Nottingham Trent
University

Department of Computer Science

Department of Computer Science

Use of docker for teaching Computer Sciences subjects in HE

Pedro Machado — Senior Lecturer in Computer Sciences @ NTU
Pedro.machado@ntu.ac.uk

Outline

* Research interests

= Introduction to Docker
= Docker demo

= Conclusions

NTU
21/11/2022

[=]

i [m]

Research Interests UPD project oW project

=]
(=]

Spiking Neural Networks

Introduction to Docker

gocker

NTU

What is Docker ?!1!

= Open platform for developers and sysadmins to build, ship and run distributed
applications

= Can run on popular 64-bit Linux distributions with kernel 3.8 or later

= Supported by several cloud platforms including Amazon EC2, Google
Compute Engine, Microsoft Azure and Rackspace.

NTU

Features....

= Light-Weight or MacOS.

= Minimal overhead (cpu/io/network) = Edge devices support.

= Based on Linux containers = A Docker container contains everything it

= Uses layered filesystem to save space needs to run

(AUFS/LVM) = Minimal Base OS
= Uses a copy-on-write filesystem to track = Libraries and frameworks
changes

= Application code

* Portable = A docker container can run anywhere that
= Can run on any Linux system, Windows Docker can run.

NTU

e
The Challenge......

" ®® User DB g

-

= Static website postgresqgl + pgve + v L [] *e . % o

i P Queue Analytics DB T _ 2

ua nginx 1.5 + modsecurity + openssl + bootstrap 2 Redis ¢ redissentinel hadoop + hive + thrift + OpenJDK -g % E.
i

2 T

& ® ® o 0

o eb frontend =

= & Background workers e 2 2

= o)) Ruby + Rails + sass + Unicorn ~J %

= Python 3.0 + celery + pyredis + libcurl + fimpeg + libopency + nodejs + o8 . o

S phantomjs --‘ API endeInt 7

Python 2.7 + Flask + pyredis + celery + psycopg + postgresgl-client

- Devel t VM Production Cluster
svelopmen Public Cloud

i QA server

ts

[)
[— = =]
[=
[— = =]
L= == =
[— — =
[— "]

c
gu
z £
T o
Ilil.
-
-==
Q

Disaster recovery

Customer Data Center ' Contributor’s laptop

Multiplicity of

2 N
S o
D g S
£ o —
253
~<_"-’:U_=|I
N o g
=
o M

Production Servers

e
What and Where?

Static website

Web frontend

Background workers

Analytics DB

Development
VM

Single Prod Onsite Public Cloud Contributor's Customer

QA Server Server Cluster laptop Servers

Do | worry about
how goods interact

(e.g. coffee beans
next to spices)

1960......

spoop jo ApidiniAl

Cargo Transport Pre

Can | transport quickly
and smoothly
(e.g. from boat to train
to truck)

Suuioys/3unJodsues;
10} spoyiaw
jo Apipdniniy

What and where?

NTU

E\,\,\,\,\,\,
7 .|
o
F
)

Solution: Intermodal Shipping Container

A standard container that is
loaded with virtually any
goods, and stays sealed until
it reaches final delivery.

Multiplicity of Goods
(s@21ds 03 xau
sueaq 2302 ‘3'9)
Joelajul Spoos moy
1hoqge Aliom | oQ

...in between, can be loaded and
unloaded, stacked, transported
efficiently over long distances,
and transferred from one mode
of transport to another

Multiplicity of
methods for
transporting/storing
(3onu3 03 uten
0} 1e0q wodlj ‘g'9)
Alyroows pue Apjoinb
Hodsueuy |ue)

NTU

Docker Is a Container System for Code......

e Static website ®® UserDB g¢° Web frontend :’ Queue op Analytics DB

iAjojeudoadde

An engine that enables any
payload to be encapsulated

10e121Ul
sdde pue sa21A19s 0

as a lightweight, portable,
self-sufficient container...

Multiplicity of Stacks

...that can be manipulated using

S 2] standard operations and run §
gl o consistently on virtually any 8 A
2z E hardware platform 55
QT 0 -~ -
5 5 = [—— g 3
> c 2 —— a @
= R _— o 1

7 T (3]

Development QA server Customer Data Public Cloud Production Contributor’s Z

VM Center Cluster laptop

NTU

Docker provides the answer to what and
where

Static website
L T
..‘ Web frontend
-
i “ Background workers
ee

Analytics DB

.0 .0
s 0

Deve{(,)nlzment QA Server Single Prod Onsite Public Cloud Contributor’s Customer

Server Cluster laptop Servers

NTU

Docker Architecture

« Docker Engine
— CLI
— Docker Daemon
— Docker Reqistry
» Docker Hub
— Cloud service
« Share Applications
« Automate workflows
« Assemble apps from components
* Docker images
* Docker containers

NTU

Docker images
= NOT AVHD

* NOT A FILESYSTEM
= uses a Union File System
= a read-only Layer | o
= do not have state 'E{f«gir”‘“
= Basically a tar file
= Has a hierarchy
* Arbitrary depth
* Fits into the Docker Registry \

NTU

https://docs.docker.com/terms/layer/
https://docs.docker.com/terms/layer/

Docker Containers...

Units of software delivery (ship it!)

e run everywhere
— regardless of kernel version
— regardless of host distro
— (but container and host architecture must match*)

e run anything
— if it can run on the host, it can run in the container
—I.e., If it can run on a Linux kernel, it can run

*Unless you emulate CPU with gemu and binfmt

NTU

Containers before Docker

NTU

How does
Docker work ?

* You can build Docker images that
hold your applications

* You can create Docker containers
from those Docker images to run your
applications.

* You can share those Docker images
via Docker Hub or your own registry

'z
——

https://hub.docker.com/repository/docker/pedrombmachado/ntu lubuntu

https://hub.docker.com/repository/docker/pedrombmachado/ntu_lubuntu

Virtual Machine Versus Container......
App B
Bins/Libs
App B
Guest OS
Bins/Libs

Hypervisor Docker Engine

NTU

Virtual Machine Versus Container

Containers vs Virtual Machines

= App A App A' App B*
Binaries/f Binaries/ Binaries/
Libraries Libraries Libraries
Guest Guest Guest
os os oS - E E E E E f E
E = = (== =~] (== = ==]
=
=]
e Bins/Libs Binaries / Libraries

Docker Engine
Host OS

Hypervisor (Type 2)
Host OS

Server Server

NTU

Docker Container Lifecycle

— Conception
« BUILD an Image from a Dockerfile
— Birth
* RUN (create+start) a container
— Reproduction
« COMMIT (persist) a container to a new image
« RUN a new container from an image
— Sleep
* KILL a running container
— Wake
« START a stopped container
— Death
* RM (delete) a stopped container
 Extinction
NTU — RMI a container image (delete image)

M User A - process 3
B User B - process 4
[User C - process 5

- CPU usage per process without cgroups CPU usage per process with cgroups
Inux Cgroups
B User A - process 2
20% __;"'!

 Kernel Feature
» Groups of processes
e Control resource allocations

SHARES:
— CPU 4@1\4 t:=4lo 2048
— Memory l cPU
— Disk
— I/O CHREOUP # Gets halk as much CPU time as cqroup *3.
° May be nested CHEROUP #2 | Gets the least CPU time.
CGREOURP #3 | Gets the most CPU time.

NTU

L1

nux Kernel Namespaces

» Kernel Feature

» Restrict your view of the system

« May

NTU

Mounts (CLONE_NEWNS)

UTS (CLONE_NEWUTS)

» uname() output

IPC (CLONE_NEWIPC)

PID (CLONE_NEWPID)

Networks (CLONE_NEWNET)

User (CLONE_NEWUSER)

» Not supported in Dockeryet

* Has privileged/unprivileged modes today
be nested

Dockerfile
* Like a Makefile (shell script with keywords)

syntax=docker/dockerfile:1
FROM ubuntu:18.84

Extends from a Base Image COPY . /app

RUN make /[app

Results in a new Docker Image CHD python /app/app-py

Imperative, not Declarative

A Docker file lists the steps needed to build an images
* docker build is used to run a Docker file

« Can define default command for docker run, ports to expose,
etc

NTU

exec
export
history
images
import
info
inspect
kill
load
login
logout
logs
pause
port

ps

pull
push
rename
restart
rm

rmi

run
save
search
start
stats
stop
tag

top
1innAall s e

Run a command in a running container

Export a container's filesystem as a tar archive

Show the history of an image

List images

Import the contents from a tarball to create a filesystem image
Display system-wide information

Return low-level information on Docker objects

Kill one or more running containers

Load an image from a tar archive or STDIN

Log in to a Docker registry

Log out from a Docker registry

Fetch the logs of a contailner

Pause all processes within one or more containers

List port mappings or a specific mapping for the container

i Docker-CLI Commands

Push an image or a repository to a registry

Rename a contailner

Restart one or more containers

Remove one or more containers

Remove one or more images

Run a command in a new container

Save one or more images to a tar archive (streamed to STDOUT by default)
Search the Docker Hub for images

Start one or more stopped containers

Display a live stream of contalner(s) resource usage statistics
Stop one or more running containers

Create a tag TARGET_IMAGE that refers to SOURCE_ IMAGE

Display the running processes of a container

linpauuse all nrocecscses within one or more containers

Docker In Higher Education

Run the docker container

u H OW do We tral n Our StUdentS? Only for personal laptops: ensure that the steps described in Install Docker Desktop on Windows

machines o have been completed successfully.

= How do we reduce installation and © tort doctor deckion
2. Start PowerShell (Windows) or Terminal (Linux/Mac 0S) and run the following commands and DO

configuration times? e o

[} HOW do We Offer the Same DeV 3. Load the container (ONLY FOR LAB PCs). DO NOT copy the % sign:
environment to all our students?

$ docker load --input 'C:\Users\Public\Documents\Shared Virtual Machines\Docker
\comp20081.docker'

% docker create volume docker comp2ee81

$ docker run -it --rm -p "3390:3389/tcp" --name="ntu-vm-scomp20@81" -v docker comp20081:/home

/ntu-user/NetBeansProjects pedrombmachado/ntu_lubuntu:comp28681

NTU

Docker demo

Get docker desktop from https://docs.docker.com/get-docker/

Instructions

On AMDG64/Intel64 (your laptop). DO NOT copy the $ sign:
$ docker volume create docker_ comp20081

$ docker run -it --rm -p "3390:3389/tcp" --name="ntu-vm-comp20081" -v
docker _comp20081:/home/ntu-user/NetBeansProjects
pedrombmachado/ntu_lubuntu:comp20081

On ARMG64 architecture (Mac M1/M2, Chrome book, etc.). DO NOT copy the $ sign:
$ docker volume create docker soft40051

$ docker run -it --rm -p "3390:3389/tcp" --name="ntu-vm-comp20081" -v
docker com 20@81:/home/ntu—user/NetBeansProiects
pedrombmachado/ntu_lubuntu:armé64v8 comp2008

Docker Hub repo

https://docs.docker.com/get-docker/

e
Docker demo

NTU

Conclusions

= Easy to build, run & share containers

= Rapidly expanding ecosystem

docker

https://www.docker.com/

= Better performance vs. VMs
= Layered file system gives us git-like control of images

= Reduces complexity of system builds

= Can be used in higher education to train students and abstract students
from installing complex packages.

NTU

https://www.docker.com/

Nottingham Trent
University

Department of Computer Science

Department of Computer Science

Use of docker for teaching Computer Sciences subjects in HE

Pedro Machado — Senior Lecturer in Computer Sciences @ NTU
Pedro.machado@ntu.ac.uk

