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What is Docker ?!1!

= Open platform for developers and sysadmins to build, ship and run distributed
applications

= Can run on popular 64-bit Linux distributions with kernel 3.8 or later

= Supported by several cloud platforms including Amazon EC2, Google
Compute Engine, Microsoft Azure and Rackspace.
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Features....

= Light-Weight or MacOS.

= Minimal overhead (cpu/io/network) = Edge devices support.

= Based on Linux containers = A Docker container contains everything it

= Uses layered filesystem to save space needs to run

(AUFS/LVM) = Minimal Base OS
= Uses a copy-on-write filesystem to track = Libraries and frameworks
changes

= Application code

* Portable = A docker container can run anywhere that
= Can run on any Linux system, Windows  Docker can run.
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The Challenge......
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e
What and Where?

Static website

Web frontend

Background workers

Analytics DB

Development
VM

Single Prod Onsite Public Cloud Contributor's  Customer

QA Server Server Cluster laptop Servers




Do | worry about
how goods interact

(e.g. coffee beans
next to spices)

1960......
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What and where?
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Solution: Intermodal Shipping Container

A standard container that is
loaded with virtually any
goods, and stays sealed until
it reaches final delivery.

Multiplicity of Goods
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...in between, can be loaded and
unloaded, stacked, transported
efficiently over long distances,
and transferred from one mode
of transport to another
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Docker Is a Container System for Code......

e Static website  ®® UserDB g¢° Web frontend :’ Queue op Analytics DB

iAjojeudoadde

An engine that enables any
payload to be encapsulated

10e121Ul
sdde pue sa21A19s 0

as a lightweight, portable,
self-sufficient container...

Multiplicity of Stacks

...that can be manipulated using

S 2] standard operations and run §
gl o consistently on virtually any 8 A
2z E hardware platform 55
QT 0 -~ -
5 5 = [ —— g 3
> c 2 —— a @
= R _— o 1

7 T (3]

Development QA server  Customer Data Public Cloud Production Contributor’s Z

VM Center Cluster laptop

NTU




Docker provides the answer to what and
where
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Docker Architecture

« Docker Engine
— CLI
— Docker Daemon
— Docker Reqistry
» Docker Hub
— Cloud service
« Share Applications
« Automate workflows
« Assemble apps from components
* Docker images
* Docker containers
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Docker images
= NOT AVHD

* NOT A FILESYSTEM
= uses a Union File System
= a read-only Layer | o
= do not have state 'E{f«gir”‘“
= Basically a tar file
= Has a hierarchy
* Arbitrary depth
* Fits into the Docker Registry \
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https://docs.docker.com/terms/layer/
https://docs.docker.com/terms/layer/

Docker Containers...

Units of software delivery (ship it!)

e run everywhere
— regardless of kernel version
— regardless of host distro
— (but container and host architecture must match*)

e run anything
— if it can run on the host, it can run in the container
—I.e., If it can run on a Linux kernel, it can run

*Unless you emulate CPU with gemu and binfmt
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Containers before Docker
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How does
Docker work ?

* You can build Docker images that
hold your applications

* You can create Docker containers
from those Docker images to run your
applications.

* You can share those Docker images
via Docker Hub or your own registry

'z
——

https://hub.docker.com/repository/docker/pedrombmachado/ntu lubuntu



https://hub.docker.com/repository/docker/pedrombmachado/ntu_lubuntu

Virtual Machine Versus Container......
App B
Bins/Libs
App B
Guest OS
Bins/Libs

Hypervisor Docker Engine
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Virtual Machine Versus Container

Containers vs Virtual Machines

= App A App A' App B*
Binaries/f Binaries/ Binaries/
Libraries Libraries Libraries
Guest Guest Guest
os os oS - E E E E E f E
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=
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e Bins/Libs Binaries / Libraries

Docker Engine
Host OS

Hypervisor (Type 2)
Host OS

Server Server
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Docker Container Lifecycle

— Conception
« BUILD an Image from a Dockerfile
— Birth
* RUN (create+start) a container
— Reproduction
« COMMIT (persist) a container to a new image
« RUN a new container from an image
— Sleep
* KILL a running container
— Wake
« START a stopped container
— Death
* RM (delete) a stopped container
 Extinction
NTU — RMI a container image (delete image)




M User A - process 3
B User B - process 4
[ User C - process 5

- CPU usage per process without cgroups CPU usage per process with cgroups
Inux Cgroups
B User A - process 2
20% __;"'!

 Kernel Feature
» Groups of processes
e Control resource allocations

SHARES:
— CPU 4@1\4 t:=4lo 2048
— Memory l cPU
— Disk
— I/O CHREOUP # Gets halk as much CPU time as cqroup *3.
° May be nested CHEROUP #2 | Gets the least CPU time.
CGREOURP #3 | Gets the most CPU time.
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L1

nux Kernel Namespaces

» Kernel Feature

» Restrict your view of the system

« May

NTU

Mounts (CLONE_NEWNS)

UTS (CLONE_NEWUTS)

» uname() output

IPC (CLONE_NEWIPC)

PID (CLONE_NEWPID)

Networks (CLONE_NEWNET)

User (CLONE_NEWUSER)

» Not supported in Dockeryet

* Has privileged/unprivileged modes today
be nested




Dockerfile
* Like a Makefile (shell script with keywords)

# syntax=docker/dockerfile:1
FROM ubuntu:18.84

Extends from a Base Image COPY . /app

RUN make /[app

Results in a new Docker Image CHD python /app/app-py

Imperative, not Declarative

A Docker file lists the steps needed to build an images
* docker build is used to run a Docker file

« Can define default command for docker run, ports to expose,
etc
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exec
export
history
images
import
info
inspect
kill
load
login
logout
logs
pause
port

ps

pull
push
rename
restart
rm

rmi

run
save
search
start
stats
stop
tag

top
1innAall s e

Run a command in a running container

Export a container's filesystem as a tar archive

Show the history of an image

List images

Import the contents from a tarball to create a filesystem image
Display system-wide information

Return low-level information on Docker objects

Kill one or more running containers

Load an image from a tar archive or STDIN

Log in to a Docker registry

Log out from a Docker registry

Fetch the logs of a contailner

Pause all processes within one or more containers

List port mappings or a specific mapping for the container

i Docker-CLI Commands

Push an image or a repository to a registry

Rename a contailner

Restart one or more containers

Remove one or more containers

Remove one or more images

Run a command in a new container

Save one or more images to a tar archive (streamed to STDOUT by default)
Search the Docker Hub for images

Start one or more stopped containers

Display a live stream of contalner(s) resource usage statistics
Stop one or more running containers

Create a tag TARGET_IMAGE that refers to SOURCE_ IMAGE

Display the running processes of a container

linpauuse all nrocecscses within one or more containers



Docker In Higher Education

Run the docker container

u H OW do We tral n Our StUdentS? Only for personal laptops: ensure that the steps described in Install Docker Desktop on Windows

machines o have been completed successfully.

= How do we reduce installation and © tort doctor deckion
2. Start PowerShell (Windows) or Terminal (Linux/Mac 0S) and run the following commands and DO

configuration times? e o

[} HOW do We Offer the Same DeV 3. Load the container (ONLY FOR LAB PCs). DO NOT copy the % sign:
environment to all our students?

$ docker load --input 'C:\Users\Public\Documents\Shared Virtual Machines\Docker
\comp20081.docker'

% docker create volume docker comp2ee81

$ docker run -it --rm -p "3390:3389/tcp" --name="ntu-vm-scomp20@81" -v docker comp20081:/home

/ntu-user/NetBeansProjects pedrombmachado/ntu_lubuntu:comp28681
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Docker demo

Get docker desktop from https://docs.docker.com/get-docker/

Instructions

On AMDG64/Intel64 (your laptop). DO NOT copy the $ sign:
$ docker volume create docker_ comp20081

$ docker run -it --rm -p "3390:3389/tcp" --name="ntu-vm-comp20081" -v
docker _comp20081:/home/ntu-user/NetBeansProjects
pedrombmachado/ntu_lubuntu:comp20081

On ARMG64 architecture (Mac M1/M2, Chrome book, etc.). DO NOT copy the $ sign:
$ docker volume create docker soft40051

$ docker run -it --rm -p "3390:3389/tcp" --name="ntu-vm-comp20081" -v
docker com 20@81:/home/ntu—user/NetBeansProiects
pedrombmachado/ntu_lubuntu:armé64v8 comp2008

Docker Hub repo


https://docs.docker.com/get-docker/

e
Docker demo
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Conclusions

= Easy to build, run & share containers

= Rapidly expanding ecosystem

docker

https://www.docker.com/

= Better performance vs. VMs
= Layered file system gives us git-like control of images

= Reduces complexity of system builds

= Can be used in higher education to train students and abstract students
from installing complex packages.
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https://www.docker.com/
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