Use of docker for teaching Computer Sciences subjects in HE

Pedro Machado – Senior Lecturer in Computer Sciences @ NTU
Pedro.machado@ntu.ac.uk
Outline

- Research interests
- Introduction to Docker
- Docker demo
- Conclusions
Research Interests

Edge Computing
Neuromorphic Engineering
Robotics
Intelligent Sensors
Spiking Neural Networks
Introduction to Docker
What is Docker ?!!!

- Open platform for developers and sysadmins to build, ship and run distributed applications

- Can run on popular 64-bit Linux distributions with kernel 3.8 or later

- Supported by several cloud platforms including Amazon EC2, Google Compute Engine, Microsoft Azure and Rackspace.
Features…

- Light-Weight
- Minimal overhead (cpu/io/network)
- Based on Linux containers
- Uses layered filesystem to save space (AUFS/LVM)
- Uses a copy-on-write filesystem to track changes
- Portable
- Can run on any Linux system, Windows or MacOS.
- Edge devices support.
- A Docker container contains everything it needs to run
- Minimal Base OS
- Libraries and frameworks
- Application code
- A docker container can run anywhere that Docker can run.
The Challenge......
What and Where?

<table>
<thead>
<tr>
<th></th>
<th>Development VM</th>
<th>QA Server</th>
<th>Single Prod Server</th>
<th>Onsite Cluster</th>
<th>Public Cloud</th>
<th>Contributor’s laptop</th>
<th>Customer Servers</th>
</tr>
</thead>
</table>
Cargo Transport Pre-1960......

Multiplicity of Goods

Multiplicity of methods for transporting/storing

Do worry about how goods interact (e.g. coffee beans next to spices)

Can transport quickly and smoothly (e.g. from boat to train to truck)
What and where?

<table>
<thead>
<tr>
<th>Item</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
Solution: Intermodal Shipping Container

A standard container that is loaded with virtually any goods, and stays sealed until it reaches final delivery.

...in between, can be loaded and unloaded, stacked, transported efficiently over long distances, and transferred from one mode of transport to another.

Do I worry about how goods interact (e.g., coffee beans next to spices)?

Can I transport quickly and smoothly (e.g., from boat to train to truck)?

NTU
Docker is a Container System for Code......

An engine that enables any payload to be encapsulated as a lightweight, portable, self-sufficient container......

...that can be manipulated using standard operations and run consistently on virtually any hardware platform

Multiplicity of Stacks

- Static website
- User DB
- Web frontend
- Queue
- Analytics DB

Multiplicity of hardware environments

- Development VM
- QA server
- Customer Data Center
- Public Cloud
- Production Cluster
- Contributor’s laptop
Docker provides the answer to what and where

<table>
<thead>
<tr>
<th>Static website</th>
<th>Web frontend</th>
<th>Background workers</th>
<th>User DB</th>
<th>Analytics DB</th>
<th>Queue</th>
</tr>
</thead>
</table>

NTU
Docker Architecture

- Docker Engine
 - CLI
 - Docker Daemon
 - Docker Registry
- Docker Hub
 - Cloud service
 - Share Applications
 - Automate workflows
 - Assemble apps from components
- Docker images
- Docker containers
Docker images

- NOT A VHD
- NOT A FILESYSTEM
- uses a Union File System
- a read-only Layer
- do not have state
- Basically a tar file
- Has a hierarchy
 - Arbitrary depth
 - Fits into the Docker Registry
Docker Containers...

Units of software delivery (ship it!)

- run everywhere
 - regardless of kernel version
 - regardless of host distro
 - (but container and host architecture must match*)

- run anything
 - if it can run on the host, it can run in the container
 - i.e., if it can run on a Linux kernel, it can run

*Unless you emulate CPU with qemu and binfmt
Containers before Docker
Containers after Docker
How does Docker work?

- You can build Docker images that hold your applications.
- You can create Docker containers from those Docker images to run your applications.
- You can share those Docker images via Docker Hub or your own registry.

https://hub.docker.com/repository/docker/pedrombmachado/ntu_lubuntu
Virtual Machine Versus Container......
Virtual Machine Versus Container
Docker Container Lifecycle

- Conception
 - **BUILD** an Image from a Dockerfile
- Birth
 - **RUN** (create+start) a container
- Reproduction
 - **COMMIT** (persist) a container to a new image
 - **RUN** a new container from an image
- Sleep
 - **KILL** a running container
- Wake
 - **START** a stopped container
- Death
 - **RM** (delete) a stopped container
- Extinction
 - **RMI** a container image (delete image)
Linux Cgroups

- Kernel Feature
- Groups of processes
- Control resource allocations
 - CPU
 - Memory
 - Disk
 - I/O
- May be nested
Linux Kernel Namespaces

- Kernel Feature
- Restrict your view of the system
 - Mounts (CLONE_NEWNS)
 - UTS (CLONE_NEWUTS)
 - `uname()` output
 - IPC (CLONE_NEWIPC)
 - PID (CLONE_NEWPID)
 - Networks (CLONE_NEWNET)
 - User (CLONE_NEWUSER)
 - Not supported in Docker yet
 - Has privileged/unprivileged modes today
- May be nested
Dockerfile

- Like a Makefile (shell script with keywords)
- Extends from a Base Image
- Results in a new Docker Image
- Imperative, not Declarative
- A Docker file lists the steps needed to build an images
- docker build is used to run a Docker file
- Can define default command for docker run, ports to expose, etc
Docker CLI Commands

- `exec`: Run a command in a running container
- `export`: Export a container’s filesystem as a tar archive
- `history`: Show the history of an image
- `images`: List images
- `import`: Import the contents from a tarball to create a filesystem image
- `info`: Display system-wide information
- `inspect`: Return low-level information on Docker objects
- `kill`: Kill one or more running containers
- `load`: Load an image from a tar archive or STDIN
- `login`: Log in to a Docker registry
- `logout`: Log out from a Docker registry
- `logs`: Fetch the logs of a container
- `pause`: Pause all processes within one or more containers
- `port`: List port mappings or a specific mapping for the container
- `ps`: List containers
- `pull`: Pull an image from a repository or a local path
- `push`: Push an image or a repository to a registry
- `rename`: Rename a container
- `restart`: Restart one or more containers
- `rm`: Remove one or more containers
- `rmi`: Remove one or more images
- `run`: Run a command in a new container
- `save`: Save one or more images to a tar archive (streamed to STDOUT by default)
- `search`: Search the Docker Hub for images
- `start`: Start one or more stopped containers
- `stats`: Display a live stream of container(s) resource usage statistics
- `stop`: Stop one or more running containers
- `tag`: Create a tag TARGET_IMAGE that refers to SOURCE_IMAGE
- `top`: Display the running processes of a container
- `unpause`: Unpause all processes within one or more containers
Docker in Higher Education

- How do we train our students?
- How do we reduce installation and configuration times?
- How do we offer the same Dev environment to all our students?

Run the docker container

Only for personal laptops: ensure that the steps described in Install Docker Desktop on Windows machines have been completed successfully.

1. Start docker desktop
2. Start PowerShell (Windows) or Terminal (Linux/Mac OS) and run the following commands and DO NOT copy the $ sign:

3. Load the container (ONLY FOR LAB PCs). DO NOT copy the $ sign:

```
$ docker load --input 'C:\Users\Public\Documents\Shared Virtual Machines\Docker\comp20081.docker'

$ docker create volume docker_comp20081

$ docker run -it --rm -p "3390:3389/tcp" --name="ntu-vm-scomp20081" -v docker_comp20081:/home /ntu-user/NetBeansProjects padromachado/ntu_lubuntu:comp20081
```
Docker demo

Get docker desktop from https://docs.docker.com/get-docker/

Instructions

On AMD64/Intel64 (your laptop). DO NOT copy the $ sign:

$ docker volume create docker_comp20081
$ docker run -it --rm -p "3390:3389/tcp" --name="ntu-vm-comp20081" -v docker_comp20081:/home/ntu-user/NetBeansProjects pedrombmachado/ntu_lubuntu:comp20081

On ARM64 architecture (Mac M1/M2, Chrome book, etc.). DO NOT copy the $ sign:

$ docker volume create docker_soft40051
$ docker run -it --rm -p "3390:3389/tcp" --name="ntu-vm-comp20081" -v docker_comp20081:/home/ntu-user/NetBeansProjects pedrombmachado/ntu_lubuntu:arm64v8_comp20081

Docker Hub repo
Docker demo
Conclusions

- Easy to build, run & share containers
- Rapidly expanding ecosystem
- Better performance vs. VMs
- Layered file system gives us git-like control of images
- Reduces complexity of system builds
- Can be used in higher education to train students and abstract students from installing complex packages.

https://www.docker.com/
Use of docker for teaching Computer Sciences subjects in HE

Pedro Machado – Senior Lecturer in Computer Sciences @ NTU
Pedro.machado@ntu.ac.uk