RADIO PROPAGATION FROM NO DATA TO BIG DATA

Neville Palmer

100 YEARS AGO THIS DECEMBER!

- Reception of High Frequency signals from across the Atlantic
- Started step change in understanding of radio propagation
- Today:
 - Prediction software
 - Digital techniques
 - Automated data gathering
 - Research
 - Propagation
 - Solar activity

1900

- Little data about radio propagation
- Transatlantic wireless believed impossible

Marconi disagreed!

POLDHU, CORNWALL, 1901

POLDHU WIRELESS STATION, DECEMBER 1901

Transmitter about 10 to 12 kW On about 500kHz

Antenna: 50 wire fan between two 61m masts

- The original 20 mast array fell down in a storm!

ST. JOHN'S, NEWFOUNDLAND, 1901

Marconi's Atlantic leap!

Kite receiving antenna

Received three dots (letter S) on 12th December

HEAVISIDE IN UK AND KENNELLY IN USA

• 1902

• Predict that Marconi's Atlantic signals must be due to unseen reflective layer in the upper atmosphere

• Named Kennelly-Heaviside layer

FURTHER TESTS

- December 1902 first message from Glace Bay, Nova Scotia to Poldhu
- Commercial radio system
 - Clifden, Ireland to Glace Bay, Nova Scotia 1907
- Jointly awarded Nobel Prize for Physics in 1909

CAERNARFON, WALES – TRANSATLANTIC STATION – 1916 – CALL "MUU"

For two way transmissions between UK – Canada/USA

1,200 metre antenna fed by 36 wires

Power: 200 kiloWatts (considered low power) On 21 kHz

Wavelength 14 km - Ideal antenna length 3.5 km!

(Wikepedia, 2021a)

(Bull, 2018)

CAERNARFON TO SYDNEY - 1918

- 22nd September 1918
- Edward Fisk
- receives first wireless messages direct from UK
- signals weak and only audible at certain times

Amalgamated Wireless Australasia (AWA) builds first direct two way low frequency wireless communications system to UK

POST WW1

- 1919 amateur radio activity resumes
- Amateurs allocated commercially useless frequencies below 200 metres (1500 kHz)
 - in today's medium wave broadcast band
 - Maximum lkW (in USA)
- Most operated close to 1500 kHz
 - Shorter range on higher frequencies (shorter ground wave)
 - Difficult to transmit on higher frequencies

Noticed: Longer range at night (and winter)

Q. Would it be possible to span the Atlantic even at these frequencies?

(RSGB. 2021)

VEALS FARM 1557 KHZ

- Local radio transmitter
- Near Hythe
- 500 Watts on 1557 kHz
- Serves Southampton and New Forest up to 15 miles

Heard From America?

FEBRUARY 1921

- UK amateurs listened for 25 active US transmitters
 - Nothing heard
 - Too much interference!

NOVEMBER 1921

- ARRL sends Paul Godley, 2ZE to UK
- Expert radio systems engineer
- On SS Aquitania
- Assistance of Marconi Company
- To Ardrossan, Scotland
 - Quiet location
- Latest superheterodyne receiver
- "Beverage antenna" 1300 ft long wire

12TH DECEMBER 1921

- Success!
- USA received during the night
- Special codes confirm reception
- Sent via Marconi station at Caernarfon to USA

WHAT OF TWO WAY COMMUNICATION?

- 1923: In France Leon Deloy, 8AB, uses shorter wavelength 100m (3 MHz)
- Easily made two way contact with USA!

Finding:

 Shorter wavelengths and higher frequencies give greater range more reliably!

• With less power

Smaller antennas (shorter wavelength)

Those useless short waves weren't so useless after all!

MARCONI 1923 -24

- Yacht Elettra
- Conducted short wave tests at sea
- Successful!
- Opened Beam Wireless Service for GPO:
 - Bodmin to Canada 1926
 - Bodmin to Australia 1927

All the low frequency high power stations - scrapped!

1924

- 1922 Medium wave broadcasting starts
- Edward Appleton at Rutherford lab notices that medium wave transmissions from Bournemouth are constant during the day, but fade up and down at night
- Must be two paths!
- Proves by measurement that there is a "sky wave" refracted from an unknown layer – E layer
- Higher layers are responsible for long range propagation F layers
- Ionised layers solar radiation

Awarded Nobel Prize

Heaviside and Kennelly were right!

Method of reflecting radio waves from ionosphere later used by Watson-Watt to invent Radar!

PROPAGATION PREDICTION

- Slowly data is gathered over many years
- Varies due to:
 - Time of day
 - Season
 - Distance
 - Frequency
 - Solar activity
 - Sunspots and cycle (11 years)
 - Solar wind
 - Solar flares (disruptive)

PREDICTION AND DATA GATHERING

- Propagation prediction
 - Software
- Data gathering
 - Big Data
 - Research
 - Propagation
 - Solar

PROPAGATION PREDICTION SOFTWARE

- VOACAP
- Voice of America Coverage Analysis Program
- <u>https://www.voacap.com/</u>
- Now uses FT8 data gathered by radio amateur
- eg. 20m or 14 MHz band

VOACAP DATA FROM FT8 DATA FOR 2018

EXAMPLE: PATH UK TO AUSTRALIA (SHORT PATH)

PROPAGATION PREDICTION UK TO AUSTRALIA

Time h

For the month of November 2021

OPTIMUM TRAFFIC FREQUENCY/TIME DAY

voacap.com/hf/best_freq.html

Nov	2021	SSN =	32.	Minimum	Angle= 3.000	degrees
1090gu		QF20sv		AZIMUTHS	N. MI.	KM
50.86 N	1.42 W -	39.10 S	145.55 E	75.86 307.93	9253.8	17136.6
REQ.SNR	R = 19 dB, TX	POWER =	0.08 kW, SHORT	F-PATH		

The best operating frequencies (FREQ1, FREQ2, FREQ3) by hour

UTC	SDBW	ΔSIG	REL	SNR	ΔSNR	MUFday	FOT	MUF	HPF	FREQ1	FREQ2	FREQ3
01	-211 ()	40.1	0%	-45	42.9	59%	8.4	10.5	12.5	10.1-	14.1-	21.1-
02	-224 ()	42.3	0%	-59	44.0	50%	8.1	10.1	12.0	10.1-	14.1-	21.1-
03	-247 ()	45.1	0%	-82	47.7*	42%	7.8	9.8	11.7	10.1-	14.1-	24.9-
04	-247 ()	41.1	0%	-83	42.8	59%	8.5	10.4	12.5	10.1-	14.1-	24.9-
05	-206 ()	50.0*	0%	- 39	51.5*	32%	10.6	13.1	15.8	14.1-	18.1-	10.1-
06	-176 ()	50.0*	14%	-3	51.5*	31%	13.6	16.8	20.1	18.1-	14.1-	21.1-
07	-154 (S0)	50.0*	54%	21	51.6*	54%	17.4	21.5	25.7	21.1	24.9	18.1*
08	-147 (S2)	50.0*	72%	31	52.6*	46%	18.7	24.5	29.0	24.9	21.1	14.1
09	-141 (53)	46.9	81%	37	49.6*	57%	19.6	25.8	30.5	24.9	21.1	28.2
10	-144 (S3)	50.0*	77%	34	52.6*	43%	17.7	24.0	30.7	24.9	21.1	28.2
11	-143 (S3)	48.9*	75%	33	51.5*	63%	16.7	22.6	28.9	21.1	24.9	18.1
12	-142 (53)	50.0*	76%	34	52.6*	51%	15.7	21.2	27.2	21.1	18.1	24.9
13	-143 (53)	50.0*	74%	32	51.6*	44%	15.1	20.4	26.2	21.1	18.1	24.9
14	-140 (53)	43.6	76%	34	46.3	73%	15.8	20.2	24.7	18.1	21.1	14.1
15	-138 (S4)	47.3*	79%	36	50.0*	59%	15.2	18.8	21.8	18.1	14.1	21.1
16	-144 (S3)	50.0*	63%	26	52.5*	66%	11.6	15.3	19.3	14.1	18.1	10.1
17	-147 (52)	50.0*	57%	23	51.5*	38%	10.1	13.3	16.7	14.1	10.1	7.1-
18	-150 (S2)	44.9	35%	13	46.6	74%	8.7	11.5	14.5	10.1	7.1	14.1-
19	-149 (52)	50.0*	39%	14	52.7*	59%	8.0	10.6	13.3	10.1	7.1-	5.4-
20	-154 (S0)	50.0*	31%	9	51.8*	49%	7.5	10.1	12.7	10.1	7.1-	14.1-
21	-161 (SØ)	50.0*	20%	2	51.7*	49%	7.6	10.1	12.7	10.1	14.1-	7.1-
22	-164 (S0)	49.9*	18%	1	52.4*	57%	7.9	10.5	13.2	10.1*	14.1-	7.1-
23	-183 ()	50.0*	5%	-13	52.5*	7%	8.1	10.8	13.7	14.1-	10.1-	7.1-
24	-198 ()	38.3	0%	-32	41.2	66%	8.6	10.8	12.8	10.1-	14.1-	7.1-

View the prediction as text.

© 2010-2021 Jari Perkiömäki (OH6BG), James Watson (HZ1JW) and Juho Juopperi (OH8GLV).

<- optimum frequency for UK to Australia (short path) 19.6 MHz at 09.00 utc (Nov 21) 81% reliability

K1JT – JOE TAYLOR

(Wikipedia, 2021b)

Nobel Prize for Physics – discovery of a new type of binary Pulsar at Arecibo radio observatory in 1974

Also developed a number of weak signal digital communication modes initially for Moon bounce:

- FT8
- JT9
- JT65
- etc.
- and WSPR
- at Princeton Uni.

BIG DATA AND PROPAGATION

- Weak Signal Propagation Reporter (WSPR)
 - Beacon station
 - Low power (100mW to 5W typically)
 - Transmits every 10-20 minutes
 - For 2 minutes
 - Transmits:
 - Callsign
 - Position locator
 - Receiving stations:
 - Decode signals
 - Upload to https://www.wsprnet.org/drupal/
 - All stations run WSJT-X encode/decode software and reporter

DIGITAL COMMUNICATION SYSTEM

cat = computer aided tuning

WSJT-X IN WSPR MODE

WSJT-X v2.3.1 by K1JT, G4WJS, and K9AN \times File Configurations Tools Help Decode Save View Mode dB DT Freq Drift Call Grid UTC dBm km. 0342 -240.2 3.570121 HB9DOZ JN37 23 721 0 ^ 0342 -21-0.43.570131 DL1FX JN49 23 764 0 3.570140 DL4ZBE 37 742 0342 -80.1 0 J040 0342 -123.570170 DG7RJ JN58 0.3 0 37 937 979 0342 -26 3.570175 IU2PJI JN45 0.3 23 0 -15 5.288706 OZ2JBR J065 37 1097 0344 -1.6 0 ----- Transmitting WSPR 0348 ____ 30m IL18 0346 -23 -2.7 7.040073 0 EA8DBU 2801 30 7.040091 FM29 5665 -21 -3.0WA3DNM 0346 37 0 7.040110 AC1LL FN53 0346 -14 -2.9 0 30 4999 v Halt Tx Menus Tune Stop Monitor Erase Decode Enable Tx 24.924 600 12m Pwr Upload spots Tx 1418 Hz ÷ -80 Prefer Type 1 messages Tx Pct 41 % ۵ Band Hopping -60 No own call decodes -40 Tx Next Schedule -20 2021 Nov 16 37 dBm 5 W \sim 09:17:09 0 dB Tx: <G4GCI > IO90GU 37 Last Tx: G4GCI IO90 37 WSPR Day 69/120

WSJT-X SPECTRUM

🔘 WSJT-X - V	Vide Graph				- 🗆 ×
Controls	1300	1400 🗖	1500	1600	1700
14:24 20m					
14:20 40m					
14:18 15m					
14:16 15m					
14:12 17m		<u>.</u>			
	i de la constante de				
Bins/Pixel 1	🚖 Start 1200 Hz 🚖	Palette Adjust	Flatten Ref Spec		Spec 30 % 主
Split 2500 Hz	🗘 N Avg 12 🗘	Default 🗸	Linear Avg 🗸 🗸		Smooth 1 🖨

RECEIVED DATA - DATABASE

Sked/Chat page

WSPR Spot Database

Display options
Band: 20m 🗸
Number of spots (max 10,000): 50
Search for call:
Show spots heard by:
Sort by: Date V Reverse order
Find unique calls Find unique reporters
Go! Reset

WSPRnet.org Home

<u>Power</u> Reported Distance Call Date SNR Drift Grid Mode Frequency by loc km mi dBm 2021-11-14 23:06 K5SWA 14.097058 -12 0 EM12ox +37 5.012 KA70EI DN40ao 1591 989 WSPR-2 NI5F 14.097102 -27 KA70ET 2669 1658 WSPR-2 2021-11-14 23:06 EM70 +37 5.012 DN40ao 0 2021-11-14 23:06 TA4/G8SCU 14.097171 -29 KM56vo +37 5.012 IW2NKE JN63np 1764 1096 WSPR-2 0 14.097072 -22 JN47tk WSPR-2 2021-11-14 23:06 HB9GPU 0 JN47re +20 0.100 OE9TAV 31 19 2021-11-14 23:06 KØWET 14.097155 -23 -4 DM79 +23 0.200 KF7FBF CN87uq 1657 1030 WSPR-2 2021-11-14 23:06 KE9MOW 14.097056 -23 0 EM57kg +37 5.012 KF7FBF CN87uq 2902 1803 WSPR-2 WSPR-2 2021-11-14 23:06 N6RQW 14.097177 -23 0 +23 0.200 KF7FBF CN87uq 1572 977 DM14ga 5.012 2481 1542 WSPR-2 2021-11-14 23:06 KE9MOW 14.097034 -13 0 EM57kq +37 W07I DN10cw WSPR-2 2021-11-14 23:06 K5SWA 14.097058 -14 0 EM12ox +375.012 W07T DN10cw 2058 1279 AF7XZ 14.097084 W07T WSPR-2 2021-11-14 23:06 -5 DM42mf +230.200 DN10cw 1144 711 0 2021-11-14 23:06 N2HQI 14.097120 -9 FN13sa +37 5.012 KF7FBF CN87uq 3566 2216 WSPR-2 0 +33 WO7T 3813 2369 WSPR-2 2021-11-14 23:06 W1STR 14.097085 -19 FN42hh 1.995 DN10cw 0 2021-11-14 23:06 K7RJ 14.097102 -1 0 DM421h +23 0.200 WO7T DN10cw 1132 703 WSPR-2 NI5F W07T 3155 WSPR-2 2021-11-14 23:06 14.097102 -12 0 EM70 +37 5.012 DN10cw 1960 2021-11-14 23:06 KJ6SVA 14.097162 2 DM13hw +23 0.200 NH6Y BL10ts 4091 2542 WSPR-2 +4 2021-11-14 23:06 N4TVC 14.097117 -15 FM18is +20 0.100 W07T 3435 2134 WSPR-2 0 DN10cw 2021-11-14 23:06 AC1JS 14.097148 -22 +23 0.200 W07I 3943 2450 WSPR-2 0 FN54 DN10cw

PROPAGATION DATA GATHERING ON A GLOBAL SCALE

PROPAGATION DATA AVAILABLE FOR ALMOST 14 YEARS

Downloads

Documentation and software downloads of WSPR programs and other WSJT-related modes public download in comma-separated value (CSV) format compressed with the gzip and zip March, 2008. The file for the current month is updated automatically once per day in the ear 20MB.

2008-03 gz zip 2008-04 gz zip 2008-05 gz zip 2008-06 gz zip 2008-07 gz zip 2008-08 gz zip 2008-09 gz zip 4742 2008-10 gz zip .3647. 2008-11 gz zip 2008-12 gz zip 2009-01 gz zip 2009-02 gz zip 2009-03 gz zip 2009-04 gz zip 2009-05 gz zip 2009-06 gz zip 2009-07 gz zip

ord

6.

00

 Several Gb of data for each year Hundreds of stations

Used to better inform worldwide propagation prediction

https://www.wsprnet.org/drupal/wsprnet/map

0

0

WSPR AT G4GCI

000

WHY HF WAS THOUGHT TO BE USELESS?

My call MH		MHz	SNR				reporter			distance		
2021-11-18 14:06	G4GCI	10.140110	-18	0	I090gu	+37	5.012	WA2TP	FN301u	5431	3375	WSPR-2
2021-11-18 14:06	G4GCI	10.140113	(+1)	0	I090gu	+37	5.012	DJ9PC	JN59po	916	569	WSPR-2
2021-11-18 14:06	G4GCI	10.140111	-28	0	I090gu	+37	5.012	G7ELK	1090j v	18	(11)	WSPR-2
2021-11-18 14:06	G4GCI	10.140110	-10	0	I090gu	+37	5.012	DC1RDB	JN58ss	960	597	WSPR-2
2021-11-18 14:06	G4GCI	10.140101	-26	0	I090gu	+37	5.012	VK4CT	QG62jv	16597	10313	WSPR-2

- Frequency: $HF \sim 10 \text{ MHz}$ (30m band)
- Signals 11 miles away weaker than signals 10,000 miles away!
- Strong in Germany, but not 11 miles down the road!

THANKS FOR LISTENING!

• Questions?

REFERENCES

- Bussey, G. (2001). Marconi's Atlantic Leap. UK: Marconi Communications
- Wikipedia (2021a). Spark-gap transmitter. Available at: <u>https://en.wikipedia.org/wiki/Spark-gap_transmitter</u> [accessed 16th Nov 21]
- Naval Historical Society of Australia (2018). The First Direct Wireless Messages from the United Kingdom to Australia. Available at: <u>https://www.navyhistory.org.au/the-first-direct-wireless-messages-from-the-united-kingdom-to-australia/</u> [accessed 16th Nov 21]
- Bull, P. (2018). The First Direct Wireless Messages from the United Kingdom to Australia. Available at: <u>http://www.otva.com/blog/the-first-direct-wireless-messages-from-england-to-australia/</u> [accessed 16th Nov 2021]
- RSGB (2021). Transatlantic Tests. Available at: <u>https://rsgb.org/main/activity/transatlantic-tests/</u> [accessed 16th Nov 21]
- Perkiömäki, J (2021). VOACAP Quick Guide. Available at: <u>https://www.voacap.com/</u>. [accessed 16th Nov 21]
- Seife, C. (1995). Spin Doctor Nobel Physicist Joseph Taylor Takes the "Pulse" of Dying Stars. <u>Available at:</u> <u>http://www.princeton.edu/~paw/archive_old/PAW95-96/02_9596/1011feat.html</u> [accessed 16th Nov 2021]
- Wikipedia (2021b). Joseph Hooton Taylor, Jr. Available at: <u>https://en.wikipedia.org/wiki/Joseph Hooton Taylor Jr</u>. [accessed 16th Nov 21]
- Taylor, J. (2020). WSJT Home Page. Available at: https://www.physics.princeton.edu/pulsar/K1JT/ [accessed 16th Nov 21]
- Wsprnet.org (n/d). WSPRNET. Available from: <u>https://www.wsprnet.org/</u> [accessed 16th Nov 21]

