
Department of Computer Science

Use of docker for teaching Computer Sciences subjects in HE

Pedro Machado – Senior Lecturer in Computer Sciences @ NTU

Pedro.machado@ntu.ac.uk

▪ Research interests

▪ Introduction to Docker

▪ Docker demo

▪ Conclusions

Outline

21/11/2022

Research Interests

Edge Computing

Neuromorphic Engineering

Robotics

Intelligent Sensors

Spiking Neural Networks

IoW projectUPD project

Introduction to Docker

What is Docker ?!!!

▪ Open platform for developers and sysadmins to build, ship and run distributed

applications

▪ Can run on popular 64-bit Linux distributions with kernel 3.8 or later

▪ Supported by several cloud platforms including Amazon EC2, Google

Compute Engine, Microsoft Azure and Rackspace.

▪ Light-Weight

▪ Minimal overhead (cpu/io/network)

▪ Based on Linux containers

▪ Uses layered filesystem to save space
(AUFS/LVM)

▪ Uses a copy-on-write filesystem to track
changes

▪ Portable

▪ Can run on any Linux system, Windows

or MacOS.

▪ Edge devices support.

▪ A Docker container contains everything it
needs to run

▪ Minimal Base OS

▪ Libraries and frameworks

▪ Application code

▪ A docker container can run anywhere that
Docker can run.

Features….

The Challenge……

What and Where?

Cargo Transport Pre-1960……

What and where?

Solution: Intermodal Shipping Container

Docker is a Container System for Code……

Docker provides the answer to what and

where

Docker Architecture
• Docker Engine

– CLI

– Docker Daemon

– Docker Registry

• Docker Hub

– Cloud service

• Share Applications

• Automate workflows

• Assemble apps from components

• Docker images

• Docker containers

Docker images
▪ NOT A VHD

▪ NOT A FILESYSTEM

▪ uses a Union File System

▪ a read-only Layer

▪ do not have state

▪ Basically a tar file

▪ Has a hierarchy

• Arbitrary depth

• Fits into the Docker Registry

https://docs.docker.com/terms/layer/
https://docs.docker.com/terms/layer/

Docker Containers...
Units of software delivery (ship it!)

● run everywhere

– regardless of kernel version

– regardless of host distro

– (but container and host architecture must match*)

● run anything

– if it can run on the host, it can run in the container

– i.e., if it can run on a Linux kernel, it can run

*Unless you emulate CPU with qemu and binfmt

Containers before Docker

Containers after Docker

How does
Docker work ?

• You can build Docker images that
hold your applications

• You can create Docker containers
from those Docker images to run your
applications.

• You can share those Docker images
via Docker Hub or your own registry

https://hub.docker.com/repository/docker/pedrombmachado/ntu_lubuntu

https://hub.docker.com/repository/docker/pedrombmachado/ntu_lubuntu

Virtual Machine Versus Container……

Virtual Machine Versus Container

Docker Container Lifecycle
– Conception

• BUILD an Image from a Dockerfile

– Birth

• RUN (create+start) a container

– Reproduction

• COMMIT (persist) a container to a new image

• RUN a new container from an image

– Sleep

• KILL a running container

– Wake

• START a stopped container

– Death

• RM (delete) a stopped container

• Extinction

– RMI a container image (delete image)

Linux Cgroups

• Kernel Feature

• Groups of processes

• Control resource allocations

– CPU

– Memory

– Disk

– I/O

• May be nested

Linux Kernel Namespaces

• Kernel Feature

• Restrict your view of the system

– Mounts (CLONE_NEWNS)

– UTS (CLONE_NEWUTS)

• uname() output

– IPC (CLONE_NEWIPC)

– PID (CLONE_NEWPID)

– Networks (CLONE_NEWNET)

– User (CLONE_NEWUSER)

• Not supported in Docker yet

• Has privileged/unprivileged modes today

• May be nested

Dockerfile
• Like a Makefile (shell script with keywords)

• Extends from a Base Image

• Results in a new Docker Image

• Imperative, not Declarative

• A Docker file lists the steps needed to build an images

• docker build is used to run a Docker file

• Can define default command for docker run, ports to expose,

etc

Docker CLI Commands

▪ How do we train our students?

▪ How do we reduce installation and

configuration times?

▪ How do we offer the same Dev

environment to all our students?

Docker in Higher Education

Docker demo

Get docker desktop from https://docs.docker.com/get-docker/

Instructions

On AMD64/Intel64 (your laptop). DO NOT copy the $ sign:
$ docker volume create docker_comp20081
$ docker run -it --rm -p "3390:3389/tcp" --name="ntu-vm-comp20081" -v
docker_comp20081:/home/ntu-user/NetBeansProjects
pedrombmachado/ntu_lubuntu:comp20081

On ARM64 architecture (Mac M1/M2, Chrome book, etc.). DO NOT copy the $ sign:
$ docker volume create docker_soft40051
$ docker run -it --rm -p "3390:3389/tcp" --name="ntu-vm-comp20081" -v
docker_comp20081:/home/ntu-user/NetBeansProjects
pedrombmachado/ntu_lubuntu:arm64v8_comp20081

Docker Hub repo

https://docs.docker.com/get-docker/

Docker demo

Conclusions

▪ Easy to build, run & share containers

▪ Rapidly expanding ecosystem

▪ Better performance vs. VMs

▪ Layered file system gives us git-like control of images

▪ Reduces complexity of system builds

▪ Can be used in higher education to train students and abstract students

from installing complex packages.

https://www.docker.com/

https://www.docker.com/

Department of Computer Science

Use of docker for teaching Computer Sciences subjects in HE

Pedro Machado – Senior Lecturer in Computer Sciences @ NTU

Pedro.machado@ntu.ac.uk

