS) organisations

Note that our LMS Liaison Officer plans to
retire at the end of 2021, so we need a new
volunteer.

Impediment

Description

1. Lack of volunteers to organise evening
seminars

This has mainly fallen to the Chair and Keith
Lines in 2021 but the position of Seminar
Organiser is still vacant. It is an opportunity to
invite speakers you would like to meet and
hear. Volunteers are welcome!

2. Our LMS Liaison Officer is retiring (see
above)

Thank you to Rob Hierons for organising the
2021 FACS/LMS seminar. We now need a
new and keen person in this post. It is an
opportunity to be involved with both FACS and
the LMS. The main role is organizing an
annual joint seminar each November. We
believe that we have a volunteer!

3. Covid restrictions

The lack of physical meetings has impeded
networking of FACS members. Hopefully this
will be alleviated with hybrid events.

Additional Facts and Figures

We aim for at least two FACS FACTS newsletters per year (with two in 2021, in February and
July). We also aim for around six evening seminars per year (with seven in 2021).

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/newsletters/

FACS FACTS Issue 2022-1 January 2022

Further Comments

The Covid pandemic has continued to affect activities significantly. We have had no physical
meetings during most of the pandemic, all being online until the start of hybrid events from
November 2021. We organized the following evening seminars during 2021:

NPL’s Experience with Formal Aspects, by Keith Lines, National Physical Laboratory,
6 April.

New Ways of Using Formal Models in Industry, by Michael Leuschel, Heinrich-Heine-
Universitat Dusseldorf, Germany, 6 May. In association with Formal Methods Europe
(FME).

Dimensionally Correct by Construction: Type systems for programs, by Conor
McBride and Fredrik Nordvall Forsberg, University of Strathclyde, 15 June.

Matrices of Sets, by Renaud Di Francesco, Sony Europe BV, 23 September.

Formal Modelling, Programming and Verification of Quantum Systems, by Rajagopal
Nagarajan and Richard Bornat, Middlesex University London, 19 October.

Underpinning Mainstream Engineering with Mathematical Semantics, by Peter
Sewell, University of Cambridge, 18 November. In association with the London
Mathematical Society (LMS), at the LMS headquarters.

Making Concurrency Functional, by Glynn Winskel, University of Cambridge, 17
December. The annual Peter Landin Semantics Seminar, in association with the FACS
AGM, at the BCS London office.

Thank you to all the FACS committee members for performing their various roles, as detailed
above. In addition, John Cooke attended an online BCS Member Group Working Group
meeting and Margaret West is always helpful with useful comments! New committee members
are very welcome, especially if interested in organising seminars and LMS liaison, as
previously mentioned.

https://www.bcs.org/events-calendar/2021/december/facs-2021-agm-and-landin-semantics-seminar-making-concurrency-functional/
https://www.bcs.org/events-calendar/2021/november/lmsfacs-talk-underpinning-mainstream-engineering-mathematical-semantics/
https://www.bcs.org/events-calendar/2021/october/webinar-formal-modelling-programming-and-verification-of-quantum-systems/
https://www.bcs.org/events-calendar/2021/september/webinar-matrices-of-sets-bcs-formal-aspects-of-computing-science-sg-facs/
https://www.bcs.org/events-calendar/2021/june/webinar-dimensionally-correct-by-construction-type-systems-for-programs/
https://www.bcs.org/events-calendar/2021/may/webinar-evening-seminar-facs-sg/
https://www.bcs.org/events-calendar/2021/april/webinar-npl-s-experience-with-formal-aspects/

FACS FACTS Issue 2022-1 January 2022

News Release: ACM to publish BCS FACS Journal

FACS FACTS Issue 2022-1 January 2022

10

FACS FACTS Issue 2022-1 January 2022

11

FACS FACTS Issue 2022-1 January 2022

Matrices of Sets

Renaud Di Francesco, Sony Europe
Webinar presented: 23/09/2021
https://www.youtube.com/watch?v=]b7g8-QA2k0

Reported by: Keith Lines, NPL

Introduction

On 23" September FACS hosted, via a webinar, the first presentation for the BCS by Dr
Renaud Di Francesco: Director, Europe Technology Standards Office, Sony Europe.

The subject was matrices of sets, about which he has also presented this year at the
National Physical Laboratory UK, Université Le Havre Normandie, Université Gustave
Eiffel and Coventry University. Matrices of sets [1] is an interesting concept that is
being applied to use-cases such as freight logistics [2,3].

Summary

The classic legend of the grains of rice on a chessboard [4] was used to explain how a
matrix of sets can provide a richer data model, than a matrix of numbers alone. Each
grain of rice can be thought of as an element of a set. For “grain of rice” it could, for
example, be possible to substitute “unique serial number of an artefact”.

Some historical background was presented, such as Cayley's introduction of matrices in
the late 1850s [5]. The work of Cantor [6] and Hilbert [7], amongst others, was also
touched upon.

The ability to perform operations distinguishes a matrix from what would otherwise
just be a straightforward data structure. The matrix of sets equivalent of multiplication
of purely numeric matrices was described, along with matrix of sets equivalents of
eigenvectors and eigenvalues. Definitions of the addition and difference operators are
provided in [1].

Theorems concerning eigenvalues and triangular matrices were presented, along with
the proofs. There was also a description of a Matryoshka (or Russian Doll) property that
simplifies multiplication of matrices of sets. l.e. for two matrices that are being
multiplied, A and B, for row i from A and its equivalent column j from B:

A; A ka1 and Bk,jBk+1,j where k=1 to M,
where M is the number of rows in A and columns in B

There was also a description of using matrices of sets to generate polynomials.

12

https://www.youtube.com/watch?v=Jb7g8-QA2k0

FACS FACTS Issue 2022-1 January 2022

A proposal was made that matrices of sets can assist with the anonymisation of data.

Attention then turned to use-cases. As noted above, and in [2, 3], freight logistics has
proved to be a fruitful area of application. Collaborative filtering in recommendation
systems could also benefit from the rich data representation provided by matrices of
sets.

Finally, some next steps were proposed:
e Apply the Gram-Schmidt process to matrices of sets

e The use of Loeb’s sets with a negative number of elements [8]

Questions and Answers
Topics covered included:
e Standardisation has been an important part of Renaud’s career. Is there a role for

formal aspects in developing standards? Yes, but some strong use-cases would
be required.

e What software tool support is there for matrices of sets? Development of such
tools may be an interesting project for an expert in Mathematica or MATLAB.
Colleagues at the Université Le Havre Normandie have written code to implement
matrices of sets. It may prove difficult to represent matrices of sets using
MATLAB.

e What about the use of multi-dimensional arrays compared to matrices of sets?

Keith Lines, Data Science Department,
National Physical Laboratory UK, December 2021

View of the talk on Zoom (screenshot by Jonathan Bowen).

13

FACS FACTS Issue 2022-1 January 2022

References

1

14

Di Francesco R., Matrices of Sets, complete tutorial with use cases (July 2021)
Retrieved 16/12/2021 from Research Gate
https://www.researchgate.net/publication

353246623 _Matrices_of_Sets_complete_tutorial_with_use_cases

Di Francesco R., Containers transport and logistics models with Matrices of Sets: -
enabling digital efficiency gains for freight transport & logistics (July 2021)
Retrieved 16/12/2021 from Research Gate
https://www.researchgate.net/publication/

352904491 _Containers_transport_and_logistics_models_with_Matrices_of _Sets_-
enabling_digital_efficiency_gains_for_freight_transport_logistics

Di Francesco R., Maritime Economics Computable Models using Matrices of Sets:
study cases of 1) economics of routing for multimodal transport, 2) expression of
preference across heterogeneous dynamic baskets Applications illustrating the
efficiency of economic modelling with Matrices of Sets (July 2021)

Retrieved 16/12/2021 from Research Gate
https://www.researchgate.net/publication/

352904692 _Maritime_Economics_Computable Models_using_Matrices_of Sets_st
udy cases_of 1_economics_of routing_for_multimodal_transport 2_expression_of

_preference_across_heterogeneous_dynamic_baskets_Applications_

The Rice and Chessboard Legend
Retrieved 16/12/2021 from the Institute of Mathematics and its Applications
https://www.mathscareers.org.uk/the-rice-and-chessboard-legend

Cayley A., A memoir on the theory of matrices (January 1858)
Retrieved 16/12/2021 from the Royal Society
https://royalsocietypublishing.org/doi/10.1098/rstl.1858.0002

Cantor, G., Contributions to the Founding of the Theory of Transfinite Numbers
(Dover Books on Mathematics), Published by Dover Publications Inc., 2003

David Hilbert's Radio Address of 1930
Retrieved 16/12/2021 from YouTube
https://www.youtube.com/watch?v=EbgAu_X2mm4

Loeb, D., Sets with a negative number of elements (January 1992)
Retrieved 16/12/2021 from Elsevier
https://doi.org/10.1016/0001-8708(92)90011-9

https://doi.org/10.1016/0001-8708(92)90011-9
https://www.youtube.com/watch?v=EbgAu_X2mm4
https://royalsocietypublishing.org/doi/10.1098/rstl.1858.0002
https://www.mathscareers.org.uk/the-rice-and-chessboard-legend
https://www.researchgate.net/publication/352904692_Maritime_Economics_Computable_Models_using_Matrices_of_Sets_study_cases_of_1_economics_of_routing_for_multimodal_transport_2_expression_of_preference_across_heterogeneous_dynamic_baskets_Applications_
https://www.researchgate.net/publication/352904692_Maritime_Economics_Computable_Models_using_Matrices_of_Sets_study_cases_of_1_economics_of_routing_for_multimodal_transport_2_expression_of_preference_across_heterogeneous_dynamic_baskets_Applications
https://www.researchgate.net/publication/352904692_Maritime_Economics_Computable_Models_using_Matrices_of_Sets_study_cases_of_1_economics_of_routing_for_multimodal_transport_2_expression_of_preference_across_heterogeneous_dynamic_baskets_Applications
https://www.researchgate.net/publication/352904692_Maritime_Economics_Computable_Models_using_Matrices_of_Sets_study_cases_of_1_economics_of_routing_for_multimodal_transport_2_expression_of_preference_across_heterogeneous_dynamic_baskets_Applications
https://www.researchgate.net/publication/352904491_Containers_transport_and_logistics_models_with_Matrices_of_Sets_-enabling_digital_efficiency_gains_for_freight_transport_logistics
https://www.researchgate.net/publication/352904491_Containers_transport_and_logistics_models_with_Matrices_of_Sets_-enabling_digital_efficiency_gains_for_freight_transport_logistics
https://www.researchgate.net/publication/352904491_Containers_transport_and_logistics_models_with_Matrices_of_Sets_-enabling_digital_efficiency_gains_for_freight_transport_logistics
https://www.researchgate.net/publication/353246623_Matrices_of_Sets_complete_tutorial_with_use_cases
https://www.researchgate.net/publication/353246623_Matrices_of_Sets_complete_tutorial_with_use_cases

FACS FACTS Issue 2022-1 January 2022

How to Play at Quantum Computing (including QKD)

Richard Bornat
School of Science and Technology, Middlesex University, London, UK
richard@bornat.me.uk

Joint work with Rajagopal Nagarajan, R.Nagarajan@mdx.ac.uk

December 2, 2021

Abstract

Qtpi is an implementation of a programming language intended to facilitate the exploration by simulation
of algorithms for quantum networks. I describe the notation, discuss difficulties of simulating quantum
operations, and present a number of examples. There’s an appendix describing the basics of matrix
quantum calculations.

Quantum mechanics, the theory of quantum physics, is mysterious. Richard Feynman, genius physicist,
playfully remarked “I think I can safely say that nobody understands quantum mechanics”. This article
is not about the mysteries of quantum mechanics but about the simulation of quantum computation,' an
application of the theory of quantum physics that is relatively recent and will probably have considerable
effect. Actual quantum computation is a still-distant dream or an emerging field, depending on how you
assess the technical progress that’s been made. But Quantum Key Distribution is already a reality: it requires
physicists to do little more than send polarised photons to each other and to measure their polarisation, both
matters which they are well able to deal with.

Qtpi is an implementation of a programming language, a development of CQP (Gay and Nagarajan, 2005),
which allows the description of networks of protocol agents which can perform the quantum operations that
are described in theoretical papers — in particular Quantum Key Distribution (QKD) algorithms. It’s also
able to deal with some simple quantum computation. I have tried to make it Fun to Play With, and I've tried
to make this description of it, and what it does, amusing to read. You can get it, ready to run, from github
(qtp) for MacOS, Linux and Windows.

I should apologise to the BCS-FACS audience because this paper isn’t very formal: mostly it is about how
I designed the programming language, although there is a nod to formality in section 2 about qubits as
resource. Informality at this point is defensible: qtpi is very much work in progress, and some parts are
much more polished than others. I welcome criticism. Indeed this is really more of a sales pitch than a
paper: qtpi needs users! Please download it and play with it (or tell me why you won’t).

1 A language for quantum protocols

Quantum protocols are a major research interest. Quantum Key Distribution is a currently practical network
security protocol with two or three agents, Alice cooperating with Bob and perhaps Eve interfering, which

! If you are new to quantum computation, you may want to start by looking at appendix A. And then, new readers read on, as the
incomprehensible direction in magazines used to have it.

15

https://www.bcs.org/events-calendar/2021/december/facs-2021-agm-and-landin-semantics-seminar-making-concurrency-functional/

FACS FACTS Issue 2022-1 January 2022

16

procdefs = proc|[p(F)=P]|"
P = 10 .P | gstep.P | (binder). P
‘p(E) | (P) | par | alt | cond | 0
10 == CI1E|C2 (@)
gstep n= E>G | gt (z) | g [B] (z)
binder = newc | newq q;i::;f ‘ let pat = F
gdef = gq | g==L
par = [I|P| .. P
alt == [+]I0.P+ ...+I0.P
cond = if F then Pelse P | match F . [+] pat.P + ... + pat.P

[]: optional inclusion; []* : one or more;
comma-separated tuple, possibly empty

s:
5 : comma-separated tuple, non-empty

Figure 1: The qtpi process language (abbreviated)

1.1 Process notation

An abbreviated grammar for the sub-language of qgtpi’s process notation, as used in the examples before
section 9, is given in figure 1: lower case letters for names, upper case for expressions and the like. Qtpi
permits a Hindley-Milner typechecker, so although explicit typing is allowed, it is omitted from figure 1 for
simplicity.

* proc precedes a sequence of mutually-recursive process definitions;
+ dot (.) is sequencing;

 steps are IO or quantum;

* nothing follows a process activation, so there is only tail recursion;

« nothing can follow a par, an alt or a cond;

« for parsing reasons the null process is represented concretely by _0;
* 10 steps are sending (!) or receiving (?);

* a binder can bind a name to a new channel, to a new qubit with unknown state, to a new qubit with
specified state, or the names in a pattern to classical (non-quantum) values;

* sending requires a channel expression and a tuple of expressions;

* receiving requires a channel expression and a tuple of names, to be bound to the values received (the
brackets are not optional);

* gating (>>) puts one or more qubits through a gate;

» measuring (/~ — intended to look like a quantum-circuit meter symbol) takes a single qubit and
measures it either in the computational basis or in the basis defined by rotating with a gate;

FACS FACTS Issue 2022-1 January 2022

T == unit ‘ bool ‘ num ‘ bit | char | string ‘ sxnum
‘ matrix | gate ‘ bra ‘ ket | qubit | gstate
| NT | [T | (T, T) | T—>T

qT qubit ‘ cT

cI' = any type not involving qubit

Figure 2: Types in qtpi

* a parallel composition is a sequence of processes separated by (|), optionally preceded by ();

« an alt is a sequence of IO guards,’ each preceding a process, separated by (+), optionally preceded
by (+);

 aconditional is an if-then-else, or a pattern match.

The starkness of the pi calculus, which allows formal analysis of process descriptions, is mostly retained
in qtpi. The fact that there is no return from a process, that there is no join after the split of a parallel
composition, an alt, or a conditional, is crucial when building a static check for the correct use of qubits:
see section 2.

Qtpi’s parser uses offside parsing, so there aren’t as many closing brackets in the grammar as you might
otherwise suppose.

1.2 Types

Figure 2 shows the types of values in the language. Most of them are easily guessed, but

* num is unbounded-precision rationals (which of course includes integers);

¢ bit has values 0b0 and 0b1 and is not included in num;

¢ char is Unicode characters, and st ring is, as in Miranda, [char];

* sxnum is symbolic complex numbers, the type of values manipulated by qtpi’s symbolic calculator;
* matrix is matrices of sxnums;

* gate is unitary square matrices, size a power of 2;

« channel types "¢T are restricted so that a channel can carry either a qubit or a classical value;

« list [T] and tuple (7, ..., T) types.

It looks as if you can make lists of qubits, and indeed you can try, but there’s nothing you can do with them
afterwards: you can’t pass them as function or process arguments, you can’t access their elements with
functions or with matching. Function types are mostly restricted, but there are exceptions (see below).

3 When [began work on qtpi, I knew that mixed IO guards in alf constructs are very hard to implement in a genuine distributed
setting — a problem I fell foul of when developing Pascal-m, even though I found an expensive sort-of-solution (Bornat, 1986). I
intended to solve the problem by enhancing channel types with ‘write commit’ and ‘read commit’ types but I haven’t done that
yet. A restriction to allow only read guards, and to prohibit quantum channels in alts, is applied from qtpi version 3.0.

17

FACS FACTS Issue 2022-1 January 2022

fundefs = fun[f[pat]=E]"
Figure 3: Function definitions

1.3 Expression notation

Qtpi has the operators you would expect on numbers and booleans and the like. There are conditional
expressions, match expressions and A expressions. The arithmetic operators are heavily overloaded, so that
you can, for example, multiply numbers, matrices, gates, numbers with matrices, bras with kets, ... Because
juxtaposition X' E is taken for function application, matrix and gate multiplication has to use an explicit
operator (*).

Function definitions are included (figure 3): the word fun followed by a sequence of mutually-recursive
definitions. Qtpi doesn’t yet exploit pattern-matching as Miranda does, defining a function with a collection
of definitions and taking the first that matches.

There are lots of built-in functions, but apart from two (gval and show) they can’t take non-classical
arguments, and none of them delivers a non-classical result.

2 Qubits as resource

Thus far all has been relatively straightforward: qtpi is an interpreter for a version of the pi calculus with
a library that does matrix arithmetic, and it has a functional notation for doing calculations. Anybody who
knows ancient history (Abramsky and Bornat, 1983) would expect me to find it very simple work. Luckily,
the difference between qubits and classical bits makes quantum simulation a little bit more interesting.

1. There’s a theorem in quantum mechanics (Wooters and Zurek, 1982) that says there’s no unitary
operation (i.e. no gate or combination of gates) that can clone a qubit with unknown state: you can’t
start with a qubit in an unknown state |¢) and one in a known state — |0), say — and finish with two
qubits each in state |¢).

2. Qubits are physical objects, and they are in one place or another: they cannot be shared between
processes. (Yes, I know position is somewhat quantum. But in protocols they cannot.)

3. If measurement destroys a qubit (as it might for example destroy a photon) then the measuring agent
can’t use it again.

4. There is no physical way to discover the actual state of a qubit.

The qgtpi language has to be restricted to make sure that violations of these physical restrictions can’t be
simulated. In principle that’s fairly straightforward, but to simplify the explanation, especially the compile-
time explanation of errors, I've also imposed some quite strong restrictions on the use of qubits. That allows
a static check, rather like a typecheck, for the correct uses of qubits, and requires no run-time checks at all.

2.1 No qubits in functions

There’s a strict division in qtpi between classical and quantum calculation. I spent a long time down the
rabbit hole which leads from qubits in data structures and functions all the way to the gates of Confusion,

18

FACS FACTS Issue 2022-1 January 2022

before I realised that a swingeing restriction made the description of the language far clearer and a static
resource check more straightforward. So functions can’t take qubits in their arguments, can’t refer to free
qubit variables, and can’t deliver qubits as results. At a stroke that blocks all kinds of cloning/sharing
loopholes and makes it easier to say what qubits an expression depends upon.

2.2 No cloning, no sharing

Assignment in an imperative language lets you clone classical values: x := y copies the value from y into
2. The let and match constructs in gtpi bind names to values, so they are restricted to classical values just
to avoid cloning of qubits.

In the pi calculus channels carry tuples of values, which can include functions and channels. In gtpi we
have to be able to send qubits as well. But if a qubit is sent away in a message, using it again in the sending
process would mean it had been cloned. Here’s a process fragment which attempts that kind of cloning:

(newq q) . c!lqg . Alice(qg,c)

A qubit is created, sent down channel ¢, and then later provided as argument in a process activation. In
syntactic / binding / typecheck terms everything looks fine, provided c is in scope and of type “qubit. But
it’s clearly cloning, hoping to share q between the receiving process and Alice.

Qtpi’s static check needs to ensure that in a process c!E, ..., E . P, if the message tuple involves g, P
can’t use g. But ‘involves’ and ‘use’ aren’t very precise. To cut a long story short

* A channel can carry either a single qubit or a classical tuple;
* a message expression can be either a single qubit name or a tuple of classical values.

This looks severe, but it follows protocol descriptions which talk of ‘quantum channels’ and ‘classical
channels’ — and, I suspect, that’s a distinction forced by physical reality. The restriction makes it simple
to discover which qubit is being sent, and it’s easy to check whether the succeeding process mentions that
qubit or not.

For similar reasons process parameters must be either a qubit or strictly classical. Because we can’t reason-
ably restrict a process to take either a single qubit argument or a tuple of classical arguments, we have to be
sure that the same qubit isn’t provided twice in the argument tuple, so that the process can’t bind the same
qubit to more than one parameter name. That means an argument expression must also be a single qubit
name or a classical expression.

If a process splits into a parallel composition of sub-processes, it is important to ensure that the subprocesses
don’t share qubits, because that would be a kind of cloning. CQP handled the problem by using linear types.
I didn’t understand that treatment at first, and I was keen to use the sort of analysis used in separation
logic tools to police the use of shared heap to solve the problem of qubit sharing. So qtpi uses a symbolic
execution, a sort of abstract interpretation, to analyse the way that processes use qubits. That’s simplified
by the simple syntactic structure of the pi calculus and the other restrictions on the language: all you have
to do is to look at uses of the names of type qubit.

The arms of a cond or an alt can syntactically share qubit names because only one of them will ever be
executed in any particular process elaborationt. But, unfortunately, because it’s a static check, the ‘mentions’
of qubits in a cond or an alt are the union of the ‘mentions’ in all of the arms: a necessary blurring.

19

FACS FACTS Issue 2022-1 January 2022

2.3 No life after death

Lots of the protocols that qtpi simulates are, in the real world, to do with polarised-photon qubits. Measuring
the polarisation of a photon destroys it in most real-world implementations. Raja was particularly keen
that qtpi should recognise this reality. There’s a switch ‘-measuredestroys’ that can be set true or
false: if true, measurement is like sending a qubit away in a message, and you can’t use it again. Also, if
‘~measuredestroys’ is set true, you can’t use a qubit-valued conditional expression in a measurement
step, because we need to know which qubit you are destroying.

2.4 No comparing

In a functional language you can’t compare functions because they simulate infinite relations. In qtpi you
can’t compare qubits because they simulate physical objects with quantum state and there is no physical
way of reading the state of such an object.

In qtpi, this induces a twist. The library function show, as in Miranda, converts the value of its argument
into a string. To avoid the impossible, it renders functional values as “<function>", and to avoid cheating
it renders qubits as “<qubit>". But sometimes you might want a program to print the state of a qubit — for
debugging, say, or just to provide a trace of a calculation.

The solution is the library function gval, the type gstate and the output channel outqg. Qval takes a
qubit and returns a gstate value. A gstate is a classical value, so you can include it in data structures
and pass it to functions and ... but you can’t compare gstates. There’s actually only one thing you can do
with a gstate, which is to send it down the out g channel to be printed. This provides diagnostic printing
without leaking secret information, at the expense of some programming clunkiness which you will see in
the examples.

Note that there couldn’t be a special channel down which you send a qubit to print its state, because once
sent down a channel it is lost. Varying the rules for such a channel would be impossible in a static check
because channels are values.

3 Not infinitely unfair

Choices of partner in a concurrent language raise questions of fairness. Qtpi uses synchronous message-
passing, so for example attempting to read from an empty channel causes the reader to wait until some other
process offers to write — and vice-versa writing to an empty channel causes the writer to wait until there is a
reader. Channels are many-to-many, so a channel can hold many offers before a partner comes along.

Which offer should a partner choose? Strict temporal order of arrival would ensure fairness, but would make
a simulation grimly deterministic; one might hope for more random choice, but that raises the possibility
of infinite unfairness, when partners might always overlook some offer. In Pascal-m (Abramsky and Bor-
nat, 1983) Steve Cook implemented what he called /usf: an overlooked offer to communicate has its lust
increased, and partners prefer lustier offers. Initial lust values are chosen at random when the offer is made.

Qtpi uses Cook’s notion to choose the next process to run at each protocol step, to choose partners in sends
and receives, and to choose an arm in an alt. Thus it is not temporal-order fair, but neither is it infinitely
unfair, and it isn’t boringly deterministic. Execution wouldn’t be deterministic in many cases anyway,
because quantum measurement is probabilistic.

20

FACS FACTS Issue 2022-1 January 2022

proc P(s: "qubit) = + s?2(y) . y>>X . sl!ly . _0

+ s2(y) . y>>I . sly . _0
proc Q(x: qubit, s: qubit) = x>>H . s!x . s?(z) . z>>H . _0
proc System() = (newg g = |0>) (new s: qubit) | P(s)

| Q(q,s)
Figure 4: Coin tossing as a protocol

#0:10) >> H; result #0:(h|0)+h|1))

Q -> P Qbit #0

#0: (h|0)+h|1)) >> X; result #0: (h|0>+h[1))
P —> Q Qbit #0

¥0: (h|0)+h|1)) >> H; result #0:[0>

0 o Yoo

Figure 5: Sample trace of the cointoss protocol, with P carrying out a flip

use for communication, and splits into two parallel subprocesses, one becoming P, the other Q. P just gets
the shared channel, QQ gets the qubit and the shared channel.

Q first puts the qubit x through the H gate (x>>H) then sends the modified x down channel s (s!x) and
receives a qubit z back (s? (z)) which it also puts through H.

P makes a guarded choice between two subprocesses, one of which receives a qubit y (s? (y)) and flips it
(v>>x) then sends the modified qubit back down the same channel (s !y); the other receives vy, doesn’t flip
it, and sends it back unmodified. Because the guards use the same channel, it chooses with equal probability
between the alternatives.’

Because P and Q share channel s — System gives it to them both as an argument — we can see that Q sends
a qubit to P, P receives it from Q, manipulates it and sends it back to Q, and Q receives it again.

This simulation doesn’t produce any output, but qtpi can be persuaded to provide a trace of significant events
such as exchange of a message and manipulation of qubit states. Figure 5 shows a trace in which P happens
to flip the qubit-penny using the X gate. The trace shows that Q puts qubit O through an H gate (‘#0: | 0>’
means ‘qubit 0 with state |0)"), and shows the result (still qubit 0 with state (h|0>+h|1>),i.e. |+)). Then
channel O carries qubit 0 from Q to P, P puts it through an x gate, producing no change, and sends it back to
Q. Then Q puts qubit 0 through an H gate again, and we finish up with qubit 0 in the same state, |0}, that we
started with.

If Picard had read Damon Runyon or seen Guys and Dolls, he would know about Jacks that jump out of the
pack and squirt cider in your ear. The Enterprise is doomed.

6 Example: teleportation

You can’t clone a qubit, and you can’t even measure its state, so it was a considerable breakthrough when
it was shown (Bennett et al., 1993) that it was possible to reproduce an arbitrary unknown quantum state,
but only by destroying the original state at the same time and without learning anything about that original
state. The mechanism uses the properties of quantum entanglement (see appendix A). Riefell and Polak
(Rieffel and Polak, 2000) describe Alice’s part of it accessibly (you don’t have to follow the calculations at
this point):

® This trick, a corrected version of one illustrated in the CQP paper, isn’t allowed in qtpi version 3.0 because it uses a quantum
channel.

21

FACS FACTS Issue 2022-1 January 2022

proc System () = (newqg x=[+>, y=|0>) x,y>>CNot
(new c:” (bit,bit)) | Alice(x,c) | Bob(y,c)

Alice (x:gbit, c: " (bit,bit)) = (new cz: "gbit)
| Choose(cz)

| cz?(z).
out!["\ninitially Alice’s z is "]
outqg! (gval z) . out!["\n"]
z,%>>CNot ., z>>H . zqﬁ(vz) . xqﬁ(vx)
clvz,vx
_0
Bob(v:gbit, c:7 (bit,bit)) = c?(pair)
y >>» match pair + (0b0, 0b0) I
+ (0b0,0bl) . X
+ (0b1l,0b0O) . Z
+ (0bl,0bl) Z %X
out! ["finally Bob’s y is "]
outqg! (gval vy) . out!["\n"]
_0
Choose (cz: " gbit) =
(let init = read bool "initialised gbit or random" "i" "r")
if init
then
(let bv = read_alternative "basis"™ ","
C"O", 10>); ("1, |1>); ("+", [+>); ("=-",1->)]
)
(newg z = bv) cz'!z . _0
else
(newq z) cz'!z . _0

Figure 6: Teleporting an arbitrary quantum state between Alice and Bob

22

FACS FACTS Issue 2022-1

23

Alice [...] wants to send the state of [a] qubit |¢) = a|0) + b|1) to Bob through classical
channels. [...] Alice and Bob each possess one qubit of an entangled pair [¢yp) = h |00} +h |11).
The starting state is [a state of 3 qubits]

|6) @ [1ho) = \/g(a 1000) + @ [011) + b[100) + b[111))

of which Alice controls the first two qubits and Bob controls the last one. Alice now applies
CNot ® I and H® I & I to this state [to give]

%(IOO) (al0) +5[1)) +[01) (a[1) +b(0)) 4 [10) (a[0) — b[1)) + [11) (a[1) — b[0)))

Alice measures the first two qubits to get one of |00}, [01), |10}, or |11) with equal probability.
Depending on the result of the measurement, the quantum state of Bob’s qubit is projected to
al0) +b|1), a|l) + 5|0}, a|0) — b|1), or a|1} — b|0) respectively. Alice sends the result of
her measurement as two classical bits to Bob.

They note that Alice’s measurement has destroyed state |¢}, and her qubit is now either |0) or |1}. She never
knew what |¢) was, and neither does Bob. But by receiving (0,0) or (0,1) or (1,0) or (1,1) he knows how to
switch the amplitudes of his qubit to match what |¢) was: put it through either I, or X, or Z, or Z x X (X and
then Z) and he will do the job — but he never needs to learn what @ and b are. Magic!

An intriguing part of this description is what Alice does to the qubits. She “applies CNot @ land H® I ® I”
to the three qubits, but the protocol only gives her control of two of them. What the description means is
that she applies CNot to her two qubits, and the universe (or in our case the qtpi simulator) operates as if
the 3-qubit state goes through CNot @ I. Then she applies H to the first of her qubits — the one that used to
be |@) — and the universe / simulator ensures that the 3-qubit state goes through H®I® 1.

The simulation, enhanced so that the user can choose what quantum state Alice’s qubit must start in, and
to include some diagnostic printing, is in figure 6. The System process makes two qubits and entangles
them, producing the state |¢}. It makes a classical channel for the Alice / Bob communication, then splits
into two processes, one which becomes Alice given one of the qubits and the channel, and the other which
becomes Bob given the other qubit and the same channel.

Alice starts out by making a new quantum channel on which to receive the |¢) qubit, and then splits into two
processes: one becomes Choose and is given the quantum channel; the other waits to receive a qubit on the
quantum channel. The Choose process asks the user what to do, and produces a qubit whose state is either
a copy of one of the four standard basis vectors or is genuinely unknown; then it sends that qubit down the
channel it was given, on the other end of which is Alice waiting for an answer.

Once Alice has her qubit (in a state which she doesn’t know) she first does a bit of diagnostic printing,
showing us |¢) through the gval, outq trickery. Then she does exactly what Riefell and Polak say she
should: put her two qubits through CNot and then just the new one through H, before measuring them
both.® Finally she sends the measurement results, two classical bits, to Bob, and terminates.

Bob has been waiting patiently on the classical channel for Alice’s results, and he puts his qubit through a
gate in just the way that Rieffel and Polak described. Then he does some diagnostic printing to tell us what
happened so that we can verify, even if he can’t, that his qubit is in state |¢}.

Figure 7 shows it teleporting |—); figure 8 shows it teleporting an ‘unknown’ quantum state. In figure 8 the
variables it uses are a2 and b2 rather than @ and b, just because the ‘unknown’ state is created in the qubit
numbered 2 in qtpi’s simulation. Figure 9 shows the trace of the simulation in the ‘unknown’ case:

% Tt doesn’t matter what order she reads them in, but at present you can’t do a multi-qubit read in qtpi. I should fix that.

January 2022

FACS FACTS Issue 2022-1 January 2022

initialised gbit or random (i/r)? i
basis (0,1,+,-)7 -

initially Alice’s =z is #2:(h|0)-h|1))
finally Bob’s vy is #1: (h|0)-h|1))

Figure 7: Teleporting |—)

initialised gpbit or random (i/r)? r

initially Alice’s z is #2:(a2|0)+b2]|1})
finally Bob’s y is #1:(a2|0)+b2|1))

Figure 8: Teleporting an unknown state

1: System (#0: (h|0)+h|1)),#1:10)) >> CNot; result (#0:[#0;41] (h|00)+h|11)),#1=40)
2: Choose —-> Alice Qbit #2

3: Alice (#2:(aZ|0)+b2|1)),#0:[#0;#1] (h100X+h|11))) >> CNot;
result (#2:[#0;#1;#2] (h+=a2|000)+h+b2|011)+h*b2|101)+h#a2]110)), #0=%2)

4: Alice #2:[#0;#1;#2) (h=a2|000>+h«b2|011)+h+b2|101)+h#a2]110)) >> H;
result #2:[#0;#1;#2] (a2/21000>+a2/21001>+b2/21010>-b2/21011)
+b2/21100)-b2/21101>+a2/21110)+a2/2]111>)

5: Alice: #2: .. as above .. 4 ;
result 1 and (#0:[#0;#1] (h=a2|00)-h*b2|01)-h+b2|10)+h*a2|11)), #1=#0)

Alice: #0: .. as above .. -~ ; result 1 and #1:(-b2|0>+a2|1))
6: Alice —> Bob (1,1)

7: Bob #1:(-b2|0)+a21)) >> {0 1
-1 0 }; result #1:(a2/0)+b2|1))

Figure 9: Trace of teleporting an unknown state

24

FACS FACTS Issue 2022-1 January 2022

A o—t
B o 7 S
Cin © IE

Cout

Figure 10: A classical full adder, from (Inductiveload, 2009)

A la o
B |3 3
Cin Y ? ¥
|0) —{ CNot | CNot [CNot | Sum
10) [THTHTE cout

Figure 11: A quantum full adder, adapted from (Coggins, 2020)

1. System entangles qubits 0 and 1 with the CNot gate, giving h |00) + b |11} (J¢x)) as required;
2. Choose sends Alice qubit 2 containing the state to be teleported;

3. Alice puts qubits 2 and 0 — her qubit and the first of the entangled pair — through CNot;

4. Alice puts qubit 2 through H;

5. Alice measures qubit 2 and qubit 0, getting (1,1) and putting qubit 1 into state a2 |1) — b2 |0);
6. Alice sends Bob (1,1);

7. Bob puts qubit | through Z * X, getting the desired result.

The three-qubit state in figure 9 after step 4 doesn’t look like the Rieffel and Polak state because qubit 2 is
listed last, whereas in Riefell and Polak the once-was-|¢) qubit is listed first. Switching first to last, their
|001) is |010) in the trace, their |010) is |100), and so on. It is exactly the same state, and after step 5 the
other qubit of the entangled pair has exactly the amplitudes described by Rieffel and Polak. Note that it
was chance that both of Alice’s measurements returned 1: any of the four possible combinations of bits is
possible, and the algorithm works in just the way that Rieffel and Polak describe it.

7 Example: quantum parallelism

I got quite excited when I realised that you can see quantum parallelism in action using a single-bit full
adder because us old-fashioned computer scientists understand full adders. But actually, as Raja pointed out
to me, this isn’t an example of quantum supremacy where a quantum computation gives a result in fewer
steps than its classical equivalent.

25

FACS FACTS Issue 2022-1 January 2022

fun basis x =
read_alternative x ", " [("0",|0>); ("1",|1>); ("+",|[+>); ("=",|->)]

proc System () =

(newq gl = basis "A",

aB = basis "B",

gqCin = basis "Cin")
out! ["full adder sum of (A="] . outg!gval gA . cut![", B="] . outgl!gval oB
out![", Cin="] . outg'!gval gCin . out![")"]

(newg gSum=|0>, gCout=|0>)
ghA, gSum>>CNot . gB,gSum>>CNot . gCin,gSum>>CNot
gh, gB, gCout>>T . ghA,qCin,gCout>>T . gB,gCin,gCout>>T

out![" is (Cout="] . outqgl!gval gCout
out![", Sum="] . outgl!gval gSum . out![")\n"]

gA+~ (bA) . gB4(bB) . gCin-~(bCin) . gSum+ (bSum) . gCout-~ (bCout)

out! ["A measures "; show bA; ", B "; show bB; "; Cin "; show bCin;
"; Sum "; show bSum; "; Cout "; show bCout; ".\n"]

Figure 12: Qtpi simulation of figure 11

Figure 10 is a classical logic-gate circuit: two XOR gates compute the sum: S is 1 if one of the inputs A,
B and Cin (carry in) is 1, or all of them are 1. Two AND gates and one OR gate compute the carry: Cout
(carry out) is 1 if there is more than one 1 in the three inputs.

Figure 11 is a quantum full adder,’ taking |0) as classical 0 and |1) as classical 1, with three CNot and
three T (Toffoli) gates. The three CNot gates flip the Sum qubit once, twice or three times according to
occurrences of |1) in the three inputs; the result is |1) if there is an odd number of |1)s in the inputs. The
T gates flip the Coout qubit according to pairs of the inputs, making a |1) out if an odd number of pairs is
(1).1).®

Figure 12 is a program simulating the circuit of figure 11: it reads the user’s choice of inputs,” creates the
|0) values to initialise Sum and Cout, and then follows the steps of the circuit diagram. Finally it measures
all five qubits. It works as it should, given inputs that are either |0) or |1). For example:

A (0,1,+4,)7? 1

B (0,1,+,-)7 0

Cin (0,1,+,—)? 1

full adder sum of (RA=#0:|1>, B=#1:|0>, Cin=#2:[1>) 1is (Cout=#4:|1>, Sum=#3:|0>)
A measures 1, B 0; Cin 1; Sum 0; Cout 1.

Imitating classical circuits with qubits and quantum gates isn’t very impressive, but the circuit of figure 11
has a trick up its sleeve. The qubit state |+), viewed from the computational basis, is the superposition
h|0) + R |1), equally likely to be measured as 0 or 1. An execution of figure 12 in which B is |+) produces

7 In the online version of this diagram there is a spurious X gate. Perhaps a Mountweazel: at any rate, analysis and experiment
confirm that it is unhelpful.

% An odd number of pairs is 1 or 3; an even number of pairs 1s 0 or 2, but if you have 2 pairs then you have 3.

? Note that it does this using a function which returns a ket as result. That’s ok: a ket is just a vector, not a quantum state.

FACS FACTS Issue 2022-1

27

A (0,1,+,—)7? 1

B (0,1,+,-)7 +

Cin (0,1,+,—)2 1

full adder sum of (A=#0:[1>, B=#1l:(h|0>+h]|1>),
(Cout=#4:11>, Sum=#3:[#1;#3] (h|00>+h|11l>)

A measures 1, B 0; Cin 1; Sum 0; Cout 1.

Cin=#2:|1>) is

After initialisation #1(B) is an isolated qubit, but in the final state, before anything is measured, qubits
#1(A) and #3(Sum) are entangled: with probability |h|?> = 1/2 they will both measure as |0}, and with the
same probability they will both measure as |1}. In effect the adder has done two additions at once: the case
where B = |0} and the case where B = |1). When B is measured it must, with equal probability, deliver 0
or | and that will determine the state of the entanglement — measuring Sum afterwards is a formality. The
final line shows that in this case B and Sum measured as |0). This outcome occurs, at random, in half of all
executions with those inputs; the other half finish, as they should, with

A measures 1, B 1; Cin 1; Sum 1; Cout 1.

In this execution, as in all others, the final line shows a correct classical addition.

What if all three inputs are in superpositions? We get a five-way entanglement, a superposition of eight
possibilities:

A (0,1,+,-)7? +

B (0,1,+,-)7 +

Cin (0,1,+,-)? +

full adder sum of (A=#0:(h|0>+h|1>), B=#1:(h|0>+h|1>), Cin=#2: (h|0>+h|1>)) is
(Cout=#4: [#0;#1;#2; #¥3;#4]1 (h/2100000>+h/2]00110>+h/2(01010>+h/2(01101>

+h/2110010)+h/2[110101>+h/2|11001>+h/2[11111)),

Sum=4#3: [#0; #1;#2; #3;#4] (.. the same ..))

A measures 0, B 1; Cin 1; Sum 0; Cout 1.

The eight possible classical additions form the entanglement, each with probability |2/2[> = h?/4 = 1/8.
The program hasn’t done any more work than before — six gating steps — but those steps have done eight
additions in parallel. Note that there are only eight possible states of the five qubits: the vector has to
describe 32 possible states but 24 of them, which don’t correspond to correct classical additions, have zero
amplitude. The first case of the entanglement, |00000}, says that if A measures 0, B 0 and Cin 0 then Sum
and Cout must be 0 too, as you’d hope. The measurement in this particular execution found [01101), the
fourth case.

But, as I said above, this isn’t quantum supremacy. Sure, it’s done eight additions in parallel, but measure-
ment only gives you one of them and you have no control over which you get.

8 Example: BB84 QKD

Quantum Key Distribution, like quantum teleportation, seems to be a magical trick. Using the quantum
properties of a stream of single photons, Alice and Bob generate a random one-time key without disclosing
to each other or to anybody else the value of any of its bits. One-time keys are an ideal in cryptography
because an attacker can’t learn from multiple uses what the key is; one-time keys that don’t have to be
distributed are the holy grail. (Bennett and Brassard, 1984) describes a QKD protocol, known universally
as BB84. It can be simulated in qtpi without difficulty. (Ekert et al., 1992) describes another, based on
entanglement and known as E92, which can also be simulated in gtpi. I'll concentrate here on BB84, which
is the simpler and the one most often used in today’s trial networks.

January 2022

FACS FACTS Issue 2022-1

28

1. Alice chooses NV classical bits at random. She needs many more bits than the size of the message she
has to send, as we shall see.

2. Alice sends her bits as N qubits, randomly choosing diagonal basis (|4), |—)) or normal basis (|0},
|1)) for 0 and 1 in each case. She keeps a record of the bases she chose as a second sequence of N
bits.

3. Bob receives Alice’s qubits one by one and measures each, randomly choosing diagonal or normal
bases in each case. He keeps a record of the measurements he made and the bases he chose. If he
chose the same basis as Alice he will measure the qubit correctly, provided it hasn’t been tampered
with en route. If he chooses the other basis, he might not measure it correctly even if there has been
no interference.

4. Alice and Bob compare notes about the bases they used (not the values they sent or measured). They
use a separate classical channel for this (see below). For the time being suppose that there is no
interference on that channel.

5. They each discard the bits for which they chose different bases. If Eve has not interfered, they share
~ N/2 secret bits. They haven’t disclosed the value of these bits, so they can be used as a one-time
code for the message which Alice wants to send.

6. But Eve might have interfered, by intercepting Alice’s transmission, receiving, measuring and retrans-
mitting each of the qubits. If she did then (see below) there is a 1/4 chance in each case that Bob will
not read the value which Alice sent. To check for interference, Bob chooses a random sample of n of
his supposed secret bits — the ‘check bits’ — and sends them classically to Alice, along with a bitmask
to say which bits they are.

7. Alice checks Bob’s check bits against her own. There is a (3/4)™ chance that those bits will match
even though Eve has interfered. Choose n large enough and Eve is extremely unlikely to get away
with it: n = 100, for example, gives her only a 3 x 10713 chance of success.

8. If Alice finds that the check bits match, then with high probability she and Bob share ~ (N/2 — n)
secret bits. She XORs the message with some of those bits — if she’s chosen N large enough there
will be enough to do the job — and sends it classically to Bob.

What could go wrong? Let’s see. First consider Eve’s interference. We can ignore the qubits for which Alice
and Bob don’t use the same basis, because those will be rejected anyway (step 5). In the case where Alice
and Bob guess the same basis, Eve has a 50% chance of making the same guess, reading the qubit correctly
and sending an equivalent qubit to Bob, so her interference will be undetected. If she guesses wrongly she
will send Bob a qubit encoded in the wrong basis — but Bob might, again with a 50% chance, accidentally
measure the 0/1 value that Alice transmitted. So overall she has a 3/4 chance of not being noticed on each
bit. If she can read the classical channel (more on that later) she can even tell which of the bits are going
to be discarded and which are used as check bits. If she can evade the check-bit test in step 7) she knows
which bits she can rely upon and which not, and with a 1/2 chance in those bits she might perhaps have a
good go at guessing the message. Butit’s 1 — (3/4)™ that she won’t evade the test, so Alice almost certainly
won’t send the message if she interferes: everything depends on step 7.

Note that the effectiveness of the check in step 7 doesn’t depend on any argument about the difficulty of
computing some function, as classical encryption does. It’s rooted in physical reality: Eve cannot measure
a qubit without destroying its state, and that’s the basis of the check. It isn’t an absolute prevention against
Eve’s spying, although by choosing large n Alice and Bob can make it statistically very reliable. And in the

January 2022

FACS FACTS Issue 2022-1 January 2022

29

fun ket_of_bits b v = match (b,v) .
+ (0b0,0b0O) . |0>

+ (0k0,0bl) . |1>
+ (0bl,0b0) . [+>
+ (0b1,0bl) . |->

(» send encoded (bit, value) pairs down channel gc *)
proc SendQbits (bvs,qc,sent) =
match bvs

+ [] . sent! () . _0
+ (b,v)::bvs . (newqg g = ket_of bits b v)
qclg

SendQbits (bvs,gc, sent)
proc Alice ...

(new sent)
| SendQbits (bvs,qgc, sent)
| sent?()
(let hO = hwc bs hks 0 w)
bsc'!'h0,bs . (*# send Bob my bases =)

Figure 13: Sending qubits in BB84 (Alice)

limit it depends on the properties of hardware photon detectors: physical access to a network node can work
wonders in that area, and (Chistiakov et al., 2019) reports a successful attack.

But we haven’t finished: what about the communication on the classical channel? There are only five
classical messages in the protocol, counting check bits and bitmask as separate messages. It’s not an ordinary
channel: the messages are sent in the clear but individually authenticated, each signed with its own one-
time hash code, and the authentications are sent along with the message. Eve can read the messages but
she can’t spoof them, because she doesn’t know the hash codes. The authentication scheme (Wegman and
Carter, 1981) has very high statistical reliability, depending on the sizes of the hash codes. So Eve can’t
reliably lie to Alice about what Bob’s saying, or vice versa reliably lie to Bob. The authentication hash
codes are an initial secret between Alice and Bob, and they can use some of the ~ (N/2 — n) secret bits
remaining at step 8 to generate new one-time hash codes for the next round of the protocol. There are
even privacy amplification mechanisms to generate the codes for the first round from a shared and not-
necessarily-entirely-secret password: (Cachin and Maurer, 1997) is only a single reference to a great deal
of work in that area.

There isn’t much point showing the code of the qtpi simulation, because it’s huge and it’s almost all classical
calculation. I can show you the quantum parts: figure 13 shows how SendQbits, initiated by Alice, generates
and sends qubits given a list of (basis,value) bit-pairs: it generates qubits one-by-one from the list bvs, and
sends them down gc, finally sending an empty tuple along channel sent to Alice, to say that the job’s
finished. Her next step is to construct an authenticated message containing her choices of encodings, and
send it down channel bsc.

Figure 14 shows that ReceiveQBits, initiated by Bob, generates basis choices and measures the qubits it
receives in the corresponding basis, accumulating a reversed list of (basis,value) bit-pairs. Eventually the
stream of qubits will dry up and it will receive Alice’s list of bases on channel bsc, whereupon ReceiveQBits
signals the bit-pair list and Alice’s message on the result channel back to Bob.

Figure 14 is not an entirely believable simulation of Bob’s treatment of the photon stream. I wrote it as
shown because I wanted only Alice to need to know how big the message is that she has to encode, so that

FACS FACTS Issue 2022-1 January 2022

30

(» receive gbits on channel gc, measure them, return the results
when you see a tagged message on channel bsc
*)
proc ReceiveQBits (bvs, gc, bsc, result) =
+ gc?(q)
(let b = randbit ())
q/[if b=0bl then H else I] (v)
ReceiveQBits ((b,v) ::bvs, gc,bsc, result)
+ bsc? (message) .
result! (rev bvs,message)
0

proc Bob

(new result)
| ReceiveQBits ([], dc, bsc, result)
| result?(bvs, messagel)

Figure 14: Receiving qubits in BB84 (Bob)

cd examples/BB84_QKD; time ../../Qtpi functions.gtp Alice.qgtp Bob.gtp
LogAlice.gtp LogBob.gtp SystemAB.gtp

length of message? 1000

length of a hash key? 20

minimum number of checkbits? 40

number of sigmas? 6

number of trials? 1000

3721 gbits per trial
all done: 0 interfered with; 1000 exchanges succeeded; 0 failed;
0 short codebits; average check bits 464.56 minimum check bits 403
16.08s user 0.04s system 99% cpu 16.150 total

Figure 15: BB84 simulation: Alice communicating directly with Bob

she can calculate N and not bother Bob with it. He only has to notice when she switches from sending
qubits to sending a classical bit-list. In practice it’s more likely that Alice will send photons at precisely
timed intervals, and that the packet size N will be built in to the implementation. In practice Bob might
miss some of the photons, for all kinds of physical reasons, but because of the precise timing he will notice
when that’s happened and can allow for it. I also think it is a bit dodgy to allow an alt which involves a
quantum channel. Although it would be quite possible to simulate a more realisable exchange, I think the
one depicted here is realistic enough for most purposes. But it’s also an illustration of how easy it is to fall
into the trap of using classical programming tricks to over-simplify a simulation.

It’s important that gtpi can simulate this protocol, with all its paradiddles, correctly and efficiently.'® Figure
15 shows a summary of the simulation of Alice and Bob without Eve. Alice has to send a message of 1000
bits; to make sure she will have enough secret bits to generate the hash keys and the checkbits and the one-
time code, with the chance of running out of secret bits 60 away from the mean, she calculates that she needs
3721 qubits per trial. It runs the protocol 1000 times, transmitting about 4M qubits in 20 seconds on a 2021
Mac mini (a cheap small desktop computer, if you are reading this in the far future). The simulation could
handle huge messages with ease because it deals with one qubit at a time: this isn’t a quantum computation

19 Full disclosure: for the sake of efficiency, my hash-coding mechanism doesn’t properly implement Wegman and Carter’s authen-
tication scheme. But then I haven’t simulated an attack by Eve on that scheme.

FACS FACTS Issue 2022-1 January 2022

31

(+ Read gbits from gA, measure them in a random basis, send the measured bits on gB.
Stop when you see a message on bsA, and return measurements, tag and message.
*)
proc CopyQBits (bvs, g&, 9B, bsA, results) =
+ gA? (q) . (let b = randbit ())
g4 [if b=0bl then H else I] (v)
(newg g = ket_of bits b v)

aBlq .
CopyQBits ((b,v)::bvs, gA, B, bsA, results)
+ bsA?(tag,bits) . (let bs, vs = unzip (rev bvs))

results!bs
results!vs
results!tag
results!bits

_0
proc Eve
(new results)
| CopyQBits([], gAE, gEB, bAE, results)
| results?(bs) . results?(vs) . result?(tag) . results?(basesAlice)

Figure 16: Copying qubits in BB84 (Eve)

example, where the space required goes up exponentially with the size of the problem. The simulation
checks in the background that Bob actually gets the message that Alice sent, and he does, 1000 times. The
simulation uses ~1/4 of the secret bits as check bits, which is overkill but no matter.

A naive Eve, who just intercepts the qubits and tries to copy them to Bob, but does nothing else, initiates
CopyQBits from figure 16. Like ReceiveQBits, it stops when it sees Alice’s bases message on the classical
channel and sends what it has seen down the results channel to a waiting Eve; unlike ReceiveQBits
it transmits a copy of each qubit it has read down the channel which Bob reads from. Given the same
parameterisation as the Alice-Bob example, a simulation with this Eve between them shows that Alice
detects quantum interference on each trial (as she should with 400+ check bits to play with). The simulation
takes 26 seconds.

It’s possible to play with the parameters to get Alice and Bob to use so few check bits that Eve can sometimes
operate unnoticed. It's very artificial because the simulation uses about N/8 as the number of check bits,
where N is the number of qubits in a trial, and you have to force it to play close to the point where it
doesn’t generate enough qubits overall to run a trial properly. With a message length of 10, no hash keys,
no minimum number of check bits, and no attempt to generate enough bits overall, to achieve 1000 trials it
runs out of qubits 718 times, uses an average of only about 3 check bits, and Eve gets away with quantum
interference in about half of the completed trials. That’s very artificial, but it does show that the security of
the protocol is a statistical one.

I'm not a career criminal (it says here) and this isn’t the place to discuss possible flaws in this protocol.
But I can’t resist. One which everybody in the business knows about is the ‘trusted node’ problem. In a
classical network with encrypted communication, intermediate network nodes between sender and receiver
are untrusted and just copy the bits they are sent. There’s a possibility that a node might be able to decrypt
a message, but with modern encodings and large encryption keys it’s very remote. In BB84, intermediate
nodes have to be trusted to decrypt and re-encrypt the message: each is a Bob connected somehow to a
new Alice. That’s clearly a point where a criminal might probe. Perhaps another risk is that if an Eve can
interpose herself between a trusted Alice and a trusted Bob, mid-network, and if (very big if) she knows

FACS FACTS Issue 2022-1 January 2022

32

fun groverG n = engate ((sx_l+sx_1)«*((|+>®®n)* (<+|®®n)) - (degate IQXRn))
groverU bs = engate (tabulate_diag_m (2x%n) tf
where n = length bs
where tf 1 = if i=address then -sx_1 else sx_1
where address = bits2num (rev bs) (x big-endian «)
)
proc
System () =
(let n = read_min_int 1 "number of bits")
(newgs gs = [+>®®n)

(let G = groverG n)

(let bs = randbits n)

(let U = groverU bs)

(let iters = floor (pissgrt(2+*n)/4+0.5))

out! ["grover "; show n; " bs = "; show bs; "; ";
show iters; " iterations"; "\n"]

|l: i«tabulate iters (A i. i): gs>>>U . gs>>>G . _0

gs# (bs’)

out! ["measurement says "; show bs’;

if bs=bs" then " ok" else " *x WRONG *+"; "\n"]
0

Figure 17: Grover’s algorithm in qtpi

the initial set of hash codes for the classical channel, then she can pretend to be a trusted Bob to Alice
and a trusted Alice to Bob — i.e. just another node in the network. It’s easy to simulate: Eve uses just the
CopyQBits code of figure 16 for her quantum self and otherwise just runs the protocol twice. When you
simulate it, Eve wins every time, and reads all the messages perfectly, taking 42 seconds on my Mac Mini.
Career criminals start here? I dunno.

9 And there’s more

Real quantum supremacy comes when you can calculate many things in parallel, using the fact that n qubits
can simulate 2" classical states (not just could be in one of 2" states, but simulate them all at once), and then
you can read out the answer by measuring those n qubits, or sometimes only one of them. The examples
I've shown so far work with single named qubits, which is fine for a start but doesn’t really cut it when
you want to do something more real. Qtpi wasn’t intended to deal with quantum computation proper, but
with some linguistic innovation it can be pressed into service. There isn’t space, you’ll be glad to know, to
explain the algorithms which I can illustrate.

The most important innovation is qubit collections, which are a bit like arrays of qubits. A collection can
be indexed to gate an individual qubit, or split into smaller collection, or joined into larger collections, but
a collection must be sent and measured as a single unit. That restriction enables qtpi to still run a static
resource check but to get the advantages of arrays or lists of qubits, which would otherwise be static-check
no-nos. Qubit collections are used to simulate Grover’s search algorithm (Grover, 1996)(gro): see figure
17. There’s lots of use of overloaded arithmetic operators including exponentiation of kets (| +>®®@n) and
matrices T®®n There are special operators to gate (>>>) and measure (4) a qubit collection.

Iterative processes are another innovation: Miranda taught me, I believe, that iterative list comprehensions

FACS FACTS Issue 2022-1 lanuarv 2022

33

proc W (c,n) =

if n<=0 then (let _ = abandon ["W "; show n; " is impossible™]) . _0O
elsf n=1 then (newgs gs = [1>) clgs . _0
else . (let k = floor (n/2))
(new cl)
| W (cl,k)
| . cl?(g0s)
. out!["W "; show n; " has "; show (n/2); "\n"]
(newgs gls = |0>®@® (n-k))
(newg anc = |+>)
| i+-ixs k: anc,qg0sli,qgls)i>>F . out!["."] . _0
. out!["W "; show n; " has done its Fs\n"]
| i+-ixs k: glsli,anc>>CNot . out!["."] . _0
. out!["W "; show n; " has done its CNots\n"]

. disposel!anc
(joings g0s, gls — gs)
clgs
_0
proc Wmake (c,n) =
(let k = powerceiling 2 n)

| W (c,k)
[. c?(gs)
.oout!["Ww "; show k; " = "] . outg!qvals gs . out!["\n"]
if k=n then _0
else
out!["discarding "; show (k-n); " gbits "]
(splitgs gs — g0s(k-n),gs)
a0s# (bs)
out! ["which measured "; show bs; ", leaving "] . outqgl!gvals gs
if forall (A b . b=0b0) bs then out!["\n"] . _0
else out![" -- round again!\n"] . Wmake (c,n)

proc System () =
(new c)
(let n = read num "how many gbits")
. Wmake (c,n)

Figure 18: Computing a W state in qtpi

were better at expressing operations on lists than recursion can be. Qtpi’s iterative processes are heavily
restricted, of course, to support the static check on qubit and qubit collection resource. There’s an iterative
sub-process in figure 17 —it’s the line starting *. |-’ in the System process which takes the list 0..iters — 1
and for each element, gates the gbit collection gs through U and then G. It does so in two steps because
gating through G*U wouldn’t be able to exploit the diagonal nature of U — oh the joys of matrix hacking!

The foundation of the algorithm is the two gates G and U, built by the groverG and groverU functions: U is
diagonal and mostly 0, but G is mostly 22”2, This is a proper quantum computation example, and the time
and space it takes grow exponentially with the size of gs. Nevertheless, qtpi on my Mac Mini can handle
18 qubits, which require moderately large matrices and 402 iterations of the quantum steps, in 75 seconds.
Time is the limitation in this example, rather than space: simulating 19 qubits requires 569 iterations and
takes 270 seconds (about four times longer) but uses only 338 MB of memory (about four times more).

I spent a good part of the first Covid-19 lockdown of 2020 improving qtpi’s treatment of sparse matrices,
including functional representation of some matrices. That helped a lot with Grover’s algorithm, but it

FACS FACTS Issue 2022-1 January 2022

34

helped even more with an algorithm that creates W states, an entanglement in which in every possible state
only one qubit is |1} and the rest are |0) (Diir et al., 2000). Figure 18 is adapted from an algorithm in
Microsoft’s Quantum Katas (Microsoft, 2020). There are two iterative sub-processes in the W process, each
of which indexes a collection (g0sl)i and g1sl)i). Once it’s produced an entanglement, W joins its two
collections together with joings.

If you ask for a number of qubits that isn’t a power of 2, the algorithm has to make too many and throw
some away, using a splitqgs binder and a collective measurement of the discarded bits (q0s /~ (bs)) in
the Wmake process. If the measurement shows q0s as all |0), then the |1} qubit must be in gs. If not, the
simulation has to try again, which happens a little less than half the time in the worst case.

Qtpi can create a W state of 1024 qubits, on my 64-bit-address-space Mac mini, in 30 seconds. That
means that it has to use matrices which are up to 21924 x 21024 wel] outside the computer’s address range.
Functional sparse matrices rule!

As to Shor’s algorithm, which factors integers and which people always ask about: I don’t understand it yet.
As soon as [do, I'll have a go at simulating it.

10 Conclusion

Qtpi is a simulator and calculator for quantum protocols and smallish quantum computing problems. You
can get it, with examples and documentation, from github.com (qtp). Please get it, play with it, and please
tell me whether or not it Brings You Simple Joy Of Calculation.

References

Copenhagen interpretation. URL
https://en.wikipedia.org/wiki/Copenhagen_interpretation. 24

Grover’s algorithm. URL https://en.wikipedia.org/wiki/Grover’ s_algorithm. 20
Qtpi quantum simulator. URL https://github.com/mdxtoc/gtpi/releases. 1,22

Samson Abramsky and Richard Bornat. Pascal-m: a language for loosely-coupled distributed systems. In
Y. Paker and I.P. Verjus, editors, Distributed Computing Systems (Synchronisation, Control and
Communication), pages 163—-189. Academic Press, 1983. 5,7

John S Bell. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika, 1(3):195, 1964. 26

C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin tossing. In
Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, page
175, India, 1984. 15

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W K Wootters. Teleporting an unknown
quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70
(13),1993. 9

Richard Bornat. A protocol for generalized occam. Software: Practice & Experience, 16(9):783-799,
1986. 4

Christian Cachin and Ueli M Maurer. Linking information reconciliation and privacy amplification.
Journal of Cryptology, 10(2):97-110, 1997. 17

FACS FACTS Issue 2022-1 January 2022

35

Vladimir Chistiakov, Anqi Huang, Vladimir Egorov, and Vadim Makarov. Controlling single-photon
detector id210 with bright light. Optics express, 27(22):32253-32262, 2019. 17

Macauley Coggins. How to perform addition on quantum computers, 2020. URL
https://thegquantumdaily.com/2020/01/10/
quantum-programming—-101-how-to-perform-addition-on-guantum—-computers/.
13

Wolfgang Diir, Guifre Vidal, and J Ignacio Cirac. Three qubits can be entangled in two inequivalent ways.
Physical Review A, 62(6):062314, 2000. 22

Albert Einstein, Boris Podolsky, and Nathan Rosen. Can quantum-mechanical description of physical
reality be considered complete? Physical review, 47(10):777, 1935. 26

Artur K. Ekert, John G. Rarity, Paul R. Tapster, and G. Massimo Palma. Practical quantum cryptography
based on two-photon interferometry. Phys. Rev. Lett., 69:1293-1295, Aug 1992. doi:
10.1103/PhysRevLett.69.1293. 8, 15

S. J. Gay and R. Nagarajan. Communicating quantum processes. In 32nd Symposium on Principles of
Programming Languages (POPL 2005), pages 145-157, 2005. doi: 10.1145/1040305.1040318. Also
arXiv:quant-ph/0409052. 1, 2

Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, pages 212-219, 1996. 20

Inductiveload. Circuit diagram of a full adder, 2009. URL
https://upload.wikimedia.org/wikipedia/commons/archive/6/69/
20140323122652%21Full-adder_logic_diagram.svg. 13

N David Mermin. Could Feynman have said this? Physics Today, 57(5):10, 2004. 24
David A Meyer. Quantum strategies. Physical Review Letters, 82(5):1052, 1999. 8

Microsoft. Q# kata on superposition, task 16, WState_PowerOfTwo_Reference, Aug 2020. URL
https://github.com/microscft/QuantumKatas/tree/main/Superposition/
ReferenceImplementation.gs. (visited 2020/10/08). 22

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, 1. Inf. Comput., 100(1):
1-40, 1992. 2

Eleanor G. Rieffel and Wolfgang Polak. An Introduction to Quantum Computing for Non-Physicists. ACM
Comput. Surv., 32(3):300-335, 2000. Also arXiv:quant-ph/9809016. 9, 24

Mark N Wegman and J Lawrence Carter. New hash functions and their use in authentication and set
equality. Journal of computer and system sciences, 22(3):265-279, 1981. 17

W. K. Wooters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299(802):16-23, 1982. 5

FACS FACTS Issue 2022-1 January 2022

1=

Figure 19: Quantum state: a vector in a unit circle

A Shut Up and Calculate

Quantum mechanics is an extremely effective description of very much of what we know about the universe.
Physicists and philosophers debate what it means: in particular the observable phenomenon of entangle-
ment and the matter of quantum measurement remain knotty scientific and philosophical problems. The
Copenhagen interpretation, developed by Heisenberg and Bohr in the early twentieth century and admirably
summarised on Wikipedia (cop) has been wittily summarised by Mermin (Mermin, 2004) as ‘shut up and
calculate’. Qtpi is a calculator. I shall try, in this discussion, to shut up about What It All Means, and write
DDM, for Deep Dark Mystery, where I don’t want to say too much in case I get it wrong.

A good place to start is where [started, with Reifell and Polak’s “Introduction to Quantum Computation for
Non-Physicists”(Rieffel and Polak, 2000). Everything in this appendix can be found there, and more, but I
think it worthwhile to give enough detail here to underpin the examples in the paper.

Quantum mechanics is vector and matrix arithmetic. It’s that simple, though of course why it works as a
description of the real world — and it does — is a DDM.

A.1 The basics: qubits, quantum states, measurement

A qubit is a physical object with a quantum property, such as a photon with plane or circular polarisation or
an atom with spin, or even position if it’s quantised. It doesn’t matter what quantum property you choose:
they all obey the same algebra.

The quantum state of a single isolated qubit can be seen as a vector: see, for example, the heavy arrow in
figure 19. By convention the vector is length 1, and it can then be described by two amplitudes, projections
onto orthogonal basis vectors, here shown as |1) and |—). In the figure the vector is at 62° to the vertical,
and the amplitudes are given as approximations to sin 62° and cos 62°. In Proper Quantum Mechanics (and
also in qtpi since Raja insisted) the amplitudes are complex numbers, but for the purposes of the examples
in this paper you can stick with real numbers. Complex amplitudes are a DDM.

Every state can be written as the sum of basis vectors, each multiplied by an amplitude, that is as a superpo-
sition of the basis states. For a single isolated qubit superpositions are that simple, but it gets a little stranger
with entanglement.

If you pick different basis vectors then the same quantum state — the same vector — will have a different
description: see, for example, figure 20. Just rotate your basis vectors — your view of the state — and the
amplitudes change. Note that this makes superpositions very unmysterious: a basis vector in figure 19 is a
superposition in figure 20, and vice versa.

36

FACS FACTS Issue 2022-1 January 2022

IND Ve X

Figure 20: Quantum state: same state as figure 19, different basis vectors

Quantum measurement is mysterious, and there’s no getting round the fact. To measure the state of a
physical qubit you must use a physical device, and the device must use two orthogonal basis vectors. The
measurement will, with probabilities which are the squares of the amplitudes of the vector in that basis,
report one basis vector or the other — a binary result - and it will change the quantum state to that basis
vector. Ouch! There is absolutely no way to measure the state of a qubit if it isn’t a basis vector already.
Ouch! again.

The squares of the amplitudes, if they were real numbers as in my example, would by Pythagoras’s theorem
sum to the length of the vector, which is 1. Because they are complex numbers in general, we use the norm
squared: |z|? = zz*, where z* is the complex conjugate'!, so |z + iy|* = 22 + y?. The probability of
measuring | 1) if the quantum state is a |) + b|—) is |a|?, and of measuring |—) is |b|2.

Actually the length of the vector in a quantum state doesn’t matter: multiplying by a scalar, even a negative
scalar, makes no difference to the ratio of |a|? and |b|?. That means that +|1) and — |1) are the same
quantum state, and that means that even when a state is a tensor product, not an entanglement, it can’t be
uniquely decomposed.

Dirac’s bra-ket notation is universally used, and has already been abused in the paragraphs so far. A bra is
a row vector and is shown as {...|; a ket is a column vector and is shown as |...). Quantum states are kets.
The bra (x| is the conjugate transpose'” of |x) and vice-versa. You can do standard vector arithmetic with
bras and kets — see, for example, figure 17.

The computational basis is the pair {|0)./1)}. where |0) is the column vector (}) and 1) is ({). The

1 1
—)} where |+) is the column vector (ﬁ) and |—) is (\/\%) Qtpi’s
E - 53

symbolic calculator, like this paper, represents % with the symbol h (nothing to do with Planck).

diagonal basis is the pair {|+),

The quantum state of multiple qubits is a 2"-component column vector. Its basis vectors are the tensor
product!? of the individual states” basis vectors: a 3-qubit state in the computational basis, for example, has
basis vectors |000), [001), |010), ..., [110), [111). If the qubits aren’t entangled (we’ll come to that), the

" Complex conjugate: flip the sign of the imaginary part, so (z+1y)" =z —iy.
'2 Conjugate transpose: transpose and flip the signs of the imaginary parts.

13 The tensor product of a vector xg..,—1 and a vector yo..m—1 1 like n copies of y, each multiplied by a value from z.

(x @ y)imt; = Ty,

37

FACS FACTS Issue 2022-1

38

state overall is the tensor product of the individual states.

A.2 Entanglement

Hold on, said Einstein, Podolsky and Rosen (Einstein et al., 1935): this doesn’t make physical sense. They
had spotted what they thought was a bug: it seems possible that a pair of qubits, with basis vectors |00},
|01), |10}, |11), could be in the state h |00) + h |11) — 50% chance of both being |0}, 50% chance of both
being |1}, 0% chance of anything else. It would seem that if you measured the first qubit and found |0}, and
then measured the second, it would have to be |0} too; or if the first measured |1) then so would the second.
The time between the measurements, and the distance between the sites of measurement, doesn’t seem to
matter. ‘Spooky action at a distance’, Einstein called it. Can’t be right.

But it is right. Bell (Bell, 1964) showed that EPR states are one way to distinguish quantum physics from
what had come before, and experiments have proved that reality seems to work the quantum way, with the
experimental time between measurements so short, and the distance between sites so wide, that there can’t
be any communication even at the speed of light. Spooky indeed, and why it works is still a DDM.

It’s actually really easy to produce the EPR state in quantum computing, using CNot and H gates, and those
states play a significant r6le in quantum algorithms. They are called entanglements because you can’t take
them apart: there are no two-element kets |z) and |y), for example, such that |z) ® |y) = h|00) + h|11).

A.3 Gates

Quantum gates are unitary matrices of complex numbers: square matrices M such that M M* (where
M™ is the conjugate transpose of M) is a unit matrix, with 1s on the diagonal and Os everywhere else.
(This property makes quantum gates reversible, which is a DDM.) Quantum gates for a single qubit are
2 x 2; quantum gates for n qubits are 2" x 2™, That means that the memory and time needed to simulate
computation with n qubits grow exponentially with n. Oh dear!

What gates do is to rearrange the amplitudes in a quantum state: they can be applied to a state which is a
basis vector, of course, but they do most of their work on superpositions. Nevertheless, it can be helpful to
read a quantum gate in terms of what it does to basis vectors.

Here are some single-qubit gates:

R
< 02 (o)
2 02% 6%
T A (Y

I (identity) leaves the amplitude multiplying |0) alone, and likewise the amplitude multiplying |1} —i.e. it
makes no change. X (exchange) swaps the amplitudes. Z negates the amplitude multiplying |1), which
doesn’t do anything about the probabilities the vector encodes but may affect future calculations. In the H
(Hadamard) matrix I write h for % it rotates the state from the computational to the diagonal basis. Of

all of these H is the most interesting: it’s its own conjugate transpose, so (remember that H H* = T) it also
rotates from the diagonal to the computational basis. And H®®", the tensor product of n copies of H, is

January 2022

FACS FACTS Issue 2022-1 January 2022

such that (H®®"); ; = (=1)*Jh", which means that it's easy to represent as a functional sparse matrix
(1" is even easier, of course).

Applying a gate to one of the qubits in a multi-qubit state, even an entanglement, is possible: the chosen
one goes through the gate and the rest go through 1. So to apply a single-qubit gate G to the nth qubit in an
m-qubit state you apply (12"~} @ G @ (1920m—n=1)),

Two- and three-qubit (and ...) gates exist. Two that are used in the examples in the paper and are held to be
useful are CNot (2 qubit) and Toffoli (3 qubit):

100) — |00) 1000
~jo1) — o) 0100
CNot:110) S 1) 000 1
11) — |10) 0010

000) —[000) /1 0 0 0 0 0 0 0

001) —1001) [0 1 0 0 0 0 0 0

010) —1010) [0 0 1 0 0 0 0 0

oy o1ty foo o0 100 00

Toffoli= 60y 500y o0 00 1 0 0 0

101) —]101) |0 0 0 0 O 1 0 0

110) > [111) {0 0 0 0 0 0 0 1

111y =110y \0 0 0 0 0 0 1 0

CNot swaps the |10} and |11) amplitudes. Sometimes this is described as flipping the second bit |0) «— [1)
if the first is [1), but actually it is more powerful than that, because it swaps the amplitudes of the |10) and
|11) states: that aids parallelism in the full adder (section 7). Toffoli does a similar thing, but with |110) and
111).

39

FACS FACTS Issue 2022-1 January 2022

LMS-FACS Evening Seminar 2021

Underpinning Mainstream Engineering with
Mathematical Semantics

Professor Peter Sewell
University of Cambridge

November, 2021

Reported by: Rob Heirons

Synopsis

Despite 80+ years of research on semantics and verification, mainstream computer
systems and their engineering development processes remain almost entirely non-
formal, reliant on ad hoc testing and prose specifications. These have been good
enough for industry to thrive, but their inability to exclude errors is one of the root
causes of today's endemic security failures.

In this talk, | discuss what it takes to put mathematically rigorous semantics to work for
full-scale mainstream systems, touching on scientific, engineering, and social aspects,
and on the benefits and costs. This draws on work with many colleagues on various key
interfaces: processor architectures, programming languages, and network protocols;
and on the CHERI and Morello projects, extending conventional architectures and
languages with hardware support for capabilities, for fine-grained memory protection
and encapsulation.

Taking mainstream engineering artefacts seriously also prompts new theory and tools,
e.g., for the relaxed shared-memory concurrency semantics of real machines, quite
different from traditional concurrency semantics, and for the semantics of C and of
CHERI capabilities.

About the speaker

Peter Sewell is a Professor of Computer Science at the University of Cambridge. His
research aims to enable rigorous semantics-based engineering of mainstream systems,
including real-world concurrency semantics, instruction-set semantics, and CHERI. His
PhD was with Robin Milner in Edinburgh. He has held ERC AdG, EPSRC, and Royal
Society research fellowships. With Watson, Moore, and Arm, he was one of the
instigators of the UKRI Digital Security by Design programme, supporting development
of the Arm Morello prototype CHERI Armv8-A architecture, processor, software, and
semantics.

40

FACS FACTS Issue 2022-1 January 2022

On Thursday 19" November 2021, Professor Peter Sewell, from the University of
Cambridge, gave the annual FACS/LMS talk. The event was hybrid, with approximately
ten people in attendance physically and over 80 online. | believe that this was also the
first hybrid talk to be held at De Morgan House. The format worked well, allowing many
guestions from both the physical and online audiences.

The title of the talk was “Underpinning mainstream engineering with mathematical
semantics”. Within this, Professor Sewell described research in areas such as network
protocols, relaxed memory concurrency in hardware (processors) and relaxed memory
concurrency in programming languages. Within these, he discussed a number of
common problems. In most cases, there was no formal specification and the natural
language descriptions available were imprecise and of relatively little value. In addition,
these systems are extremely complex and there is a need for any formalism to cope
with this complexity.

The work described addressed these problems by devising a mathematical language
(formalism) that was specifically designed for the problem domain and that could also
be mechanised through, for example, a theorem prover. Specifications were built
through what was essentially an experimental process: by producing a specification
based on observations. The complexity of the systems considered led to observations
being entirely black-box and so specifications described interfaces. An important
benefit of this approach was that the (mechanised) specifications could act as test
oracles.

Professor Sewell finished the talk with a description of some of the work being carried
out in the CHERI project. This project, which involves academics and researchers from
Arm, aims to design a processor that provides guarantees regarding (the absence of)
certain types of vulnerabilities associated with memory usage. The work is thus
different from the previously described research since semantics were used at the
design stage. Professor Sewell largely concentrated on one of the features of CHERI,
which is to enrich pointers with additional information about how they can be used,
allowing these requirements to be checked in real-time.

The talk was recorded:

https://www.voutube.com/watch?v=LegbCTdsX0Oo

and the original announcement with details is given here:

https://www.bcs.org/events-calendar/2021/november/Imsfacs-talk-

underpinning-mainstream-engineering-mathematical-semantics/

41

https://www.bcs.org/events-calendar/2021/november/lmsfacs-talk-underpinning-mainstream-engineering-mathematical-semantics/
https://www.bcs.org/events-calendar/2021/november/lmsfacs-talk-underpinning-mainstream-engineering-mathematical-semantics/
https://www.youtube.com/watch?v=LeqbCTdsXOo

FACS FACTS Issue 2022-1 January 2022

Rob Hierons introducing Peter Sewell’s talk.

Many people contributed to the success of the event. | would like to thank Professor
Sewell for accepting our invitation and for given an informative and thought-provoking
talk. The support of both the BCS-FACS committee and the LMS Computer Science
committee, led by Professor Bowen and Professor Wong respectively, was also crucial.
Finally, | would like to thank Katherine Wright for her patience and for organising the

event.

Peter Sewell at the start of his talk.

42

FACS FACTS Issue 2022-1 January 2022

Peter Sewell, explaining the importance of solid foundations in hardware and software!

Remote access via Zoom, including comments and questions by online participants.

All photographs by Jonathan Bowen

43

FACS FACTS Issue 2022-1 January 2022

SEFM 2021 Conference Report

Jonathan Bowen
Chair, BCS-FACS,

December 2021

Overview

The SEFM 2021 19th International Conference on Software Engineering and Formal
Methods (https://sefm-conference.github.io) was held entirely online due to the Covid
pandemic during 6-10 December 2021, with free registration. The conference was
jointly organised by Carnegie Mellon University (USA), Nazarbayev University
(Kazakhstan), and the University of York (UK).

During 6-7 December, a number of online one-day workshops and a two-day
symposium were held, including OpenCERT 2021, 10th International Workshop on
Open Community approaches to Education, Research and Technology
(https://opencert.github.io), at which | presented a paper on Formal Methods
Communities of Practice: A Survey of Personal Experience (Bowen, 2021b). This was
partly inspired by Egon Borger’s 75" Festschrift earlier in the year in association with
the ABZ 2021 conference (Bowen, 2021a), which | attended with a paper presentation
online. See also Tim Denvir’s review of the Festschrift proceedings elsewhere in this
issue of FACS FACTS. A number of FACS members attended the OpenCERT talk online.
A Springer LNCS post-proceedings is planned.

Co-located workshops and symposium with the SEFM 2021 conference.

44

https://opencert.github.io/
https://sefm-conference.github.io/

FACS FACTS Issue 2022-1 January 2022

The main SEFM 2021 conference was held during 8-10 December, with a keynote
speaker on each day of the conference. | attended a number of the talks, including a
keynote talk by Ana Cavalcanti, University of York, chair of Formal Methods Europe
(FME) the FACS FME Liaison Officer, on RoboWorld: where can my robot work?

The SEFM 2021 proceedings has been published in the Springer LNCS series (volume
13085), appearing in time for the conference (Calinescu and Pasareanu, 2021).

SEFM 2021 opening page on Zoom.

Keynote speakers at the SEFM 2021 conference.

45

FACS FACTS Issue 2022-1

Ana Cavalcanti’s keynote talk at SEFM 2021.

The opening slide for Ana Cavalcanti’s keynote talk.

46

January 2022

FACS FACTS Issue 2022-1

Conclusion

The SEFM 2021 conference and its associated
workshops went well in the circumstances, being
forced to be completely online in the current
pandemic circumstances. An advantage is that it is
easy for anyone to attend from all over the world,
with no travel costs and free registration. The ease of
recording online talks also means that that they can
be made available for later listening. A significant
disadvantage is that personal networking is much
less effective online, meaning that future
international research collaborations are more
difficult to foster. From personal experience, starting
new research cooperation is much easier with
someone that one has already met in reality. A
physical conference is an ideal opportunity for this.
After this initial contact, collaboration online is
easier. In addition, for online conferences, there are
timetabling issues with speakers and the audience in
different time zones around the world.

January 2022

For further information on SEFM 2021, see: https://sefm-conference.github.io

Information on the SEFM 2021 proceedings

47

https://sefm-conference.github.io/

FACS FACTS Issue 2022-1 January 2022

References

Bowen, J.P. (2021a). ABZ 2021 Conference Report. FACS FACTS, 2021-2, pp. 65—70,
July 2021. URL: https://www.bcs.org/media/7577/facs-jul21.pdf

Bowen, J.P. (2021b). Formal Methods Communities of Practice: A Survey of Personal
Experience. In OpenCERT 2021, 7 December 2021. URL:
https://opencert.github.io/2021/Pre-proceedings/Bowen-Breuer.pdf

Calinescu, R. and Pasareanu, C. S. (eds.) (2021). 19th International Conference, SEFM
2021, Virtual Event, December 6-10, 2021, Proceedings. Springer, Lecture Notes in
Computer Science, volume 13085. DOI: 10.1007/978-3-030-92124-8

ESX LY =T6VT
Ly X eV =T20C
EVXTIY =€9.1

CZIN SaUJ!Jd SAIINDI3aSU0DI OM] JO 13npOJd aq1 LIDE'a
2Je T6YZ PUE TZOT ‘€9LT SI2GUINU 3y} JO 91U1 ||V

((y @8ed aas) zinb sewisuy) uonsanb-auo, s,wi| 0} Jamsuy

48

https://doi.org/10.1007/978-3-030-92124-8
https://opencert.github.io/2021/Pre-proceedings/Bowen-Breuer.pdf
https://www.bcs.org/media/7577/facs-jul21.pdf

FACS FACTS Issue 2022-1 January 2022

Short Reports: CALCO 2021, MFPS 2021, and FMAS 2021

August—September, 2021
Reported by: Margaret West

John Cooke and I registered for a hybrid co-located event viz:

Conference on Algebra and Coalgebra in Computer Science
(CALCO 2021)

and:

37th Conference on the Mathematical Foundations of Programming
Semantics (MFPS 2021)

which took place as a hybrid event from Salzburg, Austria between August 30th and
September 3rd 2021. See https://www.coalg.org/calco-mfps2021

There was a very interesting programme of papers from both Conferences which also
included a City walking Tour of Salzburg for those who attended in person. The walk
was transmitted via a head camera to those of us who attended online.

Third Workshop on Formal Methods for Autonomous Systems
(FMAS 2021)

This two day workshop proved to be both interesting and stimulating took place
between 21st and 22nd October 2021 and was hosted by Maynooth University, Ireland.

This can be accessed via its web site: https://fmasworkshop.github.io/FMAS2021/

The workshop presented recent work on formal verification of autonomous systems
and was intended in particular to stimulate collaboration between the robotics and
formal methods communities. There were two invited speakers by, respectively, Clare
Dixon and Divya Gopinath.

This web site includes a list of accepted papers which will subsequently be available online
via http://www.eptcs.org.

The invited talks are now available for everyone on the FME youtube channel:
https://www.youtube.com/channel/UC5rZjOAyBudcaOYRgEAX-Ow/videos

Clare Dixon: https://www.youtube.com/watch?v=qRzROixTcEY&t=8s
Divya Gopinath: https://www.youtube.com/watch?v=ml]3yVVy_BM&t=3s

49

https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DmIJ3yVVy_BM%26t%3D3s&data=04%7C01%7Cm.m.west@hud.ac.uk%7Ccf6606e89a724727236808d9be1f6ea5%7Cb52e9fda06914585bdfc5ccae1ce1890%7C0%7C0%7C637749864481569647%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=LBOC4mXean35VPzCjIZVmCDdugEse2U9vuCNQYBC7l0%3D&reserved=0
https://www.youtube.com/watch?v=qRzROixTcEY&t=8s
https://www.youtube.com/channel/UC5rZj0AyBudca0YRgEAX-Ow/videos
http://www.eptcs.org/
https://fmasworkshop.github.io/FMAS2021/
https://www.coalg.org/calco-mfps2021/programme/
https://www.coalg.org/calco-mfps2021/
https://doi.org/10.1007/978-3-030-92124-8
https://doi.org/10.1007/978-3-030-92124-8
https://doi.org/10.1007/978-3-030-92124-8

FACS FACTS Issue 2022-1 January 2022

Annual BCS-FACS Landin Memorial Seminar 2021

Making Concurrency Functional

Glynn Winskel
Huawei Edinburgh

December 2021
Reported by: Brian Monahan

One of the most challenging issues within computing lies in understanding systems
that involve concurrency. Many regard the problem as concerning how to provide some
kind of concurrent programming model that can enable developers to reliably design
systems involving a wide range of interacting concurrent agents and their behaviour.
Such an approach typically needs to provide not only an appropriate notation
but also, crucially, a well-defined semantic foundation. That foundation must
show how the notation defines agents and must also describe how they may
interact and evolve their configurations as a result.

There are many different approaches to specifying concurrent behaviour, typically
starting from a core notation which is then endowed with a behavioural semantics
describing computational reduction, interaction and communication, typically using
something like a Structural Operational Semantics involving inference-style rules and
bisimulation equivalences, as in the case of notations like CCS and tr-calculus, or by
using a bespoke domain of traces and failures, such as for CSP.

Glynn Winskel’s starting point is very firmly the other way about - his work starts out,
not with some notation for concurrent behaviour, but instead begins by investigating
fundamental mathematical structures which naturally lend themselves to an exploration
of interaction and dependency and therefore what it means for system behaviour to be
concurrent. As he states, his approach provides “a maths-driven foundation based on
distributed/concurrent games based on event structures, with interaction by
composition of strategies”.

At the start of the seminar, Winskel related the story of the sole one-to-one meeting he
had with Peter Landin himself. Winskel had approached Landin to discuss studying for
a PhD with him. During this rather informal meeting, the topic of concurrency came
up, with Landin proclaiming that he would start by considering concurrency in terms of
“dependencies between the scopes of variables”. Although Winskel went instead to
Edinburgh to study the semantics of concurrency with Gordon Plotkin, it turned out that
Landin’s earlier remark concerning dependency proved to be rather prescient.
Winskel’s thesis work developed the notion of Event Structure, based upon dependency
and conflict relations between events, which in turn provided the mathematical basis
for a semantic characterisation of Petri Net behaviour in domain theoretical terms.

50

FACS FACTS Issue 2022-1 January 2022

The remainder of the seminar presented a high-level tour of Winskel’s mathematical
approach to concurrency semantics. Broadly speaking, the basic ideas explored here
consider games to correspond to types/constraints and strategies to correspond to
programs/processes. Winskel started by reviewing the computational aspects of
functions with respect to interaction and in particular focused upon input and output
dependencies. The issue here concerns how one might desire functions to take further
inputs and also provide additional outputs in rather a piecemeal fashion, so as to
represent interaction and communication between concurrent agents in a natural,
compositional way. Clearly, this cannot work as such, but nevertheless contains a
valuable, core idea - how might it be possible to describe concurrent behaviour in a
way that is fundamentally compositional so that concurrent systems can be readily built
from independent parts using compositional combinators that naturally encapsulate
concurrent actions and behaviour. If such an approach could be found, it would
provide a naturally compositional approach to concurrent systems and their design (i.e.
in the same sense that pure functions are naturally compositional for functional
programming and design). The subtle difference between this approach and the
process algebraic approach is that process algebra imposes structure on a pre-defined
syntax structure via use of operational semantics rules and reductions, whereas with
this approach, the semantic relationships between entities are not directly imposed but
instead emerge naturally as inherent properties of entities having a well-formed
mathematical definition.

Event structures were then formally introduced as providing the basic structure upon
which Winskel’s approach to concurrency semantics is constructed - this introduces a
couple of fundamental relations over events that represent causal dependency and
conflict, satisfying a couple of simple properties.

The next big step is to introduce a structure which conveys what is intuitively meant by
interaction and this is the formal notion of (2-person) distributed game, based upon
separate work, initially by John Conway [1] and then taken in a more categorial
direction by André Joyal [2]. The insights behind this notion of game are fundamentally
combinatorial and structural in nature where games involve making discrete moves to
change some underlying configuration.

More notions and structures briefly touched upon in the rest of the seminar include the
important notion of Event Structures with Polarity, together with the notion of strategy.
Event Structures with Polarity importantly provide a way to represent 2-party games
between Process (as Player) and Environment (as Opponent) through alternating
markings. A strategy (for Player) in a game is then a choice of moves for Player
together with their causal dependence on Opponent moves - and symmetrically for
strategies for an Opponent. The important operation of taking the “dual”’ of a game is
then defined (by swapping Player and Opponent), together with the notion of parallel
composition which purely amounts to simple juxtaposition.

Further definitions and notions were also introduced, including ways to enhance and
extend behavioural characteristics to include quantum, probabilistic and real-number

51

FACS FACTS Issue 2022-1 January 2022

behaviour. The level of mathematical sophistication displayed here necessarily
increases with the introduction of various significant constructions taken from Category
Theory. These higher-level constructions help provide compositional tools that also
operate at a lower functional level.

The overall message of this excellent seminar is that this approach yields a purely
mathematical framework of distributed games and strategies that can be specialised to
functional approaches that can be enhanced to incorporate a wide-range of applied
computational phenomena, such as quantum, probabilistic, and real-number aspects,
and thus includes applications such as back-propagation for machine learning.

Finally, the meeting itself was held over Zoom with a good number in attendance (well
over 40 people). A video of the Zoom meeting will be made available in due course via
the BCS - together with the slides for this talk.

For anyone wishing to follow up further with Winskel’s research work and his approach
then there is also an introductory paper by Winskel in the previous FACS newsletter [3]
which goes to some length in describing many of the concepts briefly touched upon in
this talk. Many of Glynn Winskel’s research papers can also be found online at
https://www.cl.cam.ac.uk/~gw104/.

References
[1] J.H.Conway, On Numbers and Games, 2nd Ed, A K Peters/CRC Press; (11 Dec. 2000)

[2] A.Joyal.: Remarques sur la theorie des jeux a deux personnes. Gazette des sciences
mathematiques du Quebec, 1(4) (1997). English translation 2003 by Robin Houston.

[3] G.Winskel, Domain Theory and Interaction, FACS FACTS newsletter, Issue 2021-2, July
2021

Postscript

In an earlier draft shared with Glynn Winskel, | had a sentence saying that there was
no connection between work on distributed games and economic game theory - but
that turns out to be incorrect. There has been some research work to explore the
connections between the two areas - here are some relevant references:

Clairambault, P., Gutierrez, J., Winskel, G.: The winning ways of concurrent
games. In: LICS 2012: 235-244 (2012)

Winskel, G.: Winning, losing and drawing in concurrent games with
perfect or imperfect information. In: Festschrift for Dexter Kozen. Volume
7230 of LNCS., Springer (2012)

Hedges, J: Dialectica Categories and Games with Bidding, In Post-

proceedings of TYPES’14. Leibniz International Proceedings in Informatics
39:89-110, 2015

52

FACS FACTS Issue 2022-1 January 2022

Hedges, J, A first look at Open Games, Blog post,
https://julesh.com/2017/09/29/a-first-look-at-open-games/, 2017

Neil Ghani, Jules Hedges, Viktor Winschel, Philip Zahn: Compositional Game
Theory In LICS 2018: 472-481 (2018)

Glynn Winskel further observes that:

There’s a lot of overlap [between economic and concurrent game theory]
and | believe a great deal of traditional game theory can be subsumed
under concurrent games. A start is made in the paper with Clairambault
on Concurrent games with payoff—e.g. we show optimal strategies
compose; Hedges’s open games can be presented as parameterised
dialectica games and through concurrency, multiple players can be
expressed etc.

More work is needed of course ...

First slide of Glynn
Winskel’s seminar.

Glynn Winskel answering questions at the end of his
seminar.

(Screenshot by Jonathan Bowen)

53

https://julesh.com/2017/09/29/a-first-look-at-open-games/

FACS FACTS Issue 2022-1 January 2022

54

Book Review: Essays Dedicated to Egon Bérger on the
Occasion of His 75th Birthday

(Editors: Alexander Raschke, Elvinia Riccobene, Klaus-Dieter Schewe)

Reported by: Tim Denvir

Egon Bérger.

(Frontispiece of the Festschrift, from the ABZ 2016 conference website)

This volume, number 12,750 in the LNCS series, starts with an
account of Borger’s life and work by the editors. They give a
wide-ranging summary of Borger’s academic history, posts, and
significant publications.

Borger began his academic life in “philosophy” but this seems to
have consisted mainly in logic, indeed mathematical logic. They
assert “he spent two decades in logic and three decades in
computer science”.

The editors’ introduction is clearly written with great care and
noble attempts at rhetoric. For example: “Bérger is known not
only as an excellent scientist but also as a virtuoso for playing
with the dialectic antipodes of theory and practice”. They
describe how Borger originally wanted to go into music and
become a conductor, but was persuaded to study philosophy
instead. This he did at two of the most prestigious French
universities, the Sorbonne and Louvain.

https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DmIJ3yVVy_BM%26t%3D3s&data=04%7C01%7Cm.m.west@hud.ac.uk%7Ccf6606e89a724727236808d9be1f6ea5%7Cb52e9fda06914585bdfc5ccae1ce1890%7C0%7C0%7C637749864481569647%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=LBOC4mXean35VPzCjIZVmCDdugEse2U9vuCNQYBC7l0%3D&reserved=0
https://doi.org/10.1007/978-3-030-76020-5

FACS FACTS Issue 2022-1 January 2022

An early monograph dwelt on using formal language to express semantics (meaning), fact and
problems. The editors are highly critical of “official politics” at the Universitat Miinster which,
they say, prevented Egon Borger succeeding Dieter Rédding after the latter’s unexpected death
and, they claim, resulted in the university’s loss of reputation in computer science. One assumes
that Dieter Rodding was head of the computer science department. Bérger spent four out of five
of his sabbaticals with industrial companies. The authors emphasise Borger’s research and
involvement with Abstract State Machines and the many publications and organisations in that
area which he spearheaded.

There are 18 papers in the volume, by 44 authors. Many papers relate to Abstract State
Machines (something Borger himself was, as already noted, heavily involved with) but many
other topics are covered: Domain Knowledge (there are references to Michael Jackson, Pamela
Zave, Dines Bjgrner); Mitotic sets in computability theory; Cyber-physical systems; Stepwise
Design; Non-monotonic reasoning; Optimisation; The Requirements Process; B and Event-B;
Model Theory; Safety Assurance; Business Process Management. Throughout, the papers relate
their subject matter to semantics and almost all to ASMs. Several of the papers initially take the
form of letters to Egon Borger. In all, this volume is an exuberant wide-ranging sincere tribute to
Egon Borger and would be a pleasure, | think, to possess.

Picture Credit

Cover photo and photo of Egon Borger with kind permission from the organisers of the
Festschrift celebrated by LNCS 12750 and ABZ 2016.

Reference

LNCS 12750 Logic, Computation and Rigorous Methods: Essays Dedicated to Egon
Borger on the Occasion of His 75th Birthday. Springer Nature Switzerland 2021.
DOI: 10.1007/978-3-030-76020-5

55

https://doi.org/10.1007/978-3-030-76020-5

FACS FACTS Issue 2022-1 January 2022

Book review: Combinators: A Centennial View

By Stephen Wolfram
Wolfram Research

Reported by: Jonathan P. Bowen

A previous article in FACS FACTS (Bowen, 2021) has
discussed Russian logician Moses Schénfinkel (1888 -
1942) and his pioneering work on combinatory
logic, prompted by an online talk by Stephen
Wolfram (2020a), exactly a century to the hour after
a talk by Schonfinkel in Germany, where he was a
member of David Hilbert's group. Wolfram wrote
further on this in several December 2020 blog
posts on his Writings website (Wolfram 2020b).
These have now been expanded into the book
under review (Wolfram 2021).

Wolfram is in the enviable position of not having to
worry about research proposals from funding
bodies or research assessments. The success of his
eponymous company and its products, especially
the Wolfram Mathematica mathematical software
tool, means that he can pursue research interests in
whatever direction he wishes. Although a
mathematician, he has other collaborators with complementary research skills that can
help with archival research to put his mathematical interests into a historical context
with newly discovered historic documents. He is essentially a modern-day “gentleman
scientist” (now known more gender-neutrally as an “independent scientist”), just as
others like Aristotle, Charles Babbage, Charles Darwin, and Albert Einstein were in the
past, with enough personal resources, and of course expertise and skill, to pursue his
scientific interests as he wishes.

The book starts with three major sections, based on Wolfram’s online writings
(Wolfram, 2020b), followed by three shorter sections, an annotated bibliography, and a
rather small print but comprehensive index. The first large 160-page section has the
same name as the book and sets the overall scene regarding mathematical aspects of
combinators. The entire book is 362 pages long in total (321 pages without the
bibliography and index), so this section alone is around half of the book. The examples
use the “Wolfram Language”, a text-based functional language that enables
mathematical modelling and is the basis of Mathematica. The material is extensively
illustrated with visualizations. The section notes that combinators pre-date the concept
of a Turing machine, lambda calculus (both conceived in 1936), and even Gddel’s
incompleteness theorems (published in 1931). Schonfinkel’s ideas on combinators
presented in 1920 are probably the first examples of abstract universal computation,

56

https://en.wikipedia.org/wiki/G%C3%B6del's_incompleteness_theorems
https://en.wikipedia.org/wiki/G%C3%B6del's_incompleteness_theorems
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Wolfram_Language
https://en.wikipedia.org/wiki/Independent_scientist
https://en.wikipedia.org/wiki/Wolfram_Mathematica
https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/Stephen_Wolfram
https://en.wikipedia.org/wiki/Stephen_Wolfram
https://en.wikipedia.org/wiki/Stephen_Wolfram
https://en.wikipedia.org/wiki/Combinatory_logic
https://en.wikipedia.org/wiki/Combinatory_logic
https://en.wikipedia.org/wiki/Combinatory_logic
https://en.wikipedia.org/wiki/Moses_Sch%C3%B6nfinkel
https://en.wikipedia.org/wiki/Moses_Sch%C3%B6nfinkel
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DmIJ3yVVy_BM%26t%3D3s&data=04%7C01%7Cm.m.west@hud.ac.uk%7Ccf6606e89a724727236808d9be1f6ea5%7Cb52e9fda06914585bdfc5ccae1ce1890%7C0%7C0%7C637749864481569647%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=LBOC4mXean35VPzCjIZVmCDdugEse2U9vuCNQYBC7l0%3D&reserved=0

FACS FACTS Issue 2022-1 January 2022

as often modelled by the notion of a universal Turing machine. If the ideas had been
more widely publicized at the time, theoretical computer science could have taken a
different course. Combinators as introduced in 1920 are built from two basic
combinators, now known as s and k, which can be modelled as simple replacement
rules, namely, using the notation of the Wolfram Language:

six_1ly_llz_.] = x[zlly[z]]

kix_lly_-1] — x

Wolfram presents many examples using patterns in his Wolfram Language to build a
variety of complex objects. As a specific case, he demonstrates how the 16 different 2-
input Boolean functions (or “gates” if you are a computer hardware engineer) can be
modelled with just combinations of applying s and k. For example, the Nand
function/gate (“not and”, which can be used in combination to create any Boolean
function) can be modelled as the rather more complicated looking:

s [s [k [s [s [s] [K[K[KIIT 1111 [s]

with k[k[k]] representing True and Kk[k[s[k]]] representing False. Although the s/k
expressions can look complicated to the human eye, this does not detract from the
universality with which they can be used for modelling computation.

The section continues with even more complex examples using the Wolfram Language,
with various visualizations of these. These include application to chemical-like
“molecules”. The complexity of some of the patterns generated is reminiscent of
Turing’s later work on morphogenesis, based on deceptively simple mathematics to
produce perhaps unexpected shapes and patterns (Bowen et al., 2018).

The second 46-page section is entitled Combinators and the Story of Computation. This
takes a more historical view of early developments with respect to combinators, using
archival documents, many of which are newly discovered and presented in their
historical context. A significant number of these relate to Moses Schonfinkel himself.
Others are related to Haskell Curry (1890-1982), who studied for his PhD at the
University of Gottingen, the same university where Schonfinkel was based and
presented his combinator ideas in 1920. Curry adopted and developed Schonfinkel’s
approach. He had the opportunity to publish more widely than Schonfinkel. Hence, we
now have the notion of “Currying” in computer science (converting a multiple-argument
function into a sequence of functions with a single argument), whereas it could have
become known as “Schonfinkeling” (Bowen 2020), although the latter would perhaps
trip off the tongue less easily!

The third 65-page section entitled Where Did Combinators Come From? Hunting the
Story of Moses Schonfinkel and an associated 14-page addendum entitled Where Did
Combinators Come From? Hunting the Story of Moses Schonfinkel provide more detailed
information on Schonfinkel’s life and work, with interesting historical evidence through
extensively researched documents sought from a range of sources by Wolfram’s team.

57

https://en.wikipedia.org/wiki/Currying
https://en.wikipedia.org/wiki/Haskell_Curry
https://en.wikipedia.org/wiki/Morphogenesis
https://en.wikipedia.org/wiki/Universal_Turing_machine

FACS FACTS Issue 2022-1 January 2022

The main section ends with the connections to Curry’s related research. The addendum
provides more information on Schonfinkel’s later life, which has been somewhat
shrouded in mystery. It includes information on Moses’s younger brother, Gregory
Schonfinkel, who lived in Moscow. This may be the reason that Moses ended up there.
There is little to go on with respect to Moses’s mental condition and even his precise
date of death (which could be 1940 or 1942). There are claims that Moses lived in a
‘communal apartment”, but this may have been Gregory’s apartment. Overall, the
addendum makes some progress, and it is possible to speculate, but there is still much
doubt about Moses’s later life and death. The addendum ends with some thoughts on
the work of Kazimierz Ajdukiewicz, who overlapped with Moses Schonfinkel in David
Hilbert’s group, and later produced some research work with similarities to
combinations, but with no explicit mention of Schonfinkel. It is assumed that they must
have interacted, but there is no documentary evidence for this.

A short section announces a $20,000 prize for an “S Combinator Challenge”. Wolfram
hypotheses the conjecture that the rule

Sfgx = flxllglx]

is sufficient to achieve universal computation by applying it repeatedly. Wolfram
believes that this may well be the case but has not proved it. If anyone reading this
review can prove or disprove this conjecture, then the BCS-FACS Specialist Group would
be delighted to invite that person to give a joint seminar with the London Mathematical
Society or in the annual Peter Landin Semantics Seminar series. Please contact the
author of this review in this case!

A further section includes relevant excerpts from Wolfram’s 2002 book A New Kind of
Science. A comprehensive bibliography related to combinators in various subsections is
provided, together with a helpful index, including names of the wide range of people
mentioned in the book.

Overall, the first section of this book is relevant to those interested in theoretical
computer science and later sections are relevant to those interested in the history of
computing and mathematics. Although there is no formal dedication page at the start
of the book apart from the appreciation in the preface, this volume provides an apt
memorial for Moses Schonfinkel, who deserves to be better known as a foundational
figure in computer science. Had his work and life not been cut short by sad
circumstances of later mental health issues and lack of support, this might have already
been the case. Unlike Turing, his status has not yet been elevated to an appropriate
level compared to his foundational achievement regarding the introduction of the idea
of combinators. This book goes some way to address that in both a mathematical and
historical context.

58

https://en.wikipedia.org/wiki/A_New_Kind_of_Science
https://en.wikipedia.org/wiki/A_New_Kind_of_Science
https://en.wikipedia.org/wiki/Peter_Landin
https://en.wikipedia.org/wiki/London_Mathematical_Society
https://en.wikipedia.org/wiki/London_Mathematical_Society
https://en.wikipedia.org/wiki/BCS-FACS
https://en.wikipedia.org/wiki/Kazimierz_Ajdukiewicz

FACS FACTS Issue 2022-1 January 2022

References

Bowen, J. P. (2021). Moses Schonfinkel and combinatory logic. FACS FACTS, 2021-1:23 - 25,
February. URL:https://www.bcs.org/media/6694/facs-feb21.pdf

Bowen, J.P., Trickett, T., Green, J. B. A., and Lomas, A. (2018). Turing’s Genius - Defining an apt
microcosm. In J. P. Bowen, J. Weinel, G. Diprose, and N. Lambert (eds.), EVA London 2018
Proceedings, pp155 - 162. BCS, Electronic Workshops in Computing (eWiC). ScienceOpen.
DOI: 10.14236/ewic/EVA2018.31

Wolfram, S. (2002). A New Kind of Science. Wolfram Media.
URL:https://www.wolframscience.com/nks/

Wolfram, S. (2020a). Combinators: A 100-Year Celebration. YouTube, 7 December 2020.
URL:https://www.youtube.com/watch?v=PG2G5xSzONQ

Wolfram, S. (2020b). Posts from 2020: December 2020. Writings.
URL:https://writings.stephenwolfram.com/2020/12/

Wolfram, S. (2021). Combinators: A Centennial View. Wolfram Media. ISBN: 978-1-57955-043-1
(hardback), 978-1-57955-044-8 (eBook).
URL:https://www.wolfram-media.com/products/combinators-a-centennial-view.html

59

https://www.wolfram-media.com/products/combinators-a-centennial-view.html
https://writings.stephenwolfram.com/2020/12/
https://www.youtube.com/watch?v=PG2G5xSz0NQ
https://www.wolframscience.com/nks/
https://doi.org/10.14236/ewic/EVA2018.3
https://www.bcs.org/media/6694/facs-feb21.pdf

FACS FACTS Issue 2022-1 January 2022

History of Computing Collection at Swansea University

The History of Computing Collection specialises in computing
before computers, formal methods, and local histories of
computing. An introduction to the Collection appeared in the
February 2021 issue of FACS FACTS (2021-1, pp.10-17). The
Collection is located on the Singleton Campus of Swansea
University; it can be visited by appointment. A small nhumber of
items from the Collection are on display in the Computational
Foundry, Bay Campus, which is the home of the Computer Science
Department. All inquiries welcome.

From the History of Computing Collection, Swansea University:

Unfinished Business: Abstract Data Types and Computer
Arithmetic

John Tucker
University of Swansea

The emergence of abstract data types is something of a landmark in the theory and
practice of programming. The basic idea is simple and beautiful: An abstract data type
is characterised by its operations and tests together with a list of their algebraic
properties, thought of as axioms or laws. Implementation details are hidden from the
abstract data type’s user. It is an abstraction that supports design, comprehension and
reasoning.

In the formal theory, the operations and tests are specified syntactically in a signature
X and their properties are specified in a set E of equations, or equations with
conditions, that the operations and tests are required to satisfy. Implementations are
modelled by certain algebras of signature X satisfying the laws in E. Two
implementations are equivalent if they are isomorphic as X algebras.

The abstract data type is a landmark notion of the 1970s for in it we see many
programming notions, such as: interfaces, axiomatic specifications, information hiding,
correctness, generics, etc. - combined and made precise, in a way that is conceptually
strong enough to support an enduring and surprising mathematical theory. The History
of Computing Collection has plenty of material on the birth of abstract data types. Here
| am going to look at their ancestry.

60

https://www.wolfram-media.com/products/combinators-a-centennial-view.html

FACS FACTS Issue 2022-1 January 2022

| have chosen two offprints from the Collection that are themselves landmarks in the
study of data types. Although they belong to ‘prehistory’, thinking about their legacies
reminds us of unfinished business for computer science, and serious unfinished
business at that.

Von Neumann and Goldstine on computer arithmetic

The first is an offprint of a truly fundamental paper by John von Neumann (1903-1957)
and Hermann Goldstine (1913-2004),

Numerical inverting of matrices of high order
Bulletin American Mathematical Society, 53: (11), (1947), 1021-1099.

It belonged to the Leslie] Comrie (1893—1950), a doyen of numerical computation
before computers, and was part of the library of his company Scientific Computing
Services Ltd, which now belongs to the Swansea Collection (Figure 1). Comrie founded
the company in 1937 following his dismissal from the Admiralty. In the company’s
prospectus he explained:

| am endeavouring to offer the scientific public an entirely new service -
namely computations of a scientific or technical nature, done by trained
professional computers using, whenever possible, the calculating and
accounting machines that are now available.

The company is regarded as the first scientific computing bureau.

Ostensibly, the von Neumann and Goldstein paper are about calculating the inverse of a
(positive definite) matrix on an electronic computer, a task necessary for the solution of
large sets of linear simultaneous equations. The importance of solving linear systems,
and the classical method of Gaussian elimination, cannot be overestimated, then or
now. But this contribution of November 1947 is much more.

Solving linear systems, including very large systems, was long known and had been the
subject of serious technical worries about rounding errors, not only by engineers but
by contemporary statisticians and economists such as the Harold Hoteling (1895 -
1973), whose analysis of the Gaussian Elimination method of 1943 give a bound of 4.
In our paper, von Neumann and Goldstine removed the pessimism surrounding solving
large sets of linear equations, and set a standard for the error analysis of algorithms
that stood for decades. However, the standard was so high that it cast a shadow over
the development of the mathematical analysis of rounding errors!

Von Neumann and Goldstine’s 80-page paper was the first to carry out a thorough and
definitive error analysis for computer computations. Of interest to us are the first two
chapters in which they discuss the sources of error in computer computations and, in
particular, they identify a class of numerical data types that we recognise as perfectly
formed computer arithmetics. Their computer arithmetics are data types based on fixed

61

FACS FACTS Issue 2022-1 January 2022

precision representations of rational numbers, in a base with s digits, and equipped
with the operators

The 1947 study of matrix computation belonging to L. J. Comrie

62

FACS FACTS Issue 2022-1 January 2022

Their definitions of the fixed precision representation are clear, precise and general:

A digital number x is an s-place, base B, digital aggregate with sign:
X = €(0y, ... , Qg)
where e=+lore=-landoy, ... , s € {0, 1, ... 6-1}.

In Footnote 13 (p.1032), they notice that these arithmetics can be found in the
computers they know:

All existing machines (or almost all) are decimal, that is, have B = 10.
With rare exceptions s = 7 to 10, for example, on the familiar “desk”
machines

s = 8 or 10. The “Mark I” computer at Harvard University has s =11 or
23.

Non-decimal machines of the future are likely to adhere, at least at first,
to the same standard: for example, B = 2, s = 30 to 4@.

Von Neumann and Goldstine give neat error bounds for applying the four operations.

They also look at the fate of some of the classic laws that characterise arithmetic. They
observe that addition does not present problems; that while commutativity of
multiplication survives, the axioms of distribution, associativity of multiplication, and
division as inverse to multiplication fail. However, they give nice error bounds to
measure the failure of the axioms, such as:

|(a x b) + b - a] < |b|?*B*?

with a warning for |b| << 1. (See pages: 1038—1039) The remaining 5 chapters of the
paper addresses matrices.

The shadow of the technical standard set by this analytical tour de force is interesting.
It has been dispersed by focussing on stability (= sensitivity to errors in input), which
proved to be more significant than quantitative error bounds. Alan Turing, in a paper
the following year, also addressed matrix calculations in great generality, introducing
LU factorisation and condition numbers. His colleague at the National Physical
Laboratory, James H Wilkinson (1919—1986), later settled many of the problems in the
course of his research (Wilkinson 1963, 1971). Also, working with floating point made
error analysis easier. Although present in Konrad Zuse’s designs, and in a sense a very
ancient number representation, floating point made its presence felt in computing
much later (Rojas 1997, Muller et al 2010).

63

FACS FACTS Issue 2022-1 January 2022

L-R: Julian Bigelow, Herman Goldstine, J. Robert Oppenheimer, John von Neumann

Finally, let us remember that Herman Goldstine and John von Neumann’s paper
appeared after the 2" World War had ended, after their work on the Manhattan Project
(Figure 2), and as electronic computers - at least some of them - came into the light.
Earlier that year, the first part of Goldstine and von Neumann’s Planning and Coding
Problems for an Electronic Computing Instrument was published at Princeton in April
1947; the remaining two parts appeared in April and August, 1948. These were
important days for computer science. The works by Goldstine and von Neumann,
including our numerical paper, count among the earliest attempts to make
mathematical models of practical computing machines.

van Wijngaarden on numerical analysis
The second offprint is by Adriaan ‘Aad’ van Wijngaarden (1916—1987) (see overleaf) :

Numerical analysis as an independent science.
BIT 6 (1966), 66 -81

and was mine from my time at the Mathematisch Centrum (MC), Amsterdam.

When von Neumann and Goldstine’s paper appeared that year, in 1947, van
Wijngaarden became head of computing at the MC. In the near 20 years that followed,
he worked on building the first computer in the Netherlands, employing Edsger
Dijkstra; supervising the theses of the rival pioneer machine designer Willem van de Pol
and the pioneer semanticist Jaco de Bakker; and, of course, developing the language
Algol 60, celebrated in this Newsletter in 2021. The intellectual world of Algol 60 is
evident in the paper, which was presented earlier at a conference in 1964.

64

FACS FACTS Issue 2022-1 January 2022

Now, Footnote 13 cited earlier suggests that von
Neumann and Goldstine’s mathematical model of
computer arithmetics covered the computers of the
period, at least as a far as they knew. So, its relevance to
practical computation at that time is immediate. The
scope of van Wijngaarden’s paper is different and quite
radical in its vision. It begins with the idea that numerical
analysis and computer computation can be thought of as
independent of the mathematics it is normally perceived
to serve. Indeed, the numerical analyst:

might also consider the result of the computation to
be the thing that he wanted to have, and the
"mathematical" concepts as approximations to his
"numerical" concepts.

(Page 66). Computation uses rational numbers only; and rational numbers is the
number system (= data type) needed to make measurements in the world and create
the data that are the raison d'étre for the scientific computers of the day.

The innovative idea of van Wijngaarden is to design an abstract, self-contained
framework for numerical computation. It builds directly upon his intellectual
experiences with Algol 60 with its aim to be a machine-independent language. He
guotes at length the Algol 60 Report noting its silence on the type real. The paper is
intimately connected with the Algol 60 world-view, but van Wijngaarden sees further.

His approach is to propose axioms for numerical computation that are independent of
how the type real might be implemented, though they are shaped by computing with
exact integers and floating-point numbers. He starts with the laws of equality and
order, mindful of the fact that familiar (mathematical) properties fail. Next come the
operations:

just as in von Neumann and Goldstine.

The errors that accrue are made explicit by axioms for a procedure tolerance(x,e),
where x is an ideal value and e measures imprecision. The ideas and postulates gather
pace as new operators are defined as little (Algol) procedures. Van Wijngaarden goes on
to address summations, limits, continuity, integration and differentiation. He sensitively
explores the immutable computational constraints of precision and finiteness.

The interplay of base functions and predicates and Algol procedures make the paper an
abstract machine independent study of data types for the needs of numerical work.

65

FACS FACTS Issue 2022-1 January 2022

Such an abstract view of computation was noticed but not always with understanding or
admiration. William M Kahan (Turing Award 1989) is famed for his lifetime’s work on
the practical sciences of numerical computation. He is popularly associated with the
IEEE Standard for Floating-Point Arithmetic (IEEE 754) of 1985. His experimental work
and his technical reflections are deep.

In the early 1990s he wrote a critique of van Wijngaarden’s then 20-year-old paper
complaining of the complexity of its 32 axioms, and that it did not apply to the CDC
6600 - the supercomputer of the time. The last point displays a partial blindness to
the nature of abstraction and portability in van Wijngaarden’s project. These complaints
were immediately rubbished by Edsger Dijkstra in EWD 1126-0.

Van Wijngaarden’s paper is cited in Tony Hoare’s An axiomatic basis for computer
programming of 1969; Jaco de Bakker’s early axiomatic work is also cited. Section 2 is
called Computer Arithmetic and some axioms for the integers are presented, including
ordering, addition, multiplication and 3 options for overflow. The axioms are needed to
prove the correctness of a simple division program based on an iteration. Hoare’s
paper is cited for its proof rules for partial correctness tailored to the while
programming language, and for the elegant case it makes for proving correctness. Its
influence was immediate, though it was a while before the proof rules received a pukka
logical analysis in Cook (1978). However, the true essence of this paper is in its title, of
course: axiomatisation!

Rather than make a natural detour toward abstract data types in general, let me stick to
computer arithmetics. There are several developments of so-called exact computer
arithmetics all designed to implement very reliable exact computations. One example is
interval analysis which focusses on implementations with rational number intervals;
this approach can be reformulated in various ways, not least using ordered Scott-Ershov
domains.

Loose ends

Thus, abstract data types, their axiomatic specifications and associated term rewriting
calculations and reasoning have a prehistory in arithmetical data types. But their
subsequent mathematical theory, specification methods, conceptual spinouts, case
studies, tools and applications have rarely returned to their ancestral numerical roots.
Computer arithmetics rarely figure in the monographs, textbooks and papers of
abstract data type theory.

So, what has abstract data type theory to say about the most important data type, the
rational numbers?

A programme of research was started by Jan Bergstra and myself when we developed
an equational specification of the rational numbers with the operations of +,-, x, *
in Bergstra and Tucker (2007). A division or inverse operator on the rationals is needed

66

FACS FACTS Issue 2022-1 January 2022

to make an algebra that is generated by its constants - a condition called minimality
that is necessary for an algebra to model a data type. But what to do about division by
zero? Having little patience with partial operations in abstract data types and their
painful semantics and logics, we took 0" = 0.

This was the beginning of quite a journey for research into laws of computer
arithmetic. We are focussed by different semantics for division by zero and the rational
number data type. Semantic options for division by zero we have explored are

0t =error, 0! = o (unsigned), 0' = +oo (signed).

In each case we have found equational specifications for corresponding algebras of
rationals, and gone on to study the axiomatic classes to which they belong - a topic for
another time (Bergstra and Tucker 2020, 2021). From this start, we hope to tie up some
of the loose ends and shorten the distance from abstract data types to practical
numerical computing.

References

J. A. Bergstra and J. V. Tucker, The rational numbers as an abstract data type, Journal ACM,
54:2, Article 7 (April 2007) 25 pages. https://doi.org/10.1145/1219092.1219095

J. A. Bergstra and J. V. Tucker, The transrational numbers as an abstract data
type. Transmathematica (2020). https://doi.org/10.36285/tm.47

J. A. Bergstra and J. V. Tucker, The wheel of rational numbers as an abstract data type, in
Roggenbach (eds) Recent Trends in Algebraic Development Techniques. 25" Workshop
WADT, Lecture Notes in Computer Science 12669, Springer, 2021, 13 - 30.
https://doi.org/10.1007/978-3-030-73785-6_2

S. A. Cook, Soundness and completeness of an axiom system for program verification SIAM J.
Computing., 7:1 (1978), 70 - 90. https://doi.org/10.1137/0207005

E. W. Dijkstra, Who failed? EWD 1126-0, Department of Computer Science, University of Texas at
Austen, 1992. https://www.cs.utexas.edu/users/EWD/ewd11xx/EWD1126.PDF

C. A. R. Hoare, An axiomatic basis for computer programming, Communications of the ACM,
12:10 (1969), 576 - 580. https://doi.org/10.1145/363235.363259

J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefévre, G. Melquiond, N. Revol, D.
Stehlé, and S. Torres. Handbook of Floating-Point Arithmetic. Birkhaiiser, 2010.

J. von Neumann and H. Goldstine, Numerical inverting of matrices of high order, Bulletin
Amerlcan Mathematlcal Soc:ety, 53: 11, (1947) 1021 - 1099

R. Rojas, Konrad Zuse's Legacy: The Architecture of the Z1 and Z3, IEEE Annals of the History of
Computing 19:2 (1997) 5 - 16. https://doi.org/10.1109/85.586067

67

https://doi.org/10.1109/85.586067
https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-53/issue-11/Numerical-inverting-of-matrices-of-high-order/bams/1183511222.full
https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-53/issue-11/Numerical-inverting-of-matrices-of-high-order/bams/1183511222.full
https://doi.org/10.1145/363235.363259
https://www.cs.utexas.edu/users/EWD/ewd11xx/EWD1126.PDF
https://doi.org/10.1137/0207005
https://doi.org/10.1007/978-3-030-73785-6_2
https://doi.org/10.36285/tm.47
https://doi.org/10.1145/1219092.1219095

FACS FACTS Issue 2022-1 January 2022

A.M. Turing. Rounding-off errors in matrix processes. Quarterly Journal of Mechanics and
Applied Mathematics, 1:1 (1948), 287 - 308. https://doi.org/10.1093/gjmam/1.1.287

A. van Wijngaarden, Numerical analysis as an independent science. BIT 6 (1966), 66 - 81.
https://doi.org/10.1007/BF01939551

J. H. Wilkinson, Rounding Errors in Algebraic Processes, National Physical Laboratory, HM
Stationery Office, 1963.

J. H. Wilkinson, Modern Error Analysis, SIAM Review, 1971, 13:4: 548—568
https://doi.org/10.1137/1013095

68

https://doi.org/10.1137/1013095
https://doi.org/10.1007/BF01939551
https://doi.org/10.1093/qjmam/1.1.287

FACS FACTS Issue 2022-1 January 2022

Logic and Machines: Turing Tradition at the

Logic School of Munster

69

FACS FACTS Issue 2022-1 January 2022

70

FACS FACTS Issue 2022-1 January 2022

71

FACS FACTS Issue 2022-1 January 2022

is an intimate connection between abstract machines and logic languages to
describe the machine behaviour, between logical expressivity and computational
machine power.

In fact, Scholz presented Turing’s freshly published work in a seminar talk
at the just founded logic institute, a seminar that has been called the world’s
first seminar on computer science [9]. Hans Hermes who at the time was a doc-
toral student at the institute® published right away in 1937 a first paper [142]
where he builds upon Turing machines. When in 1947, after the war and after
the Habilitation in mathematics at the University of Bonn, Hermes returned as
Dozent to Miinster he started regular lectures on the subject (since 1949) and in
1952 and 1954 wrote two other papers [144,145] where he adapted in a natural
way Turing’s definition of computation by a finiteness condition that better fits
computing decision problems (instead of numbers). This led him directly to the
halting problem. The definitions eventually went into his computability book of
1961 [147]. Together with Martin Davis’ computability book of 1958 [210] these
two early Turing machine based textbooks (which both went through various edi-
tions and had each a follower [185,211]) formed the mind of generations of logic
and computer science students concerning the basic concepts of computability
and undecidability.

1.1 Content of the paper

In this paper we illustrate how the early encounter between Turing and the
Logic School of Miinster triggered there for half a century (until Rédding’s early
death in 1984) a thorough investigation of the relations between logic and (in
particular machine-based) concepts and methods of computation, years before
they became a major theme for the new science of computing.®

» In Sect. 2 we report on the early Turing reception in Miinster.

m In Sect. 3 we report on the work where the School of Miinster enriched the
classical recursion theory by machine-based classifications of recursive func-
tions and by investigating links between machine computations and logical

4 Note that ibidem (see also https://en.wikipedia.org/wiki/Heinrich_Scholz) it
is also reported that Scholz was the only scientist worldwide outside the inner Cam-
bridge circle who asked Turing for a reprint of his decision problem paper [17], by
the way later also of [16]. HHow much Turing appreciated this interest can be seen
from https://ivvBhpp.uni-muenster.de/u/cl/. The authors of [251] found let-
ters of 1952/3 where Scholz tried (without success) to arrange for Turing a visit to
Miinster.

His doctoral dissertation on ” Eine Axiomatisierung der allgemeinen Mechanik” [143]
was submitted there in 1938.

In this paper we do not mention further the well-known research activities of mem-
bers of the school in traditional areas of logic, in particular set theory, model theory,
and proof theory. Nor do we mention further the numerous and intensive contacts
the members of the institute maintained with their colleagues in other logic centers
in Europe and the US.

o

72

FACS FACTS Issue 2022-1 January 2022

and algorithmic decision problems, work which contributed to the emerging
machine-based complexity theory in theoretical computer science.

= In Sect. 4 we report on Hasenjaeger’s and Rédding’s work to ‘materialize’
in hardware illustrative models of some outstanding computing machines,
built in what in the institute was called the Turingraum. We explain also the
effect this practical work had on the theoretical development of new models
of computation. In Sect. 9 we provide the underlying technical details.

m In Sect. 5 we report on Rodding’s and his students’ work on modular decom-
positions of different kinds of automata which found various applications in
other disciplines, among them an outstanding and rather intuitive dynamic
way to teach fundamental mathematical and algorithmic concepts to stu-
dents of elementary and high schools (see Sect. 6).

m In Sect. 7 we point to some alternative concepts of computation which
have been developed in the School of Miinster since the 1960s. They were
about computing with non-numerical objects and structures, like terms,
trees, graphs (networks of automata), topological structures, etc. Since the
late 1980s this theme found a renewed interest in theoretical computer sci-
ence and eventually led to the discovery of Abstract State Machines (ASMs).
We shortly explain how this concept, in addition to its theoretical interest for
logic and complexity theory, led in the 1990s to the development (far away
from Miinster) of the ASM Method which enhances the practice of rigorous
software design and analysis.

= In Sect. 8 we summarize the institutional impact the Logic School of Miinster
(together with the School of Freiburg) had on the advancement of mathemat-
ical logic, in particular in Germany, by contributing to and taking inspiration
from the practice and the theory of computing.

= In an appendix (Sect. 10) we show the genealogy of the School of Miinster.

2 Early Turing Reception in Miinster

The presentation of Turing’s paper [17] to the logic seminar in Miinster triggered
three early publications that used Turing machines (in 1937, 1952 and 1954),
written by Hermes who in 1937 was doctoral student of Scholz. In each of these
papers which were addressed to a general educated public Hermes used Turing’s
definitions but adapted them to the theme each paper proposed to explain. The
main modification with respect to Turing’s original paper concerned the concept
of computation or run of a Turing machine. Hermes tailored it by a finiteness
condition (together with requiring runs to start with some input and to terminate
with some output) that fits the definition of decision procedures, replacing the
computations of the more complex circle-free machines Turing had tailored for
computing infinite 0-1-sequences that represent real numbers in binary decimal
notation.” The finiteness condition led Hermes in a natural way to the halting
problem which is of lower arithmetical complexity than Turing’s circle-freeness

™ Turing notably used binary fractional numbers in a time when the rest of the world
thought decimal, except two years later Zuse and four years later Atanasoff [20].

FACS FACTS Issue 2022-1 January 2022

problem. The definitions went into the lectures Hermes delivered on the subject
regularly since 1949 (see the early lecture notes [146] published in 1955 and the
computability book [147]) and became part of common usage.

2.1 Turing Machines to Compute ‘Definite’ Predicates

In [142] Hermes saw a possibility to contribute to a rational discussion concern-
ing the foundational question whether in mathematics only ‘definite’ predicates
should be allowed, as claimed at the time by intuitionists and constructivists in
opposition to the ‘classical” understanding of mathematics. A predicate P (over
the natural numbers or over words of any given alphabet) was considered to be
definite if one can indicate a general procedure to decide for each argument z in
a finite number of steps whether P is true for z or not.

Hermes used Turing machines to replace the intuitive understanding of ‘a
general decision procedure’ by a precise mathematical concept. Therefore he
proposed to define P as definite if (our wording) there is a Turing machine M
such that for every argument z,

1. M started with input x
2. eventually yields a result, namely yes/no if and only if P(z) is true/false.

This became the standard definition of what nowadays we call a decidable
predicate P or also a predicate whose decision problem is algorithmically solvable
(see for example [210, p.69, Def.2.1]). The two features 1. and 2. had to be
integrated into the conceptual framework Turing tailored to compute numbers
[17].

Ad 1. To start a computation not with the empty tape—as Turing requires for
computing a number—but to ‘supply the machine with a tape on the beginning
of which is written some input’ is used by Turing in two places (without naming
it by a definition): for the construction of a universal machine [17, p.241] and for
proving the unsolvability of the Entscheidungsproblem [17, p.259]. Hermes uses
this input mechanism without changing the 0-1-representation of the input on
the tape.

Ad 2. To yield a result necessitates some way to determine when the compu-
tation reaches a point where it is ready to provide a definite output (read: the
answer whether P holds for the input = or not). Turing refers to such a feature
(without defining it) where in an indirect proof he speaks about computations
of the hypothetical machine D that decides circle-freeness and considers “when
it has reached its verdict” [17, p.247] for the given input. Hermes makes this
explicit by introducing a special symbol, say H, such that M, once started,

» after a finite number of steps will print the symbol H,

m up to this step has printed a 0-1-sequence that is interpreted to yield the
result of the computation,

s from this moment on will never print any more any digit 0 or 1.

Note that the third condition—which guarantees that the “verdict” concern-
ing the input question has been pronounced and will not change any more —
turns such machines into circular (maybe not even halting) machines, exactly

74

FACS FACTS Issue 2022-1 January 2022

those Turing was not interested in. We see here that the PhD student Hermes
paid some attention to not change anything in Turing’s definitions (neither of
TM-programs nor of their computations) but to only adapt the interpretation
of specific TM-runs to make them fit for ‘deciding a property in finitely many
steps’, instead of computing an infinite 0-1-sequence. In Sect. 2.2 we will see
that 15 years later, at the age of 40, Hermes replaces this veiled way to trick
a Turing machine to serve as a decision procedure by a more streamlined and
explicit definition of decidability of predicates and analogously computability of
functions.

2.2 Entscheidungsmaschinen and Halting Problems

In his second Turing machine paper [144] Hermes simplified the stipulations
made in [142] and made them more explicit, adding a termination convention to
obtain a conceptually simple concept of what he called Entscheidungsmaschine
(decision procedure): input/output Turing machines which, started with some
input, terminate their computation after a finite number of steps and provide as
result a yes/no answer to the input related question.

Technically this is achieved by adding to Turing machine programs at least
one dedicated termination instruction (g, a, b, move, halt) whose execution in
state ¢ when reading a leads the machine to the successor state halt in which the
machine will stop (read: has in its program no quintuple (halt,....) to execute).
Then one gets the definition of an Entscheidungsmaschine E we all became
used to and explained already above, i.e. E decides P if and only if for every =
the machine if started with input z halts after a finite number of steps and its
computation result is 1 (e.g. in its current working field) if and only if P(x) is
true. otherwise the result is 0.

The historically interesting fact one can observe here is that with such a
simple halting convention (of a kind everyvwhere used today) Hermes proves in
half a page, using a standard diagonalization argument, the undecidability of
various forms of what nowadays is called the halting problem, thus considerably
simplifying Turing’s proof of the undecidability of the circularity property [17,
pp.246-247]. The same year also Kleene [248, p.382] has proved the undecidabil-
ity of a halting problem.

2.3 Universality of Programmable Computers

In his third Turing machine paper [145] Hermes sets out to show why pro-
grammable computers, as already available in 1954, are universal in the sense
that one can construct a programmable computer such that for every computing
machine its computational power is included in the computational power of that
computer. This mathematical endeavor requires a mathematical definition of
a) ‘computing machines’ and of b) the ‘computational power’ of programmable
computers and computing machines.

75

FACS FACTS Issue 2022-1 January 2022

76

FACS FACTS Issue 2022-1 January 2022

77

can easily be encoded by corresponding links (gotos) between subprograms
of the computer program, one for each basic component machine. Obviously
it is assumed that there is enough memory (unbounded register content) to
store the given flowchart. For the connection in the flowchart visualization
each component has exactly one entry, the Test component has two exits
yes/no, all the other components have at most one exit:

R-ight machine,

L-eft machine,

M-ark machine (prints * in the working field),

N-ull machine (prints blank in the working field),

T-est machine (whether working field is marked or not)

2. Simplification of the tape: tape with a left end and infinite to the right, only
two symbols *, blank.
3. The following normalizations concern the concept of computation.

m Initialization: exactly one component is distinguished as the currently-
to-be-executed one. The initial tape is 7 (n a natural number) with the
working position on the rightmost marked field; 7 is the tape beginning
with blank % ...x (n occurrences of *) with completely blank rest of the
right-infinite tape.

m Stop criterion: after having executed a component without exit, the ma-
chine halts. The final tape is ¥ where y = f(n) and [is the computed
function. Only total functions are considered.

With these normalizations of TMs it is easy to encode an M-configuration
into the memory of a programmable computer as follows:
= place the sum of all 2% for all marked fields k into a register, say reg(tape),
m place the number of the current working field into a register, say workPos.
Thus it only remains to construct for each basic component machine ¢ a program
pgm(c) the computer will execute to simulate the behaviour of ¢, using a small
number of memory locations.
Remark. Historically two facts are worth to be noticed:

m Hermes uses (in 1954) a number register for the encoding of the tape. The
needed idealization with respect to physical computers is that such a register
can hold arbitrarily large numbers.”

m It is only a small step from the flowcharts of 5 basic TM-components

R,L.M,N,T

to Rédding’s structured programming Turing machines, called Turing oper-
ators [78]. The goto-structure of the flowchart is replaced by an algebraic

9 Assuming that adding 1 to a register content n yields a register content n + 1
corresponds to Turing’s assumption that each move to the right or to the left of a
current tape square finds yet another tape square.

FACS FACTS Issue 2022-1 January 2022

program structure that is defined using concatenation and iteration; oth-
erwise stated the test component 7' is normalized to appear only at the
beginning and end of an interated subprogram M so that it has the form

(M).
denoting to iterate M until the symbol * appears in the working field. The
same for (M)piani- These operators (and even more their register operator
relatives, see Sect. 3.2) simplify a lot the construction of Turing or register
machines to compute recursive functions [78,81,30].

3 From Recursion Theory to Complexity Theory

In Miinster, the path from recursion theory to complexity theory has been opened
by two lines of research which have been pursued already before theoretical
computer science became an academic discipline:

» description of machine computations by logical formulae relating computa-
tion power of the machines (measured in terms of the structure and com-
putational strength of elementary machine operations and of computation
time and/or space) and logical expressivity of the formulae (Sect. 3.1),

» machine-based characterization of hierarchies of recursive functions relat-
ing computational means to mathematical expressivity (definability schemes
classified mainly in terms of the nesting of forms of recursion in traditional
equational definitions of functions) (Sect. 3.2).

3.1 Machine-Characterization of Logical Decision Problems

The study of logical and algorithmic decision problems was part of the logic cur-
riculum and a major thread of logic research in Miinster. The subject was treated
in regular courses (see the lecture notes [146,79,80,87])1°, diploma (master) and
doctoral theses [175,176,86], articles [110,174,154,151,152,236,187,189,48,72] and
monographies [7,44]. We refer here to just a few characteristic examples, for a
complete Annotated Bibliography concerning the classical Entscheidungsproblem
see [44].

Two lines of research characterized the traditional approach to the Entschei-
dungsproblem: develop algorithms for decidable cases [7] and reduce the general

' The institute had the tradition, initiated by Scholz (see [153, p.45]), to make lecture
notes available for many courses. See for example [120,8]. The first author knows from
the time when he was responsible for the library of the institute that this library
contains many historically valuable lecture notes and also reprints of papers from
famous logicians. The lecture notes often contained new research results that were
not published elsewhere. For example, in [80] an elegant and simple proof for the
sharp Kahr reduction class was developed, based upon a geometrical representation
of computations of register machines with two registers in the Gaussian quadrant.
This proof is used in [44, Ch.3.1]. Other examples are mentioned below. The lecture
notes tradition has been maintained by Hasenjaeger also in Bonn, see for example
[122].

78

FACS FACTS Issue 2022-1 January 2022

problem to the decision problem of smaller and smaller classes of formulae (re-
duction classes) [180]. Following Biichi [171], stronger and stronger reduction
classes were obtained by refining Turing’s method to formalize the computations
of machines (but also of other algorithmic systems or games) of a given class
by logic formulae of a given class such that the machine behaviour of interest is
equivalent to the decision (usually the satisfiability) problem of the correspond-
ing logical formula. Since the 1980s, initiated in [157,115], this method is applied
also to determine lower bounds for the complexity of decidable cases.

Establishing such relations between machine-computation-power and logical
expressivity then became a major theme of automata and complexity theory
in theoretical computer science. To mention just one outstanding example of a
complexity variation of Turing’s result: the NP-completeness of the satisfiability
problem of propositional logic formulae in conjunctive normal form proved in
[249] is a polynomial-time-restricted version of the Xy-completeness of the de-
cision problem of predicate logic proved by [17] and in fact can be shown (see
(33, Sect.2.3.1]) to be an instance of a general parameterized scheme (which has
been developed in [29,28]) for logical implementations of machine programs.

The scheme relates algorithmic systems and their logical descriptions in such
a way that numerous recursion and complexity theoretical properties are eas-
ily carried over from combinatorial to logical decision problems [27,26]. This
includes the theoretically especially interesting case of Prolog programs where
for one object—a Horn formula—different interpretations and their complexity
properties are related, namely the computational properties of its program inter-
pretation (e.g. Turing universality) and the logical properties of its purely logical
interpretation (e.g. Xy-completeness of decision problems) [48.34]. The scheme
can also be instantiated (see [44, Sect.2.2.2] for details) to prove Fagin’s charac-
terization of NP as a class of generalized first-order spectra [227], a result which
marks the origin of Descriptive Complexity Theory where systematically logic
languages are designed to capture computationally-defined complexity classes
[218], a branch of finite model theory to which the Logic School of Freiburg
contributed considerably [84] (see the lecturers from the Cologuio sobre Logica
Simbolica at the Centro de Calculo de la Universidad Complutense in Madrid
(19.02. ~ 21.02.1975) in Fig. 5 with Hermes and his former students and col-
leagues in Freiburg Dieter Ebbinghaus (Miinster 1967) and Jorg Flum (Freiburg
1969)).

The very notion of spectra—for any given formula the set of the cardinal-
ities of its finite models—and the question how to characterize them (called
Spektralproblern and formulated in [159]) have been discovered by Hasenjaeger,
Markwald and Scholz when they saw Trachtenbrot’s undecidability result for fi-
nite satisfiability [259]. In 1971, applying Biichi’s machine description technique
from [171] to register machines (as done in Rédding’s 1968 lecture [79]) and us-
ing the Rédding hierarchy DSPACE(f,) of functions—defined in [77] in terms of
n-fold exponential time-bounded deterministic register machine computations,
starting with the Grzegorczyk class Es and contained in and exhausting the

79

FACS FACTS Issue 2022-1 January 2022

80

FACS FACTS Issue 2022-1 January 2022

non-deterministic Turing machine in time f(¢|z|) (for some constant ¢ and in-
put length |z|) and the n-fold exponential functions f,, are defined by fi(z) = 27
and f,,1(z) = 2/(*). Note that also the critical part of this characterization
can be proved by a simple instantiation of the computation description scheme
developed in [29] (see [44, pp.52-53| for the technical details).

Another line of research on the spectral representation of predicates appears
in a series of papers by Deutsch (see the list in the Annotated Bibliography in
[44]) where he uses normal forms of recursively enumerable sets he had developed
in his doctoral thesis [212] to sharpen numerous reduction classes by restricting
the interpretation of the unique occuring binary predicate symbol to an e-like
relation over transitive sets.

Numerous interesting questions about spectra of (fragments of) first-order or
higher-order logics are still today without answer. For a survey of the extensive
later developments of the Spektralproblem in theoretical computer science and
logic see the detailed and very informative survey [11].

3.2 Machine-Characterization of Recursive Functions

The second major thread of research in Miinster which influenced later devel-
opments in complexity theory was the machine-based characterization of hi-
erarchies of recursive functions, relating mathematical definability schemes (see
[229,193]) to computation time and/or resource consumption needed to compute
functions by restricted Turing-like machines, in particular (structured) register
machines (which Rodding discovered in 1959/60 before they appeared in the
two—for the study of decision problems most influential—papers [214,250], see
Sect. 4 and [125,233,230]).

Fig. 6. Laszlo Kalmar and Dieter Rodding (Lecture in Miinster, 1970)

R6dding’s doctoral thesis [75] on Kalmér’s class of elementary functions trig-
gered much further work on this theme in Miinster, in particular [83,231,77],
the doctoral dissertations [161,158,94,139] and [162,163]. See also [82, Ch.V.5].

81

FACS FACTS Issue 2022-1 January 2022

82

FACS FACTS Issue 2022-1 January 2022

83

FACS FACTS Issue 2022-1

84

(125, p.182]) the theoretical concept of a universal Turing machine by some real
physical machines one could also use to demonstrate the concept in lectures on
the subject.!® In the late 1950s Hasenjaeger and Rédding, supported by Her-
mes,'? transfered these activities from Hasenjaeger’s home to a dedicated room
in the logic institute that was named Turingraum (Fig.8).'> Here running phys-
ical models of small though computationally universal machines were built with
simplest means until Rodding’s early death in 1984; the same year Hasenjaeger
retired but continued his materialization work at home.'%

This materialization endeavor was triggered by a talk Friedrich Bauer gave in
the middle of the 1950s at the logic institute in Miinster where he presented his
electro-mechanical model Stanislaus to evaluate algebraic terms in parenthesis-
free notation. Upon Hermes’ suggestion Hasenjaeger constructed for use in the
institute a specimen of that machine, for details see Sect. 9.1.

This work soon led to the idea to build a physically running small universal
Turing machine. As Hasenjaeger points out in [125] the “bottleneck was the
materialization ... of a TURING tape” that was rewriteable.!” The starting idea
was to exploit the following ideas by Moore and Wang, of which Hasenjaeger
only mentioned the first two ones:

m the reduction of the number of states in Moore’s universal machine obtained
by introducing a separate program tape plus an additional auxiliary tape
(3-tape machine with only 15 states and 2 symbols [216]),

= Wang’s observation [165] that erasing (overwriting) is not necessary; read
and write-on-blank operations suffice (together with the move operations to
the right/left) for a universal machine.

» Wang’s proposal to use instructions instead of encoded state tables, which——
at least in hindsight —was another step towards small and quick state ma-
chines.

13 In [123, Part 1] Hasenjaeger speaks about physical ‘models whose behaviour can be
followed in “human” dimensions’.
' Already in his 1952 paper Hermes invites the technically interested reader to think
about “how one can realize a Turing machine in practice” [144, footnote 5, p.185].
The enlarged part below the room number shows that Turing’s name was used as
room name. The Turingraum together with a Fregeraum (reserved for the work on
the Frege edition [156,116]) and two rooms for guest researchers formed a Depen-
dance of the logic institute [267], given the lack of space in the castle which hosted
the mathematical institutes until the end of the 1960s; at that time the Turingraum
moved together with the Institute for Mathematical Logic to the new math building
in the Einsteinstrasse.
After Rédding’s death the Turingraum has been disbanded by the new direction
of the institute, the material was abandoned without further notice in a lumber
room. To save it from greater damage it was quickly brought to Walburga Rédding
(see [267]) who preserved it over the time, until in 2011, she and Hasenjaeger’s
family donated all physical artefacts from Hasenjaeger’s legacy to the Heinz Nixdorf
MuseumsForum in Paderborn (http://www.hnf.de/).
Nota bene that Turing’s paper suggests to use two tapes (even and odd fields) and
to distinguish between erase and overwrite operations.

15

16

17

January 2022

FACS FACTS Issue 2022-1 January 2022

Out of the many artefacts that survived, the second author has been able
to reconstruct Hasenjaeger's Mini-Wang machine, a Universal Turing Machine
with only 4 states, 2 symbols and 3 tapes: a read-only program tape, a non-
erasable working tape and a counter tape that is used to implement instruction
skips. For the technical and historical details of this and related Turingraum
machines see Sect. 9. Here we notice only that the effort to build universal but
operationally surprisingly simple and running physical machines by no means
lacked its scientific output:

s The remarkably small and physically executable Mini-Wang turned out to
be efficiently universal among the dozens of conceptual universal Turing ma-
chines in the literature (see [217]). With hindsight one can also say that the
investigation of computationally universal and with respect to a variety of
parameters ‘small’ machines made the role explicit that different data, opera-
tions and architectural features (besides input/output mechanisms and stop
criteria) play for the realization of the notion of computation:'® number of
symbols, states, tapes, the data type of and operations on tape contents (e.g.
counters, stacks, read-only tapes, tapes with multiple parallel reads, cyclic
shift registers), other topological structures than tapes (see in particular the
work of Ottmann, Priese and Kleine Biining on universal machines we discuss
in Sect. 5), etc. Hasenjaeger’s abstract definition of register components of a
net of machines in [119] looks like a presentiment of some particular classes
of Abstract State Machines we discuss in Sect. 7.

» Rodding was led by the Q-tapes (counter tape) used in the Wang machines
to the invention of register machines before their appearance in [214] and
[250].

In fact, from the very beginning Rddding (who had enrolled at the university
of Miinster in 1956) got involved in Hasenjaeger’'s work and the creation of the
Turingraum as working place for the construction of illustrative running machine
models. When Rodding saw the use of a counter tape in the Wang machine he
had the idea that counters alone could suffice to compute every partial recursive
function.'” He worked this out and presented the result to Hermes’ Logic Seminar
in Miinster (see [125, p.184]), namely the definition of register machines (later

'® This is related to Kleene’s normal form theorem [247] that there are primitiv re-
cursive functions in, out, step, stop such that every partial recursive function f has
the iterative form f(x) = out o (step)stop © tn(k, z) for some k, where (step)siop de-
notes the iteration of the step function until the stop criterion becomes true (see the
proof in [30, p.41]). Bruno Buchberger characterized the four component functions
whose composition out o (step)siop © in defines a Godel numbering (of the n-ary par-
tial recursive functions for some n). These characterizations (see [30, Sect.BIII3] for
proofs and references) show that one can design universal machines whose iterative
component functions are of any a priori given (whether low or high) complexity,
independently of each other.

During the demonstration of some Turingraum machines at the Drei-Generationen-
Kolloquium in Miinster (see[46]) Hasenjaeger told the first author that he had asked
Rodding whether one can represent sequences of natural numbers on 0-1-tapes of a
universal Turing machine cheaply, in such a way that only an a priori fixed number

19

85

FACS FACTS Issue 2022-1 January 2022

published in [78,233] with new results on structured programming normal forms)
and the proof that every n-ary partial recursive function can be computed by
a register machine with n + 2 registers and with prime number encoding even
with only 2 registers, well before these results appeared in the famous papers
[214,250].

The register machine concept turned out to be rather useful (see [168] for
its role to pave the way for the Abstract State Machines concept, see Sect. 7).
R6dding himself and his students made heavy use of them for an analysis of the
computational power of numerous combinatorial systems, of the complexity of
decision problems, of recursive functions, etc., as described in Sect. 3,5,6. Hasen-
jaeger used the elegant register machine proof by Jones and Matijasevich [178]
for the theorem on exponential diophantine representation of enumerable sets
in connection with his universal Turing machines to obtain a simple exponential
diophantine predicate that is universal for the recursively enumerable sets [124].

So not surprisingly also register machines were a Turingraum theme, together
with other components of Rodding’s automata networks described in Sect. 5. See
also Hasenjaeger’s ‘materialization’ of (a general scheme of) register machines
using SIMULOG instead of an electro-mechanical model [123]. See in particular
the register machine materializations performed at the university of Osnabriick
(see [99,63]) where these models have been applied with success for teaching
algorithmic thinking at primary and secondary schools (see Sect. 6).

5 Networks of Machines

In the late 1960s until his early death Rédding together with a group of stu-
dents analysed construction principles for (finite as well as infinite) automata
and developed a theory for the modular decomposition of sequential automata
by networks over a few simple basic automata [254,222,255,223,186,258,191].
Radding’s register operators (see [78,233]) appear here as nets with a particu-
lar graphical structure that visualizes the structured programming control. The
theory made its way into the two textbooks [30,183] shown in Fig. 9.

Applications were found not only in computation theory [241,188,166,245,105]
and logic [235,256,182]—where the inclusion of register components among the
basic automata permitted to represent functionals of finite type, resulting in
novel characterizations of the partial recursive functions (for the type 0 case), of
the combinators K and S, of recursors, etc.— but also in theoretical biology [200],
economics and systems theory [238,239,201,240,203,177], fault-tolerant switching
theory [208,199,59] and Didactics of Mathematics (see Sect. 6).

Defining analogous nets of Asynchronous Parallel Automata (APA nets) [60]
led to interesting results about concurrency [205,207,206]. The Turing spirit is
particularly present in the applications of the theory of automata networks to the

of 1’s appear on the tape. The answer was yves by representing n as distance of a

unique occurrence of 1 to the left end of the infinite-to-the-right tape 071000. . ., i.e.
a register where move-to-the-right means +1 and move-to-the-left —1.

86

FACS FACTS Issue 2022-1

87

Lutz Priese
Katrin Erk

BURGER Theoretische
mmm‘ Informatik
LOGIK

4. Auflage
PRNGER FACHHEDEN WESBJEN

&) Springer Vieweg

Fig. 9. Two Books with a Chapter on Rédding’s Automata Nets

construction of small alternative models of universal (Turing complete) computa-
tional systems, e.g. asynchronous cellular spaces [198], multi-dimensional Turing
machines [253,192],[183, Sect.14.7] and 2-dimensional Thue systems [202], see
also [204] and the comparative analysis in [266].

Further references appear in the survey [234], in the cited papers and in the
two textbooks of the years 1985 [30, Sect.CIV3-4] and 2000 [183, Sect.14.6-7].

6 Computational Networks in Didactics of Computing

Rodding’s work with register operators and networks of automata has triggered
two particularly interesting didactical applications that have been elaborated
by Elmar Cohors-Fresenborg and his group at the university of Osnabrick for
teaching computational concepts in primary and secondary schools.

Introduction of n-ary functions by register machines. The first of
these two applications is based upon the discovery presented in [95] that the
register machine model of computation can be used with success to introduce in
school the mathematical concept of multi-variable functions. Based upon various
teaching experiments this idea has been elaborated first for teaching to high-
school students (see [97], a book that according to Wikipedia and [261, p.40] has
influenced the construction of the Know-how computer https://en.wikipedia.
org/wiki/WDR_paper_computer, see also [101,124]); further experiments showed
that the method can be adapted for secondary [103] (age 12-13) and even late
primary [102] (age 10) school level.

From the very beginning of this work various specimens of a dedicated reg-
ister machine model have been built to visually illustrate the computations so
that the students can play with the machines. One copy of the first of these
register machines [63] was purchased in 1976 for the Turingraum. It has been
used in lectures by Rédding and by Ottmann (in Karlsruhe [68]). The physics

January 2022

FACS FACTS Issue 2022-1 January 2022

laboratory of the University of Osnabrick developed later versions on the ba-
sis of microprocessors offering an output mechanism to an external TV screen;
these machines have been used with success in numerous schools in Germany
and are part of the mathematical didactics study program at the University
of Cologne (see https://mathedidaktik.uni-koeln.de/mitarbeiterinnen/
prof-dr-inge-schwank/forschungs-und-lehrprojekte). Since 1982 also a
simulation on PCs is available (see https://mathedidaktik.uni-koeln.de/
mitarbeiterinnen/prof-dr-inge-schwank/forschungs-und-lehrprojekte/
registermaschine/english-englisch).

2
ESE

<}

=

5

&

right curve flip-flop: state right fiip-fiop: state left

¥ 2

intersection

laft junction

right junction

Fig. 10. The 9 Automata Construction Kit Bricks

Automata construction kit for elementary schools. In 1973 Elmar
Cohors-Fresenborg started to exploit Rodding’s networks of automata for didac-
tical purposes (see [96]). The basic idea was to enable kids by a construction
kit—consisting of bricks which are placed on a baseboard—to realize the com-
putations of an automaton as walks through a net of basic components some
of which perform a control action and others an operation on some data. For a
simple to visualize but computationally universal concept of data, data opera-
tions and control, number register components (counters) came in handy with
only two elementary operations +1, -1. Only two counters are needed; to re-
alize their underlying Finite State Machine control they can be connected to
an automata net of only two types of basic control components—Afip-flop and
switch—plus trivial support components like straight lines, curves, junctions,
etc. (see [97]). The resulting Automata Mazes®® construction kit (see Fig. 10,11)
and its later software versions (see https://mathedidaktik.uni-koeln.de/
mitarbeiterinnen/prof-dr-inge-schwank/forschungs-und-lehrprojekte/

29 In German called Dynamische Labyrinthe, literally translated Dynamic
Labyrinths, available via https://www.bildungsserver.de/onlineressource.
html?onlineressourcen_id=10147.

88

FACS FACTS Issue 2022-1 January 2022

89

FACS FACTS Issue 2022-1 January 2022

7 Computation on Structures Leading to ASMs

Since the middle of the 1960s various studies in Miinster investigated computa-
tional concepts for objects which differ from numbers or words, using appropriate
basic operations which work on those objects directly, without encoding. Early
examples are the definition and characterization of primitive-recursive functions
over hereditarily finite sets [76,232] and over sets of terms [111,112].%2! In the
doctoral dissertation [94] register machines which operate on binary trees us-
ing a few natural basic operations are introduced to define and investigate the
complexity of subelementary resp. elementary classes of functions over binary
trees. The lecture notes [82] contain a chapter on generalizations of computable
functions including a proposal for an axiomatic recursion theory along the lines
of [109].

Later also Rodding’s theory of networks of automata described in Sect. 5 led
in a natural way to alternative computation models of topologically arranged au-
tomata or substitution systems [202,253,257,186,192] and asynchronous cellular
spaces [198].

During those years two other logicians proposed to study computations over
arbitrary relational (also called Tarski) structures [108,141]. Only much later
were register machines used which operate on real (instead of natural) numbers,
on rings, fields [196] or on finite relations over a fixed universe [65, Sect.4].?? The
query computability concept resulting from the last cited work played a major
role in database theory. See [168] for a detailed historical analysis.

In 1982 the question appears whether one can replace Turing machines by a
computation model over structures that captures the complexity class PTIME
[66]. Three years later this question is extended in [134] to whether a compu-
tation model over structures can be defined which captures every sequential
computational device, thus generalizing Turing’s Thesis. The real breakthrough
came with the idea,?* nota bene conceived by a logician in an attempt to solve an
epistemological question, to define a) a small number of elementary operations
one can apply in any structure and b) a few composition (read: program con-
struction) schemes to create composite sets of those operations, such that they
suffice to define (‘simulate’) for every given algorithm its behaviour directly in
terms of runs of an appropriate composition of those operations in the algo-
rithm’s ‘natural’ Tarski structures. This has been achieved in [135] by a simple
mathematical definition of an arguably comprehensive algorithmic language. It
liftts Finite State Machines (FSMs) and Turing Machines (TMs), which work
over words, to Abstract State Machines (ASMs) which work directly over

#! Note that in 1965 Hermes defined a logic of terms [149]. Much later the decision
problem of this (and the pure e-logic) has been in investigated in Freiburg [184], see
[44, Ch.5.3].

22 The query language definition in [65] is given in terms of variables y; (which can be
viewed as registers, each containing a finite relation) and a few appropriate basic
operations which can be viewed as operating on register contents.

23 With hindsight one is tempted to say ‘simple idea’, but as often happens with sci-
entific discoveries the simple thoughts are the more difficult ones to find.

90

FACS FACTS Issue 2022-1 January 2022

structures of whatever type (read: signature), using as basic action only guarded
term (NOT only variable!) assignments if condition then f(t,...,t,) = t and
as composition scheme bounded synchronous parallelism.?*

This operational definition of machines with arbitrarily abstract ‘actions’
broke with the at that time still main-stream declarative thinking in logic and
theoretical computer science, but to the first author who had studied Tarski’s
Wahrheitsbegriff paper [21]—reading material for the introductory predicate
logic course in Miinster—and has been formed in the machine-based tradition
in Miinster, it quickly became clear that this definition enables to mathemati-
cally support abstraction the way it is needed and used in the practice
of computing by engineers of software-intensive systems. In fact, ASMs permit
to rigorously define algorithmic systems as computational models at whatever
desired level of abstraction and to mathematically relate runs of an abstract
and a refined machine (read: a machine that implements abstractions by more
details) for a verification or test of the correctness of this ‘implementation step’.
These—by their abstract nature virtual-—machines are not axiomatized by log-
ical formulae but are computational models which drive the stepwise execution
of the guarded-action-rules that capture the intended dynamic system behavior
(‘an evolution of states’).

Modeling
Companion for
Software
Practitioners

Abstract

State Machines | Java" Vi

e
-_

&

Fig. 12. Three Books on the ASM Method

The idea to use ASMs for a fully documented modular design, analysis and
implementation of software-intensive systems by

= starting with appropriate rigorous but abstract requirements models (called
ground model ASMs [36]) one can inspect like pseudo- (but semantically well-

2% Other constructs, like forall, choose, Call, let, and other composition schemes, like
asynchronous parallelism, can be easily integrated where useful. The work with ASMs
revealed that the language can easily be tailored to the needs of domain specific
applications. Note that the terms f(#1,..., ¢,) in guarded assignments are a general
form of ‘array variables’ where the indeces are not just numbers, but arbitrary terms
with possibly updatable values.

91

FACS FACTS Issue 2022-1

92

defined) code for its appropriateness with respect to the usually informally
presented original requirements, and
» adding the implementation details by stepwise ASM refinements one can
submit to test suits and to mathematical analysis for a correctness check
37]*°
triggered the development of the ASM method [54,252,50] (see Fig. 12),
which is well-founded by its roots in logic and contributes effectively to the prac-
tice of computing, notably providing a system description and documentation
technique of the kind Harel and Pnueli asked for in 1985 [137, p.480]:

A natural, comprehensive, and understandable description of the be-
havioural aspects of a system is a must in all stages of the systems
development cycle, and, for that matter, after it is completed too.

During the decade 1988-1998 the ASM community worked to make the ASM
method fit for serious practical applications in a variety of computer science
fields. A commented ASM bibliography for this period [47] counted 128 scientific
contributions, which five years later became more than four hundred (see the
commented bibliography in [88,54]); for references and the developments since
then see https://www.abz-conf.org/methods/asm.

The comprehensiveness of the concept of ASMs is nowadays supported
also theoretically, namely by numerous forms of Turing-like theses one can prove
from natural axioms for appropriate classes of ASMs, characterizing for example
sequential algorithms [136] (including a proof of Turing’s Thesis for computable
functions over the natural numbers) and their extensions to synchronous paral-
lel algorithms [22,23,113], concurrent algorithms [51], recursive algorithms [52],
reflective algorithms [181], etc. This work suggests the development of a realistic
(theoretically well-founded and in the practice of software engineering helpful)
complexity theory which is based not any more on Turing-like machines but on
machines working directly over structures, avoiding extraneous encodings, see
the very interesting recent survey paper [243].

In this respect it is interesting to note that half a century ago, in [274, p.6], the
engineer Zuse critically remarked that much of research in theoretical computer
science at the time disregards the badly needed dialogue between theoreticians
and practitioners and that a logical algorithmic language is needed which helps
the practitioner, in other words which is useful to reliably design, construct and
analyze implementations. This is what the ASM method achieves, exploiting
the machine-based pseudo-code-like yet abstract and semantically well-founded
language of ASMs to design and analyse dynamic system behaviour.

8 Institutional Impact of the School of Miinster

The Logic School of Miinster had a strong impact not only on the scientific
progress of mathematical logic as described above, but also on the institutional

25 The concept of ASM refinement is not declarative but supports the direct description
of system dynamics at different levels of abstraction. See [54] for details.

January 2022

FACS FACTS Issue 2022-1 January 2022

93

FACS FACTS Issue 2022-1 January 2022

Entscheidungsproblem [7],[44]%° (see also the first systematic textbook treatment
of the Entscheidungsproblemn in |73, Ch.12| which covers the results known at
that time), metamathematics of geometry [269], proof theory [164].

STUDIES IN LOGIC W. Schwabhauser
FOLADATIO ‘:ul-"r_u; ATHEMATICS W. Szmielew A.Tarski
S ot : Metamathematische
Methoden
Solvable Cases Rsdergeametie
i of the
| Decision
Problem
W, ACKERMANN

SEATE BALLES LI SameasY
........ l’g:) Y
k Berlin Heidelberg GmbH

Fig. 14. Influential books by Ackermann and Schwabh&user

Some numbers reveal the impact the computational focus of logic propagated
by the Schule von Minster had on the institutional growth of the discipline in
computer science departments of German universities. According to the Mathe-
matics Genealogy Project [220] (see the list in the appendix)

m the school’s first generation consists of 10 doctoral students,

26 The first author has often been asked why it took [44] 25 years to appear. In 1972, on
an invitation by the series editor Gert Miiller, he had started to work on a volume in
Springer’s Lecture Notes in Mathematics with the material of his 1972/73 lectures
in Munster on the Classical Decision Problem [87]. He stopped the project when
in 1973 a doubt was expressed about a possible conflict with a book announced
by Burton Dreben (Harvard); that book [74] came out in 1979 together with its
companion book [197]. A critical analysis, performed with Yuri Gurevich during his
visits to Miinster and Dortmund (1978, 1983, 1985), of the complex machinery of
Herbrand expansions used throughout in [74,197] and of the missing investigation
of the algorithmic complexity of decidable cases eventually led to a new proposal
of a comprehensive complexity account of the classical decision problem which was
accepted by Gert Miiller for Springer’s Perspectives in Mathematical Logic, edited
by the f2-group. After various tergiversations by Gurevich to find another author,
eventually Borger wrote Part I (on undecidable classes), updated the annotated
bibliography he had compiled in the 1970s and attracted Erich Gridel to join the
project. Griadel’s work on the complexity of decidable subclasses of logical theories in
his doctoral dissertation [129,130,131] and his postdoc research in Pisa (Spring 1988
— Fall 1989) [132,133] made him the ideal person to complete the book by writing
Part II (on decidable classes and their algorithmic complexity), except the Shelah
class which has been written by Gurevich. The appendix (on tiling problems) has
been written by C. Allauzen and B. Durand.

94

FACS FACTS Issue 2022-1 January 2022

m its second generation consists of 81 doctoral students at the universities of
Kiel, Berlin, Miinster and Bonn (Bachmann 26, Schroter 16, Hermes 28,
Hasenjaeger 11)

s D. Rédding, Scholz’ second successor as director of the institute, supervised
15 doctoral students from 1966 until his early death in 1984.%7

Alltogether in three generations Scholz has the extraordinary number of 1,625 de-
scendants (Schroter 260, Bachmann 314, Hermes 392, Hasenjaeger 371, Rodding
246, Schwabhéuser 42).

Logic and Machines [46] (and more generally Logic and Computation Theory
[31]) reflect the new horizon of scientific challenges the School of Miinster dis-
covered for the interaction of mathematical logic and computer science, in the
spirit of the mathematician Turing and interestingly also of the engineer Zuse
who submitted a manuscript [273] for a doctoral dissertation to Scholz.?® Logic
and Machines is the title of the Proceedings [46] of an international sym-
posium which was organized in May 1983 in Miinster—Hasenjaeger named it
the Drei-Generationen-Tagung —to let reseachers come together who are inter-
ested in the cross-pollination between Logic and Computer Science. During this
symposium Hasenjaeger and Rodding showed and explained to the participants
some of their Turingraum machines.

Lecture Notes in

Lecture Notes in
Computer Science €

Computer S

Fig. 15. Books that Marked the Path to CSL

27 See the list in [32] which corrects the one of the Mathematics Genealogy Project. It
includes [169,198,177,59], see also https://www.uni-muenster.de/FB10/historie/
anhangD.pdf. It mentions also five of Rodding’s Diplom (Master) students who later
have written a PhD thesis at other universities.

28 Scholz wrote a positive evaluation, but due to the war and post-war conditions the
PhD procedure did not reach its natural end. See [140, p.2]. Scholz showed great
interest in Zuse’s work; when Hans Lohmeyer, a former student of Scholz, worked
with Zuse in Berlin he brought Scholz there for a visit (see [274, p.62]).

95

FACS FACTS Issue 2022-1

96

This was at a time when those who in Germany tried to bring logic and com-
puting together experienced a strong resistence from a group of short-sighted
professors of mathematical logic who did not understand the potential that com-
puting held in store for their discipline.

The success of this symposium (with over 50 participants from 9 European
countries and the US) gave the first author the idea to institutionalize such a fo-
rum by forming an annual Computer Science Logic conference series. After
Rodding’s unexpected death he attracted Hans Kleine Bilining (one of Rédding’s
doctoral students) and Michael Richter (one of Hermes’ early doctoral students
in Freiburg) to join the endeavour. This was a year before the ACM/IEEE Sym-
posium on Logic in Computer Science (LiCS, https://lics.siglog.org/) was
launched in 1986. However, due to the adverse personal interest of somebody—
who in 1985 after Rédding’s death cut off the Turing tradition at the institute?’
(but obviously could not stop the strong development of computational logic in
the scientific world) and triggered the first author’s move to the University of
Pisa—the conference series could not start in 1986 and not at the logic institute
in Miinster, but only a year later at the Institut fiir angewandte Informatik und
Formale Beschreibungsverfahren in Karlsruhe.

The first seven years are documented in [40,41,42,43,39,38 56]. In 1992, dur-
ing a Dagstuhl seminar [55] which has been attended by logicians and com-
puter scientists from 14 countries the first author proposed to transform the
CSL conference series into the annual gathering of a European Association
for Computer Science Logic (EACSL), see [35] and for the complete list of
CSL conferences and Proceedings https://dblp.uni-trier.de/db/conf/csl/
index.html. Notably, when the EACSL upon Makowsky’s proposal created an
annual award for an outstanding dissertation in the area of logic in computer
science, this distinction was named after Ackermann to stand for logic and com-
putation. We quote from [18, p.VIII]:

Together with ... LiCS, CSL counts as one of the most prestigious con-
ferences in theoretical computer science focusing on the connections be-
tween logic and computing.

In this connection it is also interesting to remark that in the year 2000, a
special conference subseries has been created that is devoted to “the foun-
dational interconnections between Logic and Computational Complexity” (see
https://www.cs.swansea.ac.uk/lcc/).

Also the development of the ASM method has been supported by a se-
ries of International ASM Workshops, co-founded in 1994 and until 2007
steered by the first author together with Yuri Gurevich. From the very beginning,
many of these meetings were held as part of larger computer science conferences
to easen the integration of the ASM method into current system engineering
environments—ASM 1994 as part of the IFIP World Congress in Hamburg [221],
ASM 1998 as part of the GI-Jahrestagung in Magdeburg [260], ASM 1999 as part
of the Formal Methods Europe conference FME’99 in Toulouse, ASM 2001 as

?? See the documentation in [25].

January 2022

FACS FACTS Issue 2022-1 January 2022

97

FACS FACTS Issue 2022-1 January 2022

located in the Heinz Nixdorf MuseumsForum (HNF) in Paderborn, due to the
initiative of its founding director Norbert Ryska. Whithout his engagement, in
particular the Mini- Wang would still be unknown. Only the latter one has been
analysed quite thoroughly and found to be still working; it is a universal Turing
machine with (only) four states and three binary tapes, only one of them could
be modified in a write-only-once manner. The other machines will be described
here roughly; some of them might justify more deeper analysis. Also, for some
artefacts their use is still unknown.

Documentation on these machines is often not existant; a few hints are in
some of Hasenjaeger’s publications. Several relevant texts appear in his paper
legacy [118], but normally they are undated and difficult to match with the
artefacts in the HNF.

The follwing comments on (some of) the artefacts now owned by the HNF
are in hopefully historical order.

9.1 Kasimir

In his article [125] Hasenjaeger wrote that in 1956 F.L. Bauer from Munich
reported in the Logistisches Seminar in Miinster about an electromechanical
model to evaluate parenthesis-free logical expressions, see [114]). His machine is
in the Deutsches Museum in Munich, but currently not displayed.

Hans Hermes asked Hasenjaeger if he would like to build a similar machine
([125, p.182)):

H. Hermes suggested that T should make a specimen of STANISLAUS
for our institute, and F.L. BAUER sent me a blueprint of his version.

Bauer replied with the above mentioned blueprint and more information about
his solution:

s sei:

R die Anzahl von verschiedenen Variablen,

S die Anzahl von verschiedenen logischen Operation einschlielich der
Negation und der Identitéit, die Sie mit einem Formelrechner behandeln
wollen.

M die hochste Anzahl der in einer Formel vorkommenden Variablen und
Operationszeichen.

Dann bendtigen Sie:

2 M Relais mit je einem Ruhe und Arbeitskontakt (fiir die Logik).

2 M Tastenstreifen mit je R4S Feldern, je Taste etwa 5 Ruhe und Ar-
beitskontakte;

Einen doppelten Satz von je M Relais, deren Kontaktbestiickung von 1
bis M /2 linear anwichst und ebenfalls linear abfillt (Fiir die Wegeschal-
tung)

This means, that the number of relays is quadratic with the number of terms.
Hasenjaeger characterizes his machine KASIMIR in the above paper:

98

FACS FACTS Issue 2022-1 January 2022

99

FACS FACTS Issue 2022-1 January 2022

100

FACS FACTS Issue 2022-1 January 2022

\- rpostdlrektmn (21a) Miinster (Westf), den fMai 1661
o + . Hohenzollernring 56 . . ¢ —
e Antwort Nr. und Gegenstay a.-.-ba.) .39 246 —— s
II D6 3330-0 f:;:.".i.".'..‘“?.:.. and »
Herrn

Professor Dr. G. Hasenjaeger

-Institut fiir mathematische Logik
und Grundlagenforschung
der Unkversitédt Minster

" (24a) Miinster(Wests

SchloBplatz 2
Ihr Schreiben vom 20.4.
Sehr geehrter Herr Frofessor!

Wir haben Ihren Antrag vom 20. 4. auf {Uberlassung von ausgesonderten
Relais, Wéhlern usw. zum Bau von Demonstratiocnsmodellen an unser
Fernmeldezeugamt weitergeleitet mit der Anweisung, IThnen die Teile
nach Wahl zum Apparateschrottpreis von 0,20 DM/kg abzugeben.

Fig.19. OPD reply

As tapes, Hasenjaeger used 35mm perforated paper film used for contact
prints.?? Like ordinary 35mm film, it was perforated on both sides, so it could
be split longitudinally, which Hasenjaeger did probably himself. ** Hasenjacger
used paper film, as it was easier to punch than transparent celloloid film (used
e.g. in Zuse's Z3), as the second authors experience in running the machine
showed.

The tape drives were made in the workshop of the physics department in a
quite professional way, see Fig.20.

In the middle is the slot through which the film guided, and at its bottom is
the gear wheel that uses the perforation to move the tape many times without
slack. On the left side is the stepper mechanism, that can move the tape left or
right. On the right side is the sense and punch mechanmism. The punch is the
outer tube, operated by the magnet with the heavy block on its armature.? To
determine if there is a punched hole, a sense pin is moveable within the punch
tube. It is normally kept away to allow free move of the tape. Activating the
lower magnet, the sense pin is released and its position thereafter sensed by the
leaf spring contact left to the magnet.

Hasenjaeger did not mention in [125] a very important feature of Wang’s
solution: Instead of encoding of a state table with an elaborate state machine
to scan each line of the encoded table for a match, and then follow the actions,
instructions are used like in stored progam computers, where the machine lan-
guage is not a state table. Just the universal machine itself uses a state table, as
in modern computers the microprogram that interpretes the instructions from

%2 At that time, often a (black-and-white) film was given to a drugstore to develop and

produce 1:1 contact copies on this paper film, which did cost only a fraction of an

enlarged copy of each picture.

using a tool which is no longer known

34 The obvious purpose is to provide enough mass to punch, even if such magnets have
a much larger force short before closing anyhow.

33

101

FACS FACTS Issue 2022-1 January 2022

102

FACS FACTS Issue 2022-1 January 2022

103

FACS FACTS Issue 2022-1 January 2022

104

FACS FACTS Issue 2022-1 January 2022

The state machine uses 16 relays, which are not relays commonly used by
the German post office.?® The relays are properly orientated so that the gap
between the contacts is vertical to avoid dust pile up.?”

In Summer 2011, the second author reverse-engineered the machine to obtain
the schematics shown in Fig.24. Four relays, labelled X, X', Y and Y’ form two
conventional flipflops for four states. Four relays are for the clock generator. The
remaining 8 relays make up 4 Master-Slave flip-flops labelled R, L, O and U.

Fig. 24. Mini-Wang schematics

From the schematics, the state table was recovered, but found to be dubious,
because the tape P would require repeats as forward jumps depending on the
cyclicity of the tape.

36 One reason might be that it is hard to find 16 relays with the same coils; in the second
author’s own collection of more than 200 post office relays, he was happy to find for a
gray counter 5 such relays. Circuits were massively optimized for component count,
ignoring the repair costs.

37 This has been one of the major technological steps for larger reliability in German
telephone exchanges using the Flachrelais 24. Zuse in his Z3 rebuild has the gap
horizontally.

105

FACS FACTS Issue 2022-1 January 2022

The recovered state table was:

Z PQR " action
I 0._ II P+
0.* II P+
1._ P+ M
1.% . P+
II or. I1I P+ Q-
00. . P+ Q+
1. I P+ Q- L
10. I P+ R
IIT 0._ . P+
0.x* . P+ Q+
1._ I P+
1.% v R+
IV 0. . P-
00 I P+
1. . P- Q-
10. I P+

As there was a unidirectional tape found with the others, in the action column
there was originally no distintion between P+ and P-. The instructions to be
coded on tape P were

1 M mark the tape
01 R right move
001 L left move

000ⁿ1 n skip if the tape is marked

The conditional skip was originally assumed to be forward, using the cyclicity
of the tape, which however made finding progammes rather difficult, as there are
no neutral instructions (no-ops) to fill the tape.

The solution came when a bidirectional selector switch in its original boxing
was found in Hasenjaeger’s home in Plettenberg. Re-interpreting the schematics,
it was clear that the machine was built for a bidirectional programme-tape, which
was then created from the new switch and could be alternatively used, see Fig.25.

The Wang like encoding with variable length instructions requires in this
case a minimum of 4 states to count the number of zeroes until it is clear that it
is a skip. The Q-Tape may be used as a state extension and reduce the number
of states to 3, which does not help to reduce the number of relays in practice.

A different punching tool was found and a small stock of already cut tape;
both worked flawlessly at 24V, while using celloloid film required to increase the

supply.

106

FACS FACTS Issue 2022-1 January 2022

107

FACS FACTS Issue 2022-1 January 2022

108

FACS FACTS Issue 2022-1 January 2022

The instructions on the P-tape are uniformly 2 bits long:
E: enlarge (increment) the current R-tape

D: decrement the current R-tape

C: cyclically change to the next R-tape

F: for ¢f: conditional jump

As two F-instructions in a row are useless, the jump distance is encoded by
the corresponding number of contiguous F-instructions.
The state table has been rearranged for better readability:

S PRJ rj s Remark
Group 1: sequential instructions

0 c.0 #. . cycle tape
d10 - . decrement register
e.0 +. . increment register
£.0 ..o 1 start jumping

Group 2: executing a jump

0 c.1 o decrement J for c
d.1 o decrement J for d
f.1 skip £
Group 3: do not jump as R is zero
1 cO0. .. 0 terminated by c
do. .. 0 terminated by d
0. ce ignore f
Group 4: collect jump distance
1 c1. .. 0 found c
dil. .. 0 found d
f1. o count number of ’f’s

According to the text, the programme tape is assumed to by cyclic. As this
is apparently a Turing machine simulating a register machine, backward jumps
would be more appropriate, but require a different state table, that might nev-
ertheless still have 2 states.

Until now, the only purpose of this machine seems to demonstrate the use
of Jones-Matiyasevich-Masking to formally describe such a machine, which suc-
ceeded in an astonishing short proof.

The TM index is not as small as it seems, because the states of the tape
multiplexer must be multiplied with the two visible states. The result tape is a
single binary tape for the basic index, and there are 342 operations, thus the
basic TM index is 6%sqrt(8*5/2) = 26.8. Penalties for the cyclic programme tape
would be necessary. With backward jumps, there are two more actions in the
state table, so the basic TM index is 6*sqrt(8*7/2) = 31.7, with no penalties.

9.6 The TTL machines

When TTL logic ICs became available, they were much cheaper than Motorola’s
RTL logic, and thus Hasenjaeger switched to this technology.

109

FACS FACTS Issue 2022-1 January 2022

110

FACS FACTS Issue 2022-1 January 2022

111

FACS FACTS Issue 2022-1 January 2022

Acknowledgement. We thank the following persons who have helped with
criticism, suggestions, information, pictures: Volker Claus, Peter Pappinghaus,
Andreas Podelski, Walburga Rédding, Uwe Schoning, Inge Schwank. We are
particularly thankful to Elmar Cohors-Fresenborg who pointed us to most of
the material in Sect. 6, and to Jonathan Bowen who after the presentation of
his historical analysis of the community that has developed itself around the
Abstract State Machines method (see [58,57]) suggested to write a companion
paper that analyses the influence Turing’s epochal 1937 paper had on the Schule
von Miinster, a community formed by activities that are focussed on the relations
between logic and computing science.

10 Appendix: The Genealogy of the School of Miinster

The Logic School of Miinster in half a century had 65 doctoral students, listed
below, and 1,353 descendants (data (not completely reliable) from [220], con-
sulted on August 4 and November 25, 2021, with slight corrections due to direct
knowledge of the first author, see in particular [32]).

s Heinrich Scholz’ 11 doctoral students in Miinster (1,265 descendants):

Candidate Year Students Descendants
Anna Holling 1930
Friedrich Bachmann 1934 26 314
Walter Kinder 1935
Hermann Schweitzer 1935
Eugen Roth 1937
Hans Hermes 1938 28 398
Shih-hua Hu 1939
Karl Schroter 1941 16 263
Eduard Arens 1944
Gisbert Hasenjaeger 1950 11 378

Werner Markwald 1952

112

FACS FACTS Issue 2022-1

113

s Hans Hermes’ 20 doctoral students in Miunster.

Candidate

Heinz Gumin 1954
Arnold Oberschelp 1957
‘Walter Oberschelp 1958
Ludwig Brinkmann 1961
Horst Burwick 1961
Klemens Dopp 1961
Walther Heinermann 1961
Herbert Fiedler 1962
Dieter Titgemeyer 1962
Klaus Brockhaus 1963
Paul Réver 1963
Joachim Hornung 1964
Laurent Larouche 1964
Jiirgen Genenz 1965

Friedrich-Karl Mahn 1965
‘Walburga Schwering 1965

Giorgio Germano 1966
Joachim Bammert 1967
Heinz-Dieter Ebbinghaus 1967
Klaus Rodding 1967

Year Students Descendants

7 20
20 257
3 13
1 1
1 1
7 47

January 2022

m In Freiburg Hermes had the following 8 doctoral students: Reiner Durchholz
(1968), Robert Kerkhoff (1968), Michael Richter (1968), Hubert Schwarz
(1968), Jorg Flum (1969), Dieter Klemke (1970), Klaus Heidler (1973), Walther

Kindt (1973).

In total Hermes had 28 doctoral students and 398 descendants.
» Gisbert Hasenjaeger’s 11 doctoral students (378 descendants):

Candidate

Dieter Rédding 1961
Ronald Jensen 1964
Ulrich Perret 1968
Ibrahim Garro 1972
Wilhelm Johannes Backhausen 1973
Gerda Thieler-Mevissen 1974
Tassilo von der Twer 1976
Ralf Biilow 1980
Dimitrios Christodoulakis 1980
Peter Schroeder-Heister 1981
Emile Weydert 1988

Year Students Descendants

15 251
13 92
6 22

FACS FACTS Issue 2022-1

114

= Dieter R6dding’s 15 doctoral students (251 descendants):

Candidate Year Students Descendants
Helmut Schwichtenberg 1968 16 25
Michael Deutsch 1968
Thomas Ottmann 1971 22 78
Jiirgen Bartnick 1971
Egon Borger 1971 4 6
Elmar Cohors-Fresenborg 1971 11 14
Hansjiirgen Bramik 1972
Hans-Georg Carstens 1972 22 58
Helmut Miiller 1974
Lutz Priese 1974
Peter Korber 1976
Hans Kleine Biining 1977 9 13
Klaus-Peter Kniza 1980
Joachim Miiller 1982
Anne Briiggemann-Klein 1985 2 2

January 2022

Copyright Notice. It is permitted to (re-)use this text or parts thereof

under the CC-BY-NC-SA licence

https://creativecommons.org/licenses /by-ne-sa/4.0/

i.e. in particular under the condition that

m the two original authors are mentioned

m modified text is made available under the same licence

» the (re-) use is not commercial

FACS FACTS Issue 2022-1 January 2022

References

1. A.Blass, E.Borger, and Y.Gurevich, editors. Theory and Application of Abstract
State Machines. Schloss Dagstuhl, 2002. Seminar Report 336. https://wuw.
dagstuhl.de/02101.

2. J.-R. Abrial. The B-Book. Cambridge University Press, Cambridge, 1996.

3. J.-R. Abrial. Modeling in FEvent-B: System and Software Engineering. Cambridge
University Press, Cambridge, 2010.

4. A.Church. A note on the Entscheidungsproblem. J. of Symbolic Logic, 1:40-41,
1936.

5. A.Church. An unsolvable problem of elementary number theory. American J. of
Mathematics, 58:345-363, 1936.

6. W. Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Mathematische
Annalen, 99:118-133, 1928.

7. W. Ackermann. Solvable Cases of the Decision Problem. North—Holland, 1954.

8. W. Ackermann. Von den natiirlichen zu den reellen Zahlen. Lecture Notes,
Institut fiir math. Logik und Grundlagenforschung, Winter Term 1961/2.

9. A.Clausing. Heinrich Scholz’ early interest in Turing’s papers. https://ivv5Shpp.
uni-muenster.de/u/cl/. Consulted July 11, 2021.

10. A.Cobham. The intrinsic difficulty of functions. In Proc.1964 Congress for Logic,
Mathematics, and Philosophy of Science, pages 24-30, 1964.

11. A.Durand, D. Jones, J. Makowsky, and M. More. Fifty years of the spectrum
problem: survey and new results. Bull. Symbol. Logic, 18:505-553, 2012.

12. A.Grzegorczyk. Some classes of recursive functions. Rozprawy Matematiyczne 1V,
IV:3-45, 1953.

13. A.Hodges. Alan Turing: The Enigma. Simon and Schuster, 1983.

14. H.-C. S. am Busch and K.F.Wehmeier. ”Es ist die einzige Spur, die ich hin-
terlasse”. Dokumente zur Entstehungsgeschichte des Instituts fiir Mathematische
Logik und Grundlagenforschung. In H.-C. S. am Busch and K.F.Wehmeier, edi-
tors, Heinrich Scholz. Logiker, Philosoph, Theologe, pages 93—101. Mentis (Pader-
born), 2005.

15. A.Mostowski. Concerning a problem of H. Scholz. Zeitschr. f. math. Logik u.
Grundlagen d. Math., 2:210-214, 1956.

16. A.M.Turing. Computing machinery and intelligence. Mind, LIX(236):433-460,
1937. https://doi.org/10.1093/mind/LIX.236.433.

17. AM.Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, s2-42(1):230—
265, 1937. https://dei.org/10.1112/plms/s2-42.1.230.

18. A .Raschke, E.Riccobene, and K.-D.Schewe, editors. Logic, Computalion and Rig-
orous Methods, volume 12750 of LNCS. Springer-Verlag, 2021. Essays Dedicated
to Egon Borger on the Occasion of His 75th Birthday.

19. A.R.Meyer and D.M.Ritchie. Computational complexity and program structure.
IBM Watson Research Center at Yorktown Heights, Research Report RE-1817,
p-1-15, 1967.

20. J. V. Atanasoff. Computing machine for the solution of large systems of linear
algebraic equations. In B. Randell, editor, The Origins of Digital Computers,
pages 305-325. Springer-Verlag, 1973.

21. A.Tarski. Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosoph-
tea, 1:261-405, 1936.

115

FACS FACTS Issue 2022-1 January 2022

22. A. Blass and Y. Gurevich. Abstract State Machines capture parallel algorithms.
ACM Trans. Computational Logic, 4(4):578-651, 2003.

23. A. Blass and Y. Gurevich. Abstract State Machines capture parallel algorithms:
Correction and extension. ACM Transactions on Computation Logic, 9(3), 2008.

24. F. Boniol, V. Wiels, Y.Ait-Ameur, and K.-D. Schewe, editors. ABZ 2014: The
Landing Gear Case Study, volume 433 of Communications in Computer and In-
formation Science. Springer, 2014.

25. E. Borger. Brief an G. Hasenjaeger 04.10.1985. Anlage: von M. Richter verfasste
Dokumentation zur Rodding-Nachfolge. See Hasenjaeger Nachlass, Deutsches
Museum Miinchen, NL 288 / 149,

26. E. Borger. On the constrution of simple first-order formulae without recursive
models. In Proc. Cologuio sobra logica stmbolica, pages 9-24, Madrid, 1975. Uni-
versidad Complutense.

27. E. Borger. A new general approach to the theory of the many-one equivalence of
decision problems of algorithmic systems. volume 25, pages 135-162, 1979. Also
published as vol.30 of R.Kaerkes and L.Merkwitz and W.Oberschelp: Schriften
zur Informatik und Angewandten Mathematik, RWTH Aachen.

28. E. Borger. Decision Problems in Predicate Logic. In G.Lolli, G.Longo, and
A Marcja, editors, Logic Colloquium’82, pages 263-301. North-Holland, Studies
in Logic and the Foundations of Mathematics vol.112, 1984.

29. E. Borger. Spektralproblem and completeness of logical decision problems. In
E. Borger, G. Hasenjaeger, and D.Rodding, editors, Logic and Machines: Decision
Problems and Complerily, pages 333-356. Springer LNCS 171, 1984.

30. E. Borger. Berechenbarkeit, Komplexitat,Logik. Vieweg Verlag Braunschweig,
1985. 2nd ed.1986, 3d extended edition 1991, engl.translation Computability,
Complexity, Logic (vol. 128 of Studies in Logic and the Foundations of Mathe-
matics, North-Holland 1989), italian transl. Computabilita, Complessita, Logica
vol.1: Teoria delle Computazione, Serie di Informatica, Bollati Borighieri 1989.

31. E. Borger, editor. Computation Theory and Logic. In memory of Dieter Rdédding.
Springer LNCS 270, 1987.

32. E. Borger. D.R6dding: Ein Nachruf. Jahresbericht der Deutschen Mathematiker-
Vereinigung, 89:144-148, 1987.

33. E. Borger. Logic as Machine: Complexity relations between programs and for-
mulae. In E. Borger, editor, Trends in Theoretical Computer Science, pages 59—
94, 1988. A survey of the main results was presented to the centenary Scholz-
Festkolloguium held at the logic institute in Miinster on February 89, 1985.

34. E. Borger. Complexity of logical decision problems. In G. Corsi, M. Chiara, and
G. Ghirardi, editors, Bridging the Gap: Philosophy, Mathematics, and Physics,
pages 71-86. Kluwer Academic Publisher, 1993.

35. E. Borger. Ten years of CSL conferences (1987-1997). EATCS Bulletin, 63:61-63,
1997.

36. E. Borger. The ASM ground model method as a foundation of requirements
engineering. In N.Dershowitz, editor, Verification: Theory and Practice, volume
2772 of LNC'S, pages 145-160. Springer-Verlag, 2003.

37. E. Borger. The ASM refinement method. Formal Aspects of Computing, 15:237—
257, 2003.

38. E. Borger, H. Biining, G.Jager, S. Martini, and M.Richter, editors. CSL’92, vol-
ume 702 of Lecture Notes in Computer Science. Springer, 1993.

39. E. Bérger, H. Biining, G.Jager, and M.Richter, editors. CSL’91, volume 626 of
Lecture Notes in Computer Science. Springer, 1992.

116

FACS FACTS Issue 2022-1 January 2022

40. E. Bérger, H. Biining, and M.Richter, editors. CSL’87, volume 329 of Lecture
Notes in Computer Science. Springer, 1988.

41. E. Borger, H. Biining, and M.Richter, editors. CSL’88, volume 385 of Lecture
Notes in Computer Science. Springer, 1989.

42. E. Borger, H. Biining, and M.Richter, editors. CSL’89, volume 440 of Lecture
Notes tn Computer Science. Springer, 1990.

43. E. Borger, H. Biining, M.Richter, and W.Schénfeld, editors. C'SL’°90, volume 533
of Lecture Notes in Computer Science. Springer, 1991.

44. E. Borger, E.Gridel, and Y.Gurevich. The Classical Decision Problem. Perspec-
tives in Mathematical Logic. Springer-Verlag, 1997. Second printing in “Univer-
sitext”, Springer-Verlag 2001.

45. E. Borger and U. Glasser. Abstract State Machines 2001: New developments
and applications. In E. Borger and U. Glisser, editors, J. Universal Computer
Science, volume 7(11), pages 914-917. Springer-Verlag, 2001. Selected extended
papers from 8th international ASM workshop.

46. E. Borger, G. Hasenjaeger, and D.Rédding, editors. Logic and Machines: Decision
Problems and Complexity, volume 171. Springer LNCS, 1984.

47. E. Borger and J. Huggins. Abstract State Machines 1988-1998: Commented ASM
bibliography. Bull. FATCS, 64:105-127, 1998,

48. E. Borger and U. Lowen. Logical decision problems and complexity of logic
programs. Fundamenta Informaticae, 10:1-34, 1987.

49. E. Borger, M.Butler, J. P.Bowen, and P.Boca, editors. Abstract Stale Machines,
B and Z, volume 5238 of Lecture Notes in Computer Science. Springer, 2008.
First International Conference ABZ 2008.

50. E. Borger and A. Raschke. Modeling Companion for Software Practitioners.
Springer, 2018. ISBN 978-3-662-56641-1. For Corrigenda and lecture material on
themes treated in the book see http://modelingbook.informatik.uni-ulm.de.

51. E. Borger and K.-D. Schewe. Concurrent Abstract State Machines.
Acta Informatica, 53(5), 2016. http://link.springer.com/article/10.1007/
s00236-015-0249-7, DOI 10.1007/s00236-015-0249-7. Listed as Notable Article
in ACM 21th Annual BEST OF COMPUTING, see www.computingreviews.com/
recommend/bestof/notableitems.cfm?bestYear=2016.

52. E. Bérger and K.-D. Schewe. A behavioral theory of recursive algorithms. Fun-
damenta Informaticae, 177(1):1-37, 2020. DOI 10.3233/F1-2020-1915.

53. E. Borger and J. Schmid. Composition and submachine concepts for sequential
ASMs. In P. Clote and H. Schwichtenberg, editors, Computer Science Logic (Pro-
ceedings of CSL 2000), volume 1862 of Lecture Notes in Computer Science, pages
41-60. Springer-Verlag, 2000.

54. E. Borger and R. F. Stark. Abstract State Machines. A Method for High-Level

System Design and Analysis. Springer, 2003.

. E. Borger, Y.Gurevich, H. K. Biining, and M.Richter. Computer Science
Logic. 1992. Dagstuhl Seminar Report 40 (9229), https://www.dagstuhl.de/
fileadmin/files/Reports/92/9229.pdf.

56. E. Borger, Y.Gurevich, and K.Meinke, editors. CS5L’93, volume 832 of Lecture

Notes in Computer Science. Springer, 1994.

57. J. P. Bowen. ABZ 2021 conference report. FACS FACTS, 2021(2):65-70, July
2021.

58. J. P. Bowen. Communities and ancestors associated with Egon Borger and ASM.
In A. Raschke, E. Riccobene, and K.-D. Schewe, editors, Logic, Computation and
Rigorous Methods, volume 12750 of Lecture Notes in Computer Science, pages
96-120. Springer, 2021.

oy |
o

117

FACS FACTS Issue 2022-1 January 2022

59. A. Briggemann. Stochastische Zuverldssigkeit fehlertoleranter Netzwerke. PhD
thesis, Inst.math.Logik und Grundlagenforschung, Universitit Minster, 1985.
The scientific advisor of this dissertation has been D.Rédding, but the thesis
was submitted after Rodding’s death so that the Mathematics Genealogy Project
does not associate it with D.Rodding.

60. A. Briiggemann, L.Priese, D.Roédding, and R.Schitz. Modular decomposition
of automata. In E.Borger, G.Hasenjaeger, and D.Rédding, editors, Logic and
Machines: Decision Problems and Complexity, pages 198-236. Springer Lecture
Notes in Computer Science vol.171, 1984.

61. M. J. Butler, K.-D. Schewe, A. Mashkoor, and M. Biro, editors. Abstract State
Machines, Alloy, B, TLA, VDM, and Z - 5th International Conference ABZ
2016, volume 9675 of Lecture Notes in Computer Science, Linz (Austria), 2016.
Springer.

62. C.Boehm and G.Jacopini. Flow diagrams, Turing machines and languages with
only two formation rules. Communications of the ACM, 9:366-371, 1966.

63. C.Carstensen. Eine schaltalgebraische Realisierung von Registermaschinen.
Priifungsarbeit zur Ersten Staatspriifung fir das Lehramt an Realschulen, 1975.
Padagogische Hochschule Flensburg.

64. C.Christen. Spektren und Klassen elementarer Funktionen. PhD thesis, ETH
Ziirich, 1974.

65. A. K. Chandra and D.Harel. Computable queries for relational data bases. J.
Computer and System Sciences, 21:156-178, 1980.

66. A. K. Chandra and D.Harel. Structure and complexity of relational queries. J.
Computer and System Sciences, 25:99-128, 1982. https://doi.org/10.1016/
0022-0000(82)90012-5.

67. C.Kaune. Das Wissen um Unterschiede in den kognitiven Strukturen wvon
Schiilerinnen und Schiilern als Erkldarung von Unterrichtsbeitragen. Zentralblatt
fiir Didaktik der Mathematik, 35:102-109, 2003.

68. L. Cohors-Fresenborg. Registermaschine. email of Nov 1 to Egon Bérger.

69. E. Cohors-Fresenborg. On the representation of algorithmic concepts. In
F.Lowenthal and F.Vandamme, editors, Pragmatics and Education, Boston (MA),
1986. Springer. https://doi.org/10.1007/978-1-4757-1574-3_13.

70. E. Cohors-Fresenborg. Individual differences in cognitive structures and the ef-
fect on business reengineering. In Proceedings of the I'V European Congress of
Psychology, pages 153-160, Géttingen, 1996.

71. J. Copeland. Turing’s great invention: the universal computing machine. In
J. Copeland, J. Bowen, M. Sprevak, and R. Wilson, editors, The Turing Guide,
2017. DOT:10.1093/0s0/9780198747826.003.0013.

72. M. Deutsch. Ein neuer Beweis und eine Verscharfung fiir den Reduktionstyp
V3v¥>2(0,1) mit einer Anwendung auf die spektrale Darstellung von Priadikaten.
Zeitschrift flir math. Logik und Grundlagen der Math., 38:559-564, 1992.

73. D Hilbert and W.Ackermann. Grundziige der theoretischen Logik. Springer,
1928,1938. English translation of the 2nd edition: Principles of Mathematical
Logic, Chelsea Publishing Company, New York (1950).

74. B. Dreben and W. Goldfarb. The decision problem: solvable cases of quantifica-
tional formulas. Addison-Wesley, 1979.

75. D.Rodding. Darstellungen der (im Kalmdr-Csillagschen Sinne) elementaren
Funktionen. PhD thesis, Inst. fiir math. Logik und Grundlagenforschung, Univer-
sitat Miinster, 1961. Presented at the International Congress of Math., Stockholm
1962, and published in Arch. Math. Logik Grundlagenforsch. 7 (1965) 139-158.

118

FACS FACTS Issue 2022-1 January 2022

76. D.Rédding. Theorie der Rekursivitit iiber dem Bereich der endlichen Mengen
von endlichem Rang. Habilitationsschrift, Institut fiir math. Logik und Grundla-
genforschung, 1964.

77. D.Rédding. Klassen rekursiver Funktionen. In M. H. Lob, editor, Proceedings of
the Summer School in Logic (Leeds 1967), pages 159-222, 1968.

78. D.Roédding. Einfiihrung in die Theorie der berechenbaren Funktionen. Lecture
Notes (written by E.Borger), Institut fiir math. Logik und Grundlagenforschung,
1969. Reviewed in Mathematical Reviews (number 56 # 15384a/b).

79. D.Rédding. Hohere Pradikatenlogik: Interpolationstheorem, Reduktionstypen.
Lecture Notes (written by H.Schwichtenberg), Institut fiir math. Logik und
Grundlagenforschung, 1969.

80. D.Rédding. Reduktionstypen der Pradikatenlogik. Lecture Notes (written by
E.Borger), Institut fiir math. Logik und Grundlagenforschung, 1970. Reviewed in
Mathematical Reviews 57 (number 2903) and Zentralblatt fiir Mathematik 267
(number 02034).

81. D.Rodding. Einfithrung in die Theorie der berechenbaren Funktionen I. Lecture
Notes (written by P. Koerber), Institut fiir math. Logik und Grundlagenforschung,
1972. Summer Term 1972.

82. D.Rodding. Einfihrung in die Theorie der berechenbaren Funktionen II. Lecture
Notes (written by P. Pappinghaus), Institut fiir math. Logik und Grundlagen-
forschung, 1973. Winter Term 1972/73.

83. D.Rodding. Klasseneinteilungen im Bereich der rekursiven Funktionen. Lecture
Notes, Institut fiir math. Logik und Grundlagenforschung, Winter term 1964/65.

84. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.

85. H.-D. Ebbinghaus, J. Flum, and W.Thomas. Mathematical Logic. Springer, 1995.

86. E.Borger. Reduktionstypen in Krom- und Hornformeln. PhD thesis, Institut fir
math. Logik und Grundlagenforschung, Universitiat Miinster, 1971.

87. E.Borger. Reduktionstypen der klassischen Pradikatenlogik, Teil 1. Lecture
Notes, Institut fiir math. Logik und Grundlagenforschung, 1972.

88. E.Borger. The origins and the development of the ASM method for high level
system design and analysis. J. Universal Computer Science, 8:2-74, 2002.

89. E.Borger, editor. Abstract State Machines and high-level system design and anal-
ysts, volume 336 (2-3) of Theorelical Computer Science (Special Issue). Elsevier,
2005. ISSN 0304-3975. Selection of extended papers from ASM’03 (Taormina,
Sicily).

90. E.Borger, editor. The Abstract State Machines method, volume 77 of Fundamenta
Informaticae (Special Issue). I0S Press, 2007. ISSN 0169-2968. Selection of
extended papers from ASM’05 (Paris).

91. E.Borger, A.Gargantini, and E.Riccobene, editors. Absiract State Machines 2003.
Advances in Theory and Practice, volume 2589 of LNCS. Springer, 2003. Contains
Proceedings of 10th ASM Workshop (Taormina, Italy). For a selection of extended
workshop papers see [89)].

92. E.Borger and A.Prinz, editors. Quo vadis Abstract State Machines?, volume 14
(12) of J. Universal Computer Science (Special Issue). 2008. Selection of extended
papers from ASM’07 (Grimstadt, Norway).

93. E.Borger, D. Beauquier, and A. Slissenko. Proc. 12th international workshop
on Abstract State Machines ASM’05. Université Paris 12 (France), 2005. For a
selection of extended workshop papers see [90].

94. E.Cohors-Fresenborg. Subrekursive Funkiionsklassen iiber bindren Bdawmen. PhD
thesis, Inst.math.Logik und Grundlagenforschung, Universitdat Miinster, 1971.

119

FACS FACTS Issue 2022-1 January 2022

95. E.Cohors-Fresenborg. Berechenbare Funktionen und Registermaschinen Ein
Beitrag zur Behandlung des Funktionsbegriffs auf konstruktiver Grundlage. Di-
daktik der Mathematik, 3:187 —209, 1973.

96. E.Cohors-Fresenborg. Dynamische Labyrinthe. Didaktik der Mathematik, 1:1-21,
1976.

97. E.Cohors-Fresenborg. Mathematik mit Kalkiilen und Maschinen. Vieweg, Braun-
schweig, 1977.

98. E.Cohors-Fresenborg. Verschiedene Reprasentationen algorithmischer Begriffe.
Journal fiir Mathematikdidaktik, 6:187-209, 1985,

99. E.Cohors-Fresenborg and B.Reimers. Ein Demonstrationsmodell fiir Register-
maschinen. Der Mathematische und Naturwissenschaftliche Unterricht (MNU),
XXVIII, 1975.

100. E.Cohors-Fresenborg, D.Finke, and S.Schiitte. Dynamische Labyrinthe. Os-
nabricker Schriften zur Mathematik, 1979. English version 11-19, Dutch version
31-39, also translated to Chinese and Indonesian.

101. E.Cohors-Fresenborg, M. Griep, and I. Schwank. Registermaschinen und
Funktionen—Ein Schulbuch zur Einfithrung des Funktionsbegriffs auf der Grund-
lage von Algorithmen. Osnabriicker Schriften zur Mathematik, 22, 1979.

102. E.Cohors-Fresenborg and C. Kaune. Von Anweisungen zu Funktionen.
Forschungsinstitut fiir Mathematikdidaktik e.V., Osnabriick, 2012. 3d revised
edition.

103. E.Cohors-Fresenborg, C. Kaune, and M. Griep. FEinfihrung wn die Computer-
welt mit Registermaschinen. Forschungsinstitut fiir Mathematikdidaktik e. V.,
Osnabriick, 1995.

104. E.Cohors-Fresenborg, S.Brinkschmidt, and S.Armbrust. Augenbewegungen als
Spuren pradikativen oder funktionalen Denkens. Zentralblatt fiir Didaktik der
Mathematik, 35:86-93, 2003.

105. E.Cohors-Fresenborg and [. Schwank. On the modelling of learning processes by
affy - automata. In Proc.7th International Congress of Logic, Methodology and
Philosophy of Science, pages 24-27, 1983.

106. E.Cohors-Fresenborg and I. Schwank. Kognitive Aspekte des Business Reengi-
neering. Gestalt Theory, 18:233-256, 1996.

107. E.Cohors-Fresenborg and 1. Schwank. Individual differences in the managerial
mental representation of business processes. In R. P. et al., editor, Managerial
Behaviour and Business Processes: European Research [ssues, pages 93106, Lou-
vain, 1997.

108. E.Engeler. Algorithmic properties of structures. Math. Systems Theory, 1:183—
195, 1967.

109. E.G.Wagner. Uniformly reflexive structures: on the nature of Goédelizations and
relative computability. Transac. American Mathematical Society, 144:1-41, 1969.

110. T. Eichholz. Semantische Untersuchungen zur Entscheidbarkeit im
Priadikatenkalkiil mit Funktionsvariablen. Archiv fiir math. Logik u. Grundlagen-
forschung, pages 19-28, 1957.

111. F.-K.Mahn. Uber die Strukturunabhdngigkeit des Begriffs der primitiv-rekursiven
Funktionen. PhD thesis, Institut fiir math. Logik und Grundlagenforschung, Uni-
versitd Miinster, 1965.

112. F.-K.Mahn. Primitiv-rekursive Funktionen auf Termmengen. Arch. math. Logik,
12:54-65, 1969.

113. F. Ferrarotti, K.-D. Schewe, L. Tec, and Q. Wang. A new thesis concerning
synchronised parallel computing — simplified parallel ASM thesis. Theor. Comp.
Sei., 649:25-53, 2016.

120

FACS FACTS Issue 2022-1 January 2022

114. F.L.Bauer. The formula-controlled logical computer Stanislaus. Mathematics of
Computation, 14:64-67, 1960.

115. M. Firer. Alternation and the Ackermann case of the decision problem. L’
Enseignement Mathématique, 11:137-162, 1982.

116. G. Gabriel, H.Hermes, F. Kambartel, C.Thiel, and A.Veraart, editors. Gottlob
Frege. Wissenschaftlicher Briefwechsel. Felix Meiner Verlag Hamburg, 1976.

117. G.Asser. Das Reprasentantenproblem im Pridikatenkalkiil der ersten Stufe mit
Identitat. Zeitschr. f. math. Logik u. Grundlagen d. Math., 1:252-263, 1955.

118. G.Hasenjaeger. Nachlass. Deutsches Museum Miinchen, Archiv, NL 288.

119. G.Hasenjaeger. Register-Maschinen. Deutsches Museum Miinchen, Archiv, NL
288/081. See [123].

120. G.Hasenjaeger. Einfiithrung in die Mengenlehre. Lecture Notes (written by Hans-
Ridiger Wiehle) at University of Miinster, 1953 /4.

121. G.Hasenjaeger. FEinfihrung in die Grundbegriffe und Probleme der modernen
Logik. Alber, Freiburg and Munich, 1962. Engl.translation Introduction to the
basic concepts and problems of modern logic, D. Reidel Publishing Company,
Dordrecht, Holland, and Humanities Press, New York, 1972.

122. G.Hasenjaeger. Rekursive Funktionen. Lecture Notes (written by G. Seebach,
Tassilo von der Twer and Jutta Klucken) at University of Bonn, 1971/2.

123. G.Hasenjaeger. Registermaschinen. Contact, 14 and 15, 1976.

124. G.Hasenjaeger. Zur Vor- und Frithgeschichte des (bis heute so genannten) “Know-
How- Computers”. pages 1-4, 1984. Apparently unpublished (but most of the
material went into [125]). See Hasenjaeger Nachlass, Deutsches Museum Miinchen,
NL 288 / 089.

125. G.Hasenjaeger. On the early history of register machines. In Computation Theory
and Logic, volume 270 of Lecture Notes in Computer Science, pages 181 — 188.
Springer, 1987.

126. R. Glaschick. A size index for multi tape Turing machines. Isaac Newton Institute
Cambridge preprint, 18.7.2018. https://www.newton.ac.uk/files/preprints/
nil2061\0.pdf.

127. R. Glaschick. Alan Turings Wirkung in Miinster. Mitteilungen der Deutschen
Mathematiker- Vereinigung, 20(1):42-48, 2012. https://doi.org/10.1515/
dmvm—-2012-0019.

128. R. Glaschick. Turing machines in Miinster. In S. B. Cooper and J. van Leeuwen,
editors, Alan Turing: His Work and Impact. Elsevier, 2013. ISBN 9780123869807.

129. E. Gradel. The Complexily of Subclasses of Logical Theories. PhD thesis, Uni-
versitit Basel, 1987. For a summary see Bulletin of the EATCS vol. 34 (1988),
289-291.

130. E. Gradel. Subclasses of Presburger Arithmetic and the Polynomial-Time Hier-
archy. Theoretical Computer Science, 56:289-301, 1988.

131. E. Gridel. Dominoes and the complexity of subclasses of logical theories. Annals
of Pure and Applied Logic, 43:1-30, 1989.

132. E. Gradel. Size of models versus length of computations. On inseparability by
nondeterministic time complexity classes. In Proceedings of the Second Workshop
on Computer Science Logic CSL 88, Duisburg 1988, LNCS 385, pages 118-137.
Springer, 1989.

133. E. Gradel. On logical descriptions of some concepts in structural complexity
theory. In Proceedings of the Third Workshop on Computer Science Logic CSL
89, Kaiserslautern 1989, LNCS 440, pages 163—-175. Springer, 1990.

134. Y. Gurevich. A new thesis. Abstracts, American Mathematical Society, 6(4):317,
August 1985. abstract 85T-68-203.

121

FACS FACTS Issue 2022-1 January 2022

135. Y. Gurevich. Evolving algebras 1993: Lipari Guide. In E. Borger, editor, Specifi-
cation and Validation Methods, pages 9-36. Oxford University Press, 1995.

136. Y. Gurevich. Sequential Abstract State Machines capture sequential algorithms.
ACM Trans. Computational Logic, 1(1):77-111, July 2000.

137. D. Harel and A. Pnueli. On the development of reactive systems. In K.Apt,
editor, Logics and models of concurrent systems, pages 477-498. Springer-Verlag
New York, 1985.

138. G. Hasenjaeger. Universal Turing machines (UTM) and Jones-Matiyasevich-
masking. In E. Borger, G.Hasenjaeger, and D.Rédding, editors, Logic and Ma-
chines: Decision Problems and Complexity, volume 171 of Lecture Notes in Com-
puter Science, pages 248-253. Springer Berlin / Heidelberg, 1984.

139. H.Bramik. Beweistheoretische Charakterisierung der ws-rekursiven Funktionen.
PhD thesis, Inst.math.Logik und Grundlagenforschung, Universitit Miinster,
1972.

140. H.Bruderer. Wie erfuhr die ETH Ziirich von der Zusemaschine Z47 https:
//doi.org/10.3929/ethz-a-010001419, 2013.

141. H.Friedman. Algorithmic procedures, generalized Turing algorithms, and ele-
mentary recursion theory. volume 61 of Studies in Logic and the Foundations of
Mathemalics, pages 361 — 389. 1971.

142. H.Hermes. Definite Begriffe und berechenbare Zahlen. Semesterberichte zur Pflege
des Zusammenhangs von Universitdt und Schule aus den mathematischen Sem-
inaren, pages 110-123, 1937.

143. H.Hermes. FEine Axiomatisierung der allgemeinen Mechantk. PhD thesis, Uni-
versitat Miinster, 1938. Published in Leipzig as Heft 3 of Forschungen zur Logik
und zur Grundlegung der exakten Wissenschaften.

144. H.Hermes. Maschinen zur Emntscheidung von mathematischen Problemen.
Mathemaltisch- Physikalische Semesterberichie (Gatlingen), pages 179-189, 1952.
145. H.Hermes. Die Universalitit programmgesteuerter Rechenmaschinen.

Mathematisch- Physikalische Semesterberichte (Géttingen), pages 42-53, 1954.

146. H.Hermes. Vorlesung tiber Entscheidungsprobleme in Mathematik und Logik. As-
chendorffsche Verlagsbuchhandlung, 1955. Vol.15 of Ausarbeitungen mathema-
tischer und physikalischer Vorlesungen.

147. H.Hermes. Aufzdhlbarkeit - Entscheidbarkeit - Berechenbarkeit. Einfihrung in
die Theorie der rekursiven Funktionen. Springer-Verlag, 1961. Various editions,
english translation 1965, spanish translation INTRODUCCION A LA TEORIA
DE LA COMPUTABILIDAD. See also the manuscript [146].

148. H.Hermes. Einfihrung in die mathematische Logik - Klassische Prddikatenlogik.
Teubner Verlag, 1963. Second extended edition 1969, english translation Intro-
duction to Mathematical Logic 1973.

149. H.Hermes. FEine Termlogik mit Auswahloperator. Springer-Verlag Berlin, 1965.
Vol.6 of Lecture Notes in Mathematics. English translation Term Logic with
Choice Operator in 1970.

150. H.Hermes. In memoriam WILHELM ACKERMANN 1896-1962. Notre Dame
Journal of Formal Logic, VIII:1-8, 1967.

151. H.Hermes. Entscheidungsprobleme und Dominospiele. In K. Jakobs, editor, Se-
lecta Mathematica I, pages 114-140. Springer, 1970.

152. H.Hermes. A simplified proof for the unsolvability of the decision problem in
the case VI¥. In R. Gandy and C. Yates, editors, Selecta Mathematica 11, pages
307-310, Amsterdam, 1971. North-Holland.

122

FACS FACTS Issue 2022-1 January 2022

153. H.Hermes. Logistik in Miinster um die Mitte der Dreissiger Jahre. In H.Dollinger,
editor, Logik und Grundlagenforschung. Festkolloguium zum 100. Geburtstag von
HEINRICH SCHQOLZ, volume 8 (Neue Folge), pages 41-52. Schriftenreihe der
Westfalischen Wilhelms-Universitat Miinster, 1986.

154. H.Hermes and D.Rdédding. A method for producing reduction types in the re-
stricted lower predicate calculus. In Formal Systems and Recursive Functions,
pages 42-47, Oxford, 1965.

155. H.Hermes and H.Scholz. Mathematische Logik. In Enzyklopddie der math. Wis-
senschaften Vol. I, 1.1, page 82, Leipzig, 1952. Teubner.

156. H.Hermes, F. Kambartel, and F. Kaulbach, editors. Gottlob Frege. Nachgelassene
Schriften. Felix Meiner Verlag Hamburg, 1969.

157. H.Lewis. Complexity results for classes of quantificational formulas. Journal of
Compuler and System Sciences, 21:317-353, 1980.

158. H.Miiller. Klassifizierungen der primitiv-rekursiven Funktionen. PhD thesis,
Inst.math.Logik und Grundlagenforschung, Universitit Miinster, 1974.

159. H.Scholz. Ein ungeldstes Problem in der symbolischen Logik. Journal of Symbolic
Logic, 17:160, 1952.

160. H.Scholz and G.Hasenjaeger. Grundziige der Mathematischen Logik. Springer
Verlag, 1961.

161. H.Schwichtenberg. Fine Klassifikation der mehrfach-rekursiven Funktionen. PhD
thesis, Inst.math.Logik und Grundlagenforschung, Universitidt Minster, 1968.

162. H.Schwichtenberg. Rekursionszahlen und die Grzegorczyk-Hierarchie. Archive f.
math. Logik u. Grundlagenforschung, 12:85-97, 1969.

163. H.Schwichtenberg. Eine Klassifikation der eg-rekursiven Funktionen. Zeitschrift
f. math. Logik u. Grundlagen d. Math., 17:61-74, 1971.

164. H.Schwichtenberg and S.S.Wainer. Proofs and Computations. Cambridge Uni-
versity Press, 2011. ISBN: 9780521517690.

165. H.Wang. A variant of Turing’s theory of computing machines. .J. ACM, 4:63-92,
1957.

166. I.Schwank. Prdferenzgesteuerte af~y-Automaten. PhD thesis, Universitit Os-
nabriick, 1984.

167. J.-R.Abrial and U.Glasser. Rigorous Methods for Software Construction and
Analysis. 2006. https://www.dagstuhl.de/06191. See Proceedings [7].

168. J.A . Makowsky. Some thoughts on computational models: from massive human
computing to Abstract State Machines. In Logic, Computation and Rigorous
Methods. Essays Dedicated to Egon Borger on the Occasion of His 75th Birthday,
Springer Lecture Notes in Computer Science vol.12750, pages 173186, 2021.

169. J.Bartnick. Fine algebraisch-kombinatorische Darstellung der Prddikatenlogik.
PhD thesis, Institut fiir math. Logik und Grundlagenforschung, Universita
Miinster, 1971. The scientific advisor of this dissertation has been D.Rédding,
but the thesis is not listed in the Mathematics Genealogy Project [220].

170. J.Bennett. On spectra. PhD thesis, Princeton University, 1962.

171. J.Biichi. Turing machines and the Entscheidungsproblem. Mathematische An-
nalen, 148:201-213, 1962.

172. J.Derrick, J.Fitzgerald, S.Gnesi, S.Khurshid, M .Leuschel, S.Reeves, and
E.Riccobene, editors. Abstract State Machines, Alloy, B, VDM, and Z - Third
International Conference ABZ 2012, volume 7316 of Lecture Notes in Computer
Science, Pisa (Italy), 2012. Springer.

173. J.Elstrodt and N. Schmitz. Geschichte der Mathematik an der Universitit
Miinster. Teil 11:1945-1969, Kap.7: Ehemalige Professoren 1945 - 1969. http:
//www.math.uni-muenster.de/historie/. Consulted July 11, 2021.

123

FACS FACTS Issue 2022-1 January 2022

174. R. Jensen. Ein neuer Beweis fiir die Entscheidbarkeit des -einstelligen
Pradikatenkalkiils mit Identitat. Archiv math. Logik u. Grundlagenforschung,
7:128-138, 1962.

175. J.Genenz. Reduktionstheorie des Entscheidungsproblems im Pradikatenkalkiil
der ersten Stufe nach der Methode von Kahr-Moore-Wang, 1965. Diplomarbeit,
Universitat Miinster.

176. J.Genenz. Untersuchungen zum Entscheidungsproblem im Prddikatenkalkil der
ersten Stufe. PhD thesis, Inst.math.Logik und Grundlagenforschung, Universitat
Miinster, 1965.

177. J.Miiller. Die mathematische Behandlung von Praferenz und Tausch unter Zu-
grundelegung des Automatenbegriffs. PhD thesis, Inst.math.Logik und Grundla-
genforschung, Universitit Miinster, 1982. The scientific advisor of this dissertation
has been D.Rddding, but the thesis is not listed in the Mathematics Genealogy
Project [220].

178. J. Jones and Yu.V.Matijasevich. Register machine proof of the theorem on expo-
nential diophantine representation of enumerable sets. Journal of Symbolic Logic,
49:818-829, 1984.

179. N. Jones and A. Selman. Turing machines and the spectra of first-order formulas.
Journal of Symbolic Logic, 39:139-150, 1974.

180. J.Suranyi. Reduktionstheorie des Entscheidungsproblems im Prddikatenkalkiil der
ersten Stufe. Verlag der Ungarischen Akademie der Wissenschaften (Budapest),
1959.

181. K.-D.Schewe and F.Ferrarotti. Behavioural theory of reflective algorithms I: Re-
flective sequential algorithms. arXiv:2001.01873. submitted 2020.

182. K.-P.Kniza. Automaten und rekursive Funktionale endlichen Typs. PhD thesis,
Inst.math.Logik und Grundlagenforschung, Universitat Miinster, 1980.

183. K.Erk and L.Priese. Theoretische Informatik. Eine umfassende FEinfihrung.
Springer, 2000.

184. K .Heidler. Untersuchungen zur Reduktionstheorie des Entscheidungsproblems in
der Pradikaten- und Termlogik. PhD thesis, Universitat Freiburg, 1973.

185. K.Heidler, H.Hermes, and K.Mahn. Rekursive Funktionen. Bibliographisches
Institut-Wissenschaftsverlag, Mannheim, Wien, Ziirich, 1977.

186. H. Kleine Biining. Uber Probleme bei homogener Parkettierung von Z Z durch
Mealy-Automaten bei normierter Verwendung. PhD thesis, Inst. fiir math. Logik
und Grundlagenforschung, Universitat Miinster, 1977.

187. H. Kleine Biining. Some undecidable theories with monadic predicates and with-
out equality. Archiv math. Logik u. Grundlagenforschung, 21:137—148, 1981.

188. H. Kleine Biining. Complexity of LOOP-problems in normed networks. In Logic
and Machines: Deciston Problems and Complexity, Springer LNCS 171, pages
254-269, 1984.

189. H. Kleine Biining and T. Lettmann. Classes of first order formulas under various
satisfiability definitions. In 8th International Conference on Automated Deduction
(CADE 1986), Springer LNCS 230, pages 553-563, 1968.

190. H. Kleine Biining and T. Lettmann. Aussagenlogik: Deduktion und Algorithmen.
Teubner, 1994.

191. H. Kleine Biining and L.Priese. Universal asynchronous iterative arrays of Mealy
automata. Acta Informatica, 13, 1980.

192. H. Kleine Biining and Th.Ottmann. Kleine universelle mehrdimensionale Turing-
maschinen. J. Inf. Process. Cybern., 13:179-201, 1977.

193. K.Rodding. Zur Klasseneinteilung der rekursiven Funktionen nach Kleene. PhD
thesis, Inst. math. Logik und Grundlagenforschung, Universitdat Miunster, 1967.

124

FACS FACTS Issue 2022-1 January 2022

194. K.Schroéter. Ein allgemeiner Kalkilbegriff. PhD thesis, Universitat Miinster, 1941.

195. K.Schroter. Axiomatisierung der Fregeschen Aussagenkalkile. PhD thesis, Uni-
versitat Miinster, 1943. Habilitationsschrift.

196. L.Blum, M.Shub, and S.Smale. On a theory of computation and complexity over
the real numbers. Bulletin American Math.Society, 21:1-46, 1989.

197. H. Lewis. Unsolvable Classes of Quantificational Formulas. Addison-Wesley, 1979.

198. L.Priese. Uber einfache unentscheidbare Probleme: Computational- und construc-
tional universelle asynchrone cellulare Rdume. PhD thesis, Inst. math. Logik und
Grundlagenforschung, Universitiat Miinster, 1974. The scientific advisor of this
dissertation has been D.Rdédding, but the thesis is not listed in the Mathematics
Genealogy Project [220].

199. L.Priese. On the minimal complexity of component-machines for self-correcting
networks. Journal of Cybernetics, 5:97-118, 1975.

200. L.Priese. On a simple combinatorial structure sufficient for sublying non-trivial
self-reproduction. Journal of Cybernetics, 6:101-137, 1976.

201. L.Priese. On stable organization of normed networks. In Proceedings of the third
European meeting on cybernetics and systems research, pages 381-394, 1976.

202. L.Priese. Reversible Automaten und einfache universelle 2-dimensionale Thue-
systeme. Zeitschr.f.math.Logik und Grundlagen der Math., 22:353-384, 1976.

203. L.Priese. Normed networks: Their mathematical theory and applicability. In
Applied General Systems Research, NATO Conference Series vol.5, pages 381
394, 1978.

204. L.Priese. Towards a precise characterization of the complexity of universal and
nonuniversal Turing machines. STAM J. Computing, 8:508-523, 1979.

205. L.Priese. Modular implementation of concurrency. International Journal of The-
oretical Physics, 21:993-1005, 1982.

206. L.Priese. On the concept of simulation in asynchronous, concurrent systems.
Progress in Cybernetics and Systems Research, 11, 1982. Proceedings of European
Meeting on Cybernetics and Systems Research (Linz 1978).

207. L.Priese. Automata and concurrency. Theor. Comp. Sci., 25:221-265, 1983.

208. L.Priese and D.Rodding. A combinatorial approach to self-correction.
J. Cybernetics, 4:7-24, 1974.

209. M.Butler, A.Raschke, T.S.Hoang, and K.Reichel, editors. Abstract State Ma-
chines, Alloy, B, TLA, VDM, and Z, volume 10817 of Lecture Notes in Computer
Science. Springer, Southampton (UK), 2018. 6th International Conference ABZ
2018.

210. M.Davis. Computability and Unsolvability. New York, 1958.

211. M.Davis, R.Sigal, and E.Weyuker. Computability, Complexity, and Lan-
guages: Fundamentals of Theoretical Computer Science (2nd ed.). Elsevier Sci-
ence and Technology, San Francisco (US), 1994. ISBN10 0122063821,ISBN13
9780122063824.

212. M.Deutsch. Normalformen aufzihlbarer Pridikate. PhD thesis, Inst.math.Logik
und Grundlagenforschung, Universitat Miinster, 1968.

213. M.Frappier, U.Glasser, S.Khurshid, R.Laleau, and S.Reeves, editors. Abstract
State Machines, Alloy, B, and Z - Second International Conference ABZ 2010,
volume 5977 of Lecture Notes in Computer Science, Orford,QC (Canada), 2010.
Springer.

214. M. Minsky. Recursive unsolvability of Post’s problem of ‘tag’ and other topics in
the theory of Turing machines. Annals of Mathematics, 74:437-455, 1961.

125

FACS FACTS Issue 2022-1 January 2022

215. M.Molle and I.Schwank. Dimensional complexity and power spectral measures of
the eeg during functional versus predicative problem solving. Brain and Cognition,
44:547 563, 2000.

216. E. Moore. A simplified universal Turing machine. ACM National Meeting
(Toronto), pages 50-54, 1952. http://doi.acm.org/10.1145/800259.808993.

217. T. Neary, D. Woods, N.Murphy, and R.Glaschick. Wangs B machines are effi-
ciently universal, as is Hasenjaegers small universal electromechanical toy. J.of
Complexity, 30:634-646, 2014. https://doi.org/10.1016/j.jco.2014.02.003,
ISSN 0885-064X.

218. N.Immerman. Descriptive and computational complexity. In J. Hartmanis, editor,
Computational Complexity Theory, pages 75-91. American Math.Society, 1989.

219. NN. Heinrich Scholz. Biography. https://mathshistory.st-andrews.ac.uk/
Biographies/Scholz/. Published at School of Mathematics and Statistics, Uni-
versity of St Andrews, Scotland.

220. NN. Mathematics Genealogy Project. https://genealogy.math.ndsu.nodak.
edu/. Consulted July 14, 2021.

221. B. Pehrson and L. Simon, editors. Technology and Foundations. Information Pro-
cessing 94, volume I, Track 4, Stream C: Evolving Algebras, Hamburg (Germany),
1994. Elsevier. Contains Proceedings of First ASM Workshop.

222. P.Koerber. Untersuchung an sequentiellen, durch normierte Konstruktionen
gewonnenen Netzwerken endlicher Automaten. PhD thesis, Inst.math.Logik und
Grundlagenforschung, Universitdt Minster, 1976.

223. P.Koerber and Th.Ottmann. Simulation endlicher Automaten durch Ketten aus
einfachen Bausteinen. EIK, 10:133-148, 1974.

224. A. Raschke and D. Méry, editors. Rigorous State-Based Methods, volume 12709
of Lecture Notes in Computer Science, Ulm (Germany), 2021. Springer. 8th In-
ternational Conference ABZ 2021.

225. A. Raschke, D. Méry, and F. Houdek, editors. Rigorous State-Based Methods, vol-
ume 1271 of Lecture Notes in Computer Science, Ulm (Germany), 2020. Springer.
7th International Conference ABZ 2020.

226. R.Fagin. Contributions to the model theory of finite structures. PhD thesis,
University of California, Berkeley, 1973.

227. R.Fagin. Generalized first-order spectra and polynomial-time recognizable sets.
In R.Karp, editor, Complexity of Computation, pages 43-73. SIAM-AMS Pro-
ceedings vol.7, 1974.

228. R.Moreno-Diaz and A.Quesada-Arencibia, editors. Formal Methods and Tools for
Computer Science. Furocast 2001, Las Palmas (Spain), 2001. IUCTC Universida
de Las Palmas de Gran Canaria. Contains Extended Abstracts of 8h ASM
Workshop. For selected full workshop papers see [45].

229. D. Rédding. Uber die Eliminierbarkeit von Definitionsschemata in der Theorie
der rekursiven Funktionen. Zeitschr. Math. Logik Grundlagen der Mathematik,
10:315-330, 1964.

230. D. Rodding. Einige dquivalente Prizisierungen des intuitiven Berechenbarbeits-
begriffs. Math. Unterricht, 11:21-38, 1965.

231. D. Rédding. Uber Darstellungen der elementaren Funktionen II. Arch. Math.
Logik Grundlagenforsch., 9:36-48, 1966.

232. D. Rodding. Primitiv-rekursive Funktionen iiber einem Bereich endlicher Mengen.
Arch. Math. Logik Grundlagenforsch., 10:13-29, 1967.

233. D. Rodding. Registermaschinen. Math. Unterricht, 18:32-41, 1972.

126

FACS FACTS Issue 2022-1 January 2022

234. D. Rodding. Modular decomposition of automata. In M.Karpinski, editor, Proc.
FPCT-1983 Conference, Lecture Notes in Computer Science vol.158, pages 394—
412. Springer, 1983.

235. D. Rodding. Some logical problems connected with a modular decomposition
theory of automata. In M. Richter, E. Borger, W. Oberschelp, B. Schinzel, and
W. Thomas, editors, Computation and proof theory, Lecture Notes in Mathemat-
ics vol.1104, pages 365-388. Springer, 1984.

236. D. Rodding and E. Borger. The undecidability of V3V(0,4) — formulae with binary
disjunctions. Journal of Symbolic Logic, 39:412-413, 1974.

237. D. Rédding and H.Schwichtenberg. Bemerkungen zum Spektralproblem. Zeitschr.
f- math. Logik u. Grundlagen d. Math., 18:1-12, 1972.

238. D. Rodding and W. Rdédding. Networks of finite automata. In Proceedings of the
third FEuropean meeting on cybernetics and systems research, Progress in Cyber-
netics and Systems Research 1979. Hemisphere, Washington D.C., 1976.

239. W. Rodding. Netzwerke abstrakter Automaten als Modelle wirtschaftlicher und
sozialer Systeme. Schriftenreihe der Osterreichischen Studiengesellschaft fiir Ky-
bernetik, 1975.

240. W. Roédding and H.Nachtkamp. On the aggregation of preferences to form a
preference of a system. Naval Research Logistic Quarterly, 197T8.

241. R.Vobl. Komplexitatsuntersuchungen an Basisdarstellungen endlicher Auto-
maten. Diplomarbeit am Inst. fiir math. Logik und Grundlagenforschung in
Miinster, 1980.

242. R.W.Ritchie. Classes of predicatably computable functions. Transactions Amer-
ican. Math.Society, 106:139-173, 1963.

243. K.-D. Schewe. Computation on structures: Behavioural theory, logic, complexity.
In A.Raschke, E. Riccobene, and K.-D. Schewe, editors, Logic, Computation and
Rigorous Methods. Essays Dedicated to Egon Bérger on the Occasion of His 7T5th
Birthday, volume 1275 of Lecture Notes in Computer Science, pages 266-282.
Springer, 2021.

244. 1. Schwank. Cognitive structures of algorithmic thinking. In Proceedings of
the 10th International Conference for the Psychology of Mathematics Education,
pages 404 — 409, 1986.

245. 1. Schwank. af~-automata realizing preferences. In E.Borger, editor, Computa-
tion Theory and Logic, volume 270 of LNCS, pages 320-333. Springer, 1987.

246. I. Schwank. Maschinenintelligenz: ein Ergebnis der Mathematisierung von
Vorgiangen Zur Idee und Geschichte der Dynamischen Labyrinthe. In
C. Kaune, I. Schwank, and J. Sjuts, editors, Mathematikdidaktik @m Wis-
senschaftsgefiige: Zum Verstehen wund Unterrichten mathematischen Denkens,
pages 30-72. Forschungsinstitut fiir Mathematikdidaktik in Osnabriick, 2005.

247. S.C.Kleene. General recursive functions of natural numbers. Math. Ann., 112:727—
742, 1936.

248. S.C.Kleene. Introduction to Melamathemalics. North-Holland, 1952.

249. S.Cook. The complexity of theorem-proving procedures. In Proc. 3rd Annual
ACM Symposium on Theory of Computing, pages 151-158, 1971.

250. J. Shepherdson and H. Sturgis. Computability of recursive functions. J. ACM,
10:217-255, 1963.

251. S.Stein and A.Wegener. Bericht iiber die Dienstreise nach Miinster/W zur Durch-
suchung des Korrespondenz-Nachlasses von Prof. Scholz. HNF - Heinz Nixdorf
MuseumsForum, 2011.

252. R. F. Stark, J. Schmid, and E. Borger. Javae and the Java Virtual Machine:
Definition, Verification, Validation. Springer-Verlag, 2001.

127

FACS FACTS Issue 2022-1 January 2022

253. Th.Ottmann. Einfache universelle mehrdimensionale Turingmaschinen. Habilita-
tionsschrift (Universitit Karlsruhe).

254. Th.Ottmann. Eine Theorie sequentieller Netzwerke. PhD thesis, Inst.math.Logik
und Grundlagenforschung, Universitat Miinster, 1971.

255. Th.Ottmann. iiber Moglichkeiten zur Simulation endlicher Automaten durch eine
Art sequentieller Netzwerke aus einfachen Bausteinen. Zeitschrift f.math.Logik
und Grundlagen der Mathematik, 19:223-238, 1973.

256. Th.Ottmann. Arithmetische Pradikate iiber einem Bereich endlicher Automaten.
Archiv f.math.Logik, 16, 1974.

257. Th.Ottmann. Eine universelle Turingmaschine mit zweidimensionalem Band.
Elektronische Informationsverarbeitung und Kybernetik, 11:27-38, 1975.

258. Th.Ottmann. Eine einfache universelle Menge endlicher Automaten. Zeitschrift
f-math. Logik und Grundlagen der Mathematik, 24, 1978.

259. B. Trakhtenbrot. The impossibility of an algorithm for the decision problem for
finite models. Dokl. Akad. Nauk SSSR, 70:596-572, 1950. English translation in:
AMS Transl. Ser. 2, vol.23 (1963), p.1-6.

260. U.Glasser and P.Schmitt, editors. Fifth International Workshop on Abstract State
Machines, Magdeburg (Germany), 1998. Otto-von-Guericke-Universitdt. Con-
tains Proceedings of Fifth International ASM Workshop at Informatik’98.

261. U.Rohde. Computer fiir Anfanger.Teil 1. me, 5:40-45, 1983.

262. B. van der Waerden. Denken ohne Sprache. In G.Révész, editor, Thinking and
Speaking, pages 165-174. North-Holland, 1954.

263. W.Heinermann. Untersuchungen tber die Rekursionszahlen rekursiver Funktio-
nen. PhD thesis, Institut fiir math. Logik und Grundlagenforschung, Universitét
Miinster, 1961.

264. C.-P. Wirth. A most interesting draft for Hilbert and Bernays Grundlagen der
Mathematik that never found its way into any publication, and 2 cv of Gishert
Hasenjaeger. SEKI Working-Paper SWP201701 https://arxiv.org/pdf/1803.
01386.pdf, 2017.

265. W.Oberschelp. Hans Hermes 12.2.1912 bis 10.11.2003. Jahresbericht der
Deutschen Mathematiker- Vereinigung, 109:99-109, 2007.

266. D. Woods and T. Neary. The complexity of small universal Turing machines: A
survey. Theoretical Computer Science, 410:443-450, 2009.

267. W.Ro6dding. Geschichte des Turingraums. Personal Communication to Egon
Borger (November 8, 2021) and Letter of 27.4.2012 to Norbert Ryska from the
Heinz Nixdorf MuseumsForum in Paderborn (Germany). Unpublished.

268. W.Schwabhiuser. FEntscheidbarkeit und Vollstindigkeit der elementaren hyper-
bolischen Geometrie. PhD thesis, Humboldt-Universitat Berlin, 1960.

269. W.Schwabhéauser, W.Szmielew, and A.Tarski. Metamathematische Methoden in
der Geometrie. Springer Verlag, 1983.

270. W.Zimmermann and B.Thalheim, editors. Abstract State Machines 2004. Ad-
vances in Theory and Practice, volume 3052 of LNCS. Springer, 2004. Contains
Proceedings of 11th ASM Workshop (Lutherstadt Wittenberg).

271. Y.Ait-Ameur and K.-D.Schewe, editors. Abstract State Machines, Alloy, B, TLA,
VDM, and Z - 4th International Conference ABZ 2014, volume 8477 of Lecture
Notes in Computer Science, Toulouse (France), 2014. Springer.

272. Y.Gurevich, P.W.Kutter, M.Odersky, and L.Thiele, editors. Abstract State Ma-
chines. Theory and Applications, volume 1912 of LNCS, Monte Verita (Switzer-
land), 2000. Springer. Proceedings of Tth International ASM Workshop.

128

FACS FACTS Issue 2022-1 January 2022

273. K. Zuse. Ansitze einer Theorie des allgemeinen Rechnens unter besonderer
Beriticksichtigung des Aussagenkalkiils und dessen Anwendung auf Relaisschaltun-
gen. https://digital.deutsches-museum.de/item/NL-207-0281/. Proposal for
a doctoral dissertation submitted to H.Scholz. Unpublished.

274. K. Zuse. Mathematische Logik und Informatik. In Proc. GI-5.Jahrestagung,
volume 34 of Springer Lecture Notes in Computer Science, pages 57-70, 1975.

129

FACS FACTS Issue 2022-1 January 2022

Forthcoming events

Events Venue (unless otherwise specified):

BCS, The Chartered Institute for IT
Ground Floor, 25 Copthall Avenue, London, EC2R 7BP

The nearest tube station is Moorgate, but Bank and Liverpool Street are within walking
distance as well.

Details of all forthcoming events can be found online here:

https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-
computing-science-group/

Please revisit this site for updates as and when further events are confirmed.

130

https://doi.org/10.1137/1013095
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/
https://www.bcs.org/membership/member-communities/facs-formal-aspects-of-computing-science-group/
https://doi.org/10.1137/1013095
https://doi.org/10.1137/1013095
https://doi.org/10.1137/1013095
https://doi.org/10.1137/1013095
https://doi.org/10.1137/1013095
https://doi.org/10.1137/1013095
https://doi.org/10.1137/1013095
https://doi.org/10.1137/1013095
https://doi.org/10.1137/1013095
https://doi.org/10.1137/1013095
https://doi.org/10.1137/1013095
https://doi.org/10.1137/1013095
https://doi.org/10.1137/1013095

FACS FACTS Issue 2022-1

FACS Committee

Jonathan Bowen
FaCs Chair and
BCS Liaison

January 2022

John Cooke

Roger Carsley
FACS Treasurer and kMinutes Secretary
Publications

Keith Lines
Coverniment and

Standards Liaison

Tim Denvir
Co-Editor, FACS
FACTS

131

Ana Cavalcant
FMAE Ligison

EBrijesh Dongol
Refinement
Workshop Ligisan

MargaretWest

Inclusion Officer and
BCSwWarmen Liaison

Brian Monahan
CorEditor, FACS
FACTS

https://doi.org/10.1137/1013095

FACS FACTS Issue 2022-1 January 2022

FACS is always interested to hear from its members and keen to recruit additional
helpers. Presently we have vacancies for officers to help with fund raising, to liaise with
other specialist groups such as the Requirements Engineering group and the European
Association for Theoretical Computer Science (EATCS), and to maintain the FACS
website. If you are able to help, please contact the FACS Chair, Professor Jonathan
Bowen at the contact points below:

BCS-FACS

c/o Professor Jonathan Bowen (Chair)
London South Bank University

Email: jonathan.bowen@lsbu.ac.uk
Web: www.bcs-facs.org

You can also contact the other Committee members via this email address.

Mailing Lists

As well as the official BCS-FACS Specialist Group mailing list run by the BCS for FACS
members, there are also two wider mailing lists on the Formal Aspects of Computer
Science run by JISCmail.

The main list <facs@jiscmail.ac.uk> can be used for relevant messages by any
subscribers. An archive of messages is accessible under:

http://www.jiscmail.ac.uk/lists/facs.html
including facilities for subscribing and unsubscribing.

The additional <facs-event@jiscmail.ac.uk> list is specifically for announcement of
relevant events.

Similarly, an archive of announcements is accessible under:
http://www.jiscmail.ac.uk/lists/facs-events.html
including facilities for subscribing and unsubscribing.

BCS-FACS announcements are normally sent to these lists as appropriate, as well as the
official BCS-FACS mailing list, to which BCS members can subscribe by officially joining
FACS after logging onto the BCS website.

132

http://www.jiscmail.ac.uk/lists/facs-events.html
mailto:facs-event@jiscmail.ac.uk
mailto:facs-event@jiscmail.ac.uk
mailto:facs-event@jiscmail.ac.uk
http://www.jiscmail.ac.uk/lists/facs.html
mailto:facs@jiscmail.ac.uk
mailto:facs@jiscmail.ac.uk
mailto:facs@jiscmail.ac.uk
http://www.bcs-facs.org/
mailto:jonathan.bowen@lsbu.ac.uk

	Editorial
	Table of Contents
	BCS-FACS Specialist Group 2021 Chair's Report
	News Release: ACM to publish BCS FACS Journal
	Matrices of Sets
	How to Play at Quantum Computing (including QKD)
	LMS-FACS Evening Seminar 2021
	Short Reports: CALCO 2021, MFPS 2021, and FMAS 2021
	Annual BCS-FACS Landin Memorial Seminar 2021
	Book Review: Essays Dedicated to Egon Börger on the Occasion of His 75th Birthday
	Book review: Combinators: A Centennial View
	Unfinished Business: Abstract Data Types and Computer Arithmetic
	Logic and Machines: Turing Tradition at the
	Logic School of M�unster
	Forthcoming events
	FACS Committee

