

Department of Computer Science

Use of docker for teaching Computer Sciences subjects in HE

Pedro Machado – Senior Lecturer in Computer Sciences @ NTU Pedro.machado@ntu.ac.uk

Outline

- Research interests
- Introduction to Docker
- Docker demo
- Conclusions

Research Interests

Edge Computing

Neuromorphic Engineering

Robotics

Intelligent Sensors

Spiking Neural Networks

UPD project

loW project

Introduction to Docker

What is Docker ?!!!

- Open platform for developers and sysadmins to build, ship and run distributed applications
- Can run on popular 64-bit Linux distributions with kernel 3.8 or later
- Supported by several cloud platforms including Amazon EC2, Google Compute Engine, Microsoft Azure and Rackspace.

Features....

- Light-Weight
- Minimal overhead (cpu/io/network)
- Based on Linux containers
- Uses layered filesystem to save space (AUFS/LVM)
- Uses a copy-on-write filesystem to track changes
- Portable
- Can run on any Linux system, Windows

or MacOS.

- Edge devices support.
- A Docker container contains everything it needs to run
- Minimal Base OS
- Libraries and frameworks
- Application code
- A docker container can run anywhere that Docker can run.

The Challenge.....

What and Where?

NTU

•••	Static website	?	?	?	?	?	?	?
•••	Web frontend	?	?	?	?	?	?	?
•	Background workers	?	?	?	?	?	?	?
••	User DB	?	?	?	?	?	?	?
•	Analytics DB	?	?	?	?	?	?	?
*	Queue	?	?	?	?	?	?	?
		Development VM	QA Server	Single Prod Server	Onsite Cluster	Public Cloud	Contributor's Iaptop	Customer Servers
			1					111

NTU

Cargo Transport Pre-1960.....

What and where?

NTU

?	?	?	?	?	?	?
?	?	?	?	?	?	?
?	?	?	?	?	?	?
?	?	?	?	?	?	?
?	?	?	?	?	?	?
?	?	?	?	?	?	?
					<u> </u>	

Solution: Intermodal Shipping Container

tiplicity of

NTU

Docker is a Container System for Code.....

Docker provides the answer to what and where

NTU

Docker Architecture • Docker Engine

- CLI
- Docker Daemon
- Docker Registry
- Docker Hub
 - Cloud service
 - Share Applications
 - Automate workflows
 - Assemble apps from components
- Docker images

NTU

Docker containers

Docker images

- NOT A VHD
- NOT A FILESYSTEM
- uses a <u>Union File System</u>
- a read-only <u>Layer</u>
- do not have state
- Basically a tar file
- Has a hierarchy
 - Arbitrary depth
- Fits into the Docker Registry

Docker Containers...

Units of software delivery (ship it!)

- run everywhere
 - regardless of kernel version
 - regardless of host distro
 - (but container and host architecture must match*)
- run anything
 - if it can run on the host, it can run in the container
 - i.e., if it can run on a Linux kernel, it can run

*Unless you emulate CPU with gemu and binfmt

Containers before Docker

Containers after Docker

How does Docker work ?

- You can build Docker images that hold your applications
- You can create Docker containers from those Docker images to run your applications.
- You can share those Docker images via Docker Hub or your own registry

Virtual Machine Versus Container.....

Virtual Machine Versus Container

NTU

Docker Container Lifecycle

- Conception
 - BUILD an Image from a Dockerfile
- Birth
 - RUN (create+start) a container
- Reproduction
 - COMMIT (persist) a container to a new image
 - RUN a new container from an image
- Sleep
 - KILL a running container
- Wake
 - **START** a stopped container
- Death
 - RM (delete) a stopped container
- Extinction
 - **RMI** a container image (delete image)

Linux Cgroups

- Kernel Feature
- Groups of processes
- Control resource allocations
 SHARES:
 - CPU
 - Memory
 - Disk
 - I/O
- May be nested

Linux Kernel Namespaces

- Kernel Feature
- Restrict your view of the system
 - Mounts (CLONE_NEWNS)
 - UTS (CLONE_NEWUTS)
 - uname() output
 - IPC (CLONE_NEWIPC)
 - PID (CLONE_NEWPID)
 - Networks (CLONE_NEWNET)
 - User (CLONE_NEWUSER)
 - Not supported in Docker yet
 - Has privileged/unprivileged modes today
- May be nested

Dockerfile

- Like a Makefile (shell script with keywords)
- Extends from a Base Image
- Results in a new Docker Image
- Imperative, not Declarative
- A Docker file lists the steps needed to build an images
- docker build is used to run a Docker file
- Can define default command for docker run, ports to expose, etc

syntax=docker/dockerfile:1
FROM ubuntu:18.04
COPY . /app
RUN make /app
CMD python /app/app.py

Run a command in a running container exec export Export a container's filesystem as a tar archive history Show the history of an image images List images import Import the contents from a tarball to create a filesystem image Display system-wide information info Return low-level information on Docker objects inspect kill Kill one or more running containers load Load an image from a tar archive or STDIN login Log in to a Docker registry Log out from a Docker registry logout Fetch the logs of a container logs Pause all processes within one or more containers pause List port mappings or a specific mapping for the container port Pull a Dockert CL Commands ps pull Push an image or a repository to a registry push Rename a container rename restart Restart one or more containers Remove one or more containers ΓM rmi Remove one or more images Run a command in a new container run Save one or more images to a tar archive (streamed to STDOUT by default) save Search the Docker Hub for images search Start one or more stopped containers start Display a live stream of container(s) resource usage statistics stats Stop one or more running containers stop Create a tag TARGET IMAGE that refers to SOURCE IMAGE tag Display the running processes of a container top Unpause all processes within one or more containers unpause

Docker in Higher Education

- How do we train our students?
- How do we reduce installation and configuration times?
- How do we offer the same Dev environment to all our students?

Run the docker container

Only for personal laptops: ensure that the steps described in <u>Install Docker Desktop on Windows</u> <u>machines</u> at have been completed successfully.

- 1. Start docker desktop
- Start PowerShell (Windows) or Terminal (Linux/Mac OS) and run the following commands and DO NOT copy the \$ sign:
- 3. Load the container (ONLY FOR LAB PCs). DO NOT copy the \$ sign:

\$ docker load --input 'C:\Users\Public\Documents\Shared Virtual Machines\Docker \comp20081.docker'

\$ docker create volume docker_comp20081

\$ docker run -it --rm -p "3390:3389/tcp" --name="ntu-vm-scomp20081" -v docker_comp20081:/home
/ntu-user/NetBeansProjects pedrombmachado/ntu_lubuntu:comp20081

Docker demo

Get docker desktop from https://docs.docker.com/get-docker/

Instructions

On AMD64/Intel64 (your laptop). DO NOT copy the \$ sign: \$ docker volume create docker_comp20081 \$ docker run -it --rm -p "3390:3389/tcp" --name="ntu-vm-comp20081" -v docker_comp20081:/home/ntu-user/NetBeansProjects pedrombmachado/ntu_lubuntu:comp20081

On ARM64 architecture (Mac M1/M2, Chrome book, etc.). DO NOT copy the \$ sign: \$ docker volume create docker_soft40051 \$ docker run -it --rm -p "3390:3389/tcp" --name="ntu-vm-comp20081" -v docker_comp20081:/home/ntu-user/NetBeansProjects pedrombmachado/ntu_lubuntu:arm64v8_comp20081

Docker demo

Conclusions

- Easy to build, run & share containers
- Rapidly expanding ecosystem
- Better performance vs. VMs
- Layered file system gives us git-like control of images
- Reduces complexity of system builds
- Can be used in higher education to train students and abstract students from installing complex packages.

https://www.docker.com/

NTU

Department of Computer Science

Department of Computer Science

Use of docker for teaching Computer Sciences subjects in HE

Pedro Machado – Senior Lecturer in Computer Sciences @ NTU Pedro.machado@ntu.ac.uk

