

Object Oriented Programming April 2022 1

BCS Higher Education Qualification

 Diploma

April 2022

EXAMINERS’ REPORT

Object Oriented Programming

Question number: A1

Examiners’ Guidance Notes

In Part (a), most candidates were able to describe what a design pattern is, although there was

some confusion concerning whether design patterns are a diagrammatic, programmatic, or both.

In Part (b) was less well answered, with only some students able to both identify and correctly

describe five characteristics you would use to document a design pattern. Some answers we

seemingly intuitive guesswork. Some candidates named five characteristics in a list but did not

describe them as the question asked.

In Part (c), most candidates who were able to provide code opted to attempt to implement the

singleton pattern. In some answers, code was inappropriate in that there were no apparent

restrictions in place to limit object multiplicity. In some other answers, candidates merely described

the singleton but this did not accrue any marks as the question specifically asked for an

implementation and made no mention of a description.

Question number: A2

Many candidates did not read the question carefully enough, leading to the following common

issues:

• Failure to summarise FIVE object-oriented features (some students described fewer, and

some described a greater number of concepts but in scant detail);

• Neglecting to include either a diagram or code fragment to illustrate each feature;

• Not selecting features carefully. For instance, choosing topics that significantly overlap, such

as specialisation, inheritance and generalisation, not addressing the part of the question that

requested the selection of the most important features.

• Failing to answer the part of the question that asked them to emphasise why the feature is

important.

• In some cases, concepts were selected that were not specific to the object-oriented paradigm,

such as talking in general terms about coupling and cohesion.

Question number: A3

In Part (a), most candidates produced a valid use case diagram (i.e., featuring the core diagrammatic

components). However, the level of completeness of diagrams varied widely, with some candidates

carefully scrutinising the description to extract all actors and actions, and some presented a rather

oversimplified view. Several candidates didn’t include a boundary box, which although not a

compulsory feature of use case diagrams, does help to illustrate actors inside and outside the

system.

Object Oriented Programming April 2022 2

In Part (b), many candidates did not read the question carefully enough and failed to relate their

answer to the swimming club scenario used in part (a). Although some answers mentioned

requirements capture, testing, and exploiting the relative simplicity of this diagram type to help

facilitate discussion with stakeholders, these core purposes with either missing or insufficiently

clearly explained by many. Some other answers described what a use case diagram is, but didn’t

really answer the question, which sought an explanation of how this diagram type contributes to

the development of a system.

Question number: B4

For part (a), the candidate had to describe a realistic scenario in which overriding may be

appropriate or necessary in the development of an object-oriented program. A number of

candidates could describe what overriding is, but then could not apply it to a realistic scenario,

resorting to a Class A, with methods x and y type examples.

The Shape example was the most common scenario given, with the draw() method overridden in

the subclasses. In a few cases some candidates mixed up overloading with overriding so gained no

credit.

Part (b) required the candidate to present a code fragment which demonstrated how the Liskov

substitution principle (LSP) of object oriented programming may be operationalised in practice.

Quite a few candidates did not attempt this part of the question, which would account for the low

pass rate. Some students presented code that seemed to reflect part (a) and presented examples

that would demonstrate overriding rather than LSP.

To achieve a high mark the candidate needed to show an example of how a superclass object could

be replaced with a subclass object without breaking the functionality of the system. A number of

students produced code to demonstrate how you could replace a superclass object with a subclass,

but did not consider scenarios where this may not always be appropriate and doing so might cause

issues, such as producing side effects that would not have happened with a superclass object.

Higher marks went to candidates who included some explanation of the code, or include some

comments in the code.

Question number: B5

For part (a) the candidate had to describe two features of the object-oriented programming

paradigm that lend themselves to the division of labour between multiple programmers working

concurrently. A lot of candidates discussed classes and methods as the two features, which could

be appropriate, but then went on to discuss inheritance, overloading and overriding, without

attempting to discuss these features in the context of helping programmers work concurrently.

Part (b) required examples of code that demonstrated an appropriate use of a composition

relationship between classes. This part was often not attempted, which would explain the low pass

mark. Those who did attempt it often showed examples of a triangle containing points, with a good

explanation of how it represented composition. Weaker answers produced code to demonstrate

inheritance, rather than composition.

Object Oriented Programming April 2022 3

Question number: B6

Part (a) required a description of two class access specifiers and had to explain the circumstances

in which it would be appropriate to use each of them. Most candidates could describe two different

class access specifiers, public and private being the most popular. Higher marks went to candidates

that could suitably explain when to use them in a system, which was often overlooked in weaker

answers.

For Part (b), candidates had to present code that demonstrated an appropriate use of both class

and instance variables. Again, a lot of candidates did not attempt this part, or produced weak code,

in particular by not including any class variables.

Some answers appeared to be written to demonstrate access specifiers from Part (a), which could

gain credit if they also included examples of both class and instance variables.

