A Microsoft Perspective
Ed Harrison

Ll
o=
AT
=
WF_
-
L =
o O
wn O
1
oy
e -
- Ll
O N
Ll
(7p)

Ed Harrison

Computer Science grad
« University of St Andrews, 1996

Software developer at Metaswitch

« née Data Connection

Moved into security role in 2015(ish)

« Director of Security for Metaswitch
Metaswitch acquired by Microsoft in 2020

Moved into Cloud Solution Architect role
at end of 2021

CONTENTS

History of the SDL

What it all means - Shifting Left

In practice — the SDL at Microsoft

SECURITY NOT ALWAYS MICROSOFT’S
SHINING LIGHT SubiectLOVEIOY

& Important Message From Florian Fermw kindly check the attached LOVELETTER

: Qat?i rﬁgarrbe?irtren 5 é.nsncht rgxlrr.ras errrfasse ﬁ
- 1990s massive growth in PC usage H & = X | o0 e :
ER — LOVE-LETTER-FOR-Y
coming from me. OU.TXT.vbs

orian Fernweh (262936)

- 1995 — Internet to be a part of all Microsoft e
P o d u CtS 4 n_Fermweh(@gmy.de

portant Message From Florian Fd

+ Microsoft was Wldely rega rded as a soft target Here is that document you asked for ... don't show anyone else -)

for viruses and malware ‘ -
« Melissa virus — 1999 — email delivered word macro — S—
list doc (41,0 KB)
ILOVEYOU — 2000 — email delivered VBS based attack 1 AV uIEsDH O

| image credit: http://

« Code Red — 2001 — IIS buffer overflow flaw

Welcome to hitp://'www worm.com !

Hacked By Chinese!

SOMETHING HAD TO BE DONE

- January 15 2002 - Bill Gates famous
“Trustworthy Computing” memo

- Computing as an essential service like power
and water

- Focuson
« Availability
« Security

« Privacy

- Kicked off security reviews of .NET, Windows,
etc.

Sent: Tuesday, January 15, 26802 5:22 PM
To: Microsoft and Subsidiaries: A1l FTE
Subject: Trustworthy computing

Every few years I have sent out a memo talking about the highest priority for
Microsoft. Two years ago, it was the kickoff of our .NET strategy. Before that,
it was several memos about the importance of the Internet to our future and the
ways we could make the Internet truly useful for people. Over the last year it
has become clear that ensuring .NET is a platform for Trustworthy Computing is
more important than any other part of our work. If we don't do this, people
simply won't be willing -- or able -- to take advantage of all the other great
work we do. Trustworthy Computing is the highest priority for all the work we
are doing. We must lead the industry to a whole new level of Trustworthiness in
computing.

When we started work on Microsoft .NET more than two years ago, we set a new
direction for the company -- and articulated a new way to think about ocur
software. Rather than developing standalone applications and Web sites, today
we're moving towards smart clients with rich user interfaces interacting with
Web services. We're driving the XML Web services standards so that systems from
all vendors can share information, while working to make Windows the best
client and server for this new era.

There is a lot of excitement about what this architecture makes possible. It
allows the dreams about e-business that have been hyped over the last few years
to become a reality. It enables people to collaborate in new ways, including
how they read, communicate, share annctations, analyze information and meet.

However, even more important than any of these new capabilities is the fact
that it is designed from the ground up to deliver Trustworthy Computing. What I
mean by this is that customers will always be able to rely on these systems to

https://news.microsoft.com/2012/01/11/memo-from-bill-gates/

TRUSTWORTHY
COMPUTING AND

THE SECURITY
DEVELOPMENT
LIFECYCLE

TwC started culture of building secure,
available and reliable software

Software developers needed something
more concrete than “culture”

Microsoft Security Development Lifecycle
(SDL)

+ First released internally in 2004

« Borne from the development teams as an integral

part of the software development process

« Became mandatory policy for all developers

« Windows Vista and Office 2007 first products to fully

integrate the SDL

TANGIBLE IMPACT

In first year since launch, Vista had 45%
fewer vulnerabilities found than were found
in Windows XP’s first year

24% fewer vulnerabilities in Vista in 2007,
compared to XP (which was launched in
2001)

SQL Server 2005 had 91% fewer
vulnerabilities than SQL Server 2000 after 36
months

Vulnerabilitiesin 2007

—
i

Windovvs XP Wi”dO\NS Vista Windows XPSp2 windows Vista

Total Vulnerabilities
Disclosed One Year
After Release

Before SDL After SDL m Critical mwiImportant Moderate m Low

Total Vulnerabilities Disclosed
36 Months After Release

3
SQL Server 2000 SQL Server 2005

Before SDL After SDL

POWER TO THE

PEOPLE

While Windows was the biggest target, by
mid-2000s the majority of attacks were
against applications

SDL principles couldn’t be kept internal

Microsoft published the SDL and made a
push to evangelise amongst the
development community

SDL has been through continual
Improvement to address changing
landscape

« Mobile applications

« Adoption of cloud computing

SDL TIMELINE

The perfect SDL ramp up Setting a new Collaboration Selective tooling

storm and Automation

lermil

N

2000 — 2001 — 2002 — 2003 — 2004 — 2005 — 2006 — 2007 — 2008 2009 2018+ ——>

2010 — 20m

Additional resou

dedicated to address
projected growth in Mobile
app downloads

Bill Gates' TwC memo Wind ista and Office

: : : 2007 fully inte S : : _
Microsoft security push LA Microsoft Establish SDL Pro

SDL released to public Network

Growth of home PC's Microsoft joins SAFECode

Rise of malicious software

Increasing privacy concerns Microsoft SDL released
Defense Information
Systems Agency (DISA) &
National Institution
Standards and Technology

(NIST) specify featured in

Data Execution Prevention
(DEP) & Address Space
Layout Randomization
Windows XP SP2 and (ASLR) introduced as
Windows Server 2003 features

Internet use expansion SDL becomes mandatory

policy at Microsoft

Industry-wide acceptance
of practices aligned with
SDL

Adaption of SDL to new
technologies and changes
in the threat landscape

launched with security the SDL

ShERER Threat Modeling Tool
PRt Microsoft collaborates with

Adobe and Cisco on SDL
practices

SDL revised under the
Creative Commons License

Increased industry
resources to enable global
secure development
adoption

https://www.microsoft.com/en-us/securityengineering/sdl/about

SHIFTING LEFT

How the SDL turns DevOps into
SecDevOps

4

Cultural

change

DEVOPSSEC

SECURITY COMES LAST

A SINGLE SECURITY ASSESSMENT
BEFORE DEPLOYMENT OF SILOED
APPLICATIONS WILL NOT EVALUATE
THE FULL SECURITY OF THE
PROGRAMME.

DEVSECOPS

SECURITY BUILT IN

SECURITY BUILT INTO PIPELINES;
ENGINEERING TEAMS KNOW THAT
SECURITY IS IMPORTANT AND ARE
CONTINUOUSLY EVALUATING BEST

POSTURE. APPLICATION SECURITY IS
STILL AN ENGINEER'S JOB WITH
LIMITED VISIBILITY FROM OTHER

TEAMS.

SECDEVOPS

SECURITY COMES FIRST

SECURITY IS ELEVATED TO ALL
TEAMS, PROVIDING CORE VISIBILITY
OVER THE CHALLENGES AND THE
BUSINESS PRIORITIES FOR SECURITY
FROM DEVELOPER LEVELTO

BUSINESS LEVEL.

SECDEVOPS

Make security everyone’s priority

Bake it into the development lifecycle from the start

Keep it in focus beyond deployment

WHAT DOES SHIFTING LEFT MEAN?

WHAT DOES SHIFTING LEFT MEAN?

Core Security
Training

Establish Security
Requirements

Create Quality
Gates / Bug Bars

Security & Privacy
Risk Assessment

Establish Design
Requirements

Analyze Attack
Surface

Threat
Modeling

 Implementation

Use Approved
Tools

Deprecate Unsafe

Functions

Static
Analysis

Verification
Dynamic
Analysis

Fuzz
Testing

Attack Surface
Review

Incident
Response Plan

Final Security
Review

Release
Archive

Security Development Lifecycle (SDL)

s BT

Provide Security Training Define and Update Security Define Metrics and Use Cryptographic
requirements Compliance Reporting Standards

The Security Development Lifecycle (SDL)

consists of a set of practices that support security

—
sy %@20) assurance and compliance requirements.

The SDL helps developers build more secure
software by reducing the number and severity of
vulnerabilities in software, while reducing
development cost.

Perform Threat Modelling Establish Design Manage and Monitor Use Approved Tools
Requirements Dependencies

=] &=

Perform Static Code Perform Dynamic Analysis Perform Penetration Establish a standard
analysis Security Testing (DAST) Testing Incident Response Process

https://www.microsoft.com/en-us/securityengineering/sdl/practices

https://www.microsoft.com/en-us/securityengineering/sdl/practices

Provide

Sec
Tral

Ur|

ty

alls

g

Defining
Security
Requirements

Design considerations /

E4
Ld

-'

|[dentity as the

primary Enforce MFA

e use a platform that already

SeCy r|ty enforces it for you
perimeter

Principle of least privilege
e Limit access based on user roles

Reauthenticate for important
transactions

Consider just-in-time access for
administrators

Threat Modelling

* |dentifies potential security threats to the
application

* Evil brainstorming

e Pullsin reps from each stakeholder group
* Business / Customer / Security / Dev
Team
* Ensures identified threats are “handled”
* Mitigated — removed or reduced

* Accepted — signed off by senior
management

Spoofing

Tampering

Repudiation

Information
Disclosure

Denial of Service

Elevation of Privilege

Property

Integrity

Non-
repudiation

Confidentiality

Availability

Authorization

Impersonating
something or someone
else

Modifying data or code

Claiming to have not
performed an action

Exposing information to
someone not authorized
to seeit

Deny or degrade service
to users

Gain capabilities without
proper authorization

Example

An example of identity spoofingis illegally accessing and then using another user's
authentication information, such as username and password.

Data tampering involves the malicious modification of data. Examples include
unauthorized changes made to persistent data, such as that held in a database, and the
alteration of data as it flows between two computers over an open network, such as the
Internet.

Repudiation threats are associated with users who deny performing an action without
other parties having any way to prove otherwise—for example, a user performs an illegal
operation in a system that lacks the ability to trace the prohibited operations.

Nonrepudiation refers to the ability of a system to counter repudiation threats. For
example, a user who purchases an item might have to sign for the item upon receipt. The
vendor can then use the signed receipt as evidence that the user did receive the package.

Information disclosure threats involve the exposure of information to individuals who are
not supposed to have access to it—for example, the ability of users to read a file that they
were not granted access to, or the ability of an intruder to read data in transit between
two computers.

Denial of service (DoS) attacks deny service to valid users—for example, by making a Web
server temporarily unavailable or unusable. You must protect against certain types of DoS
threats simply to improve system availability and reliability.

In this type of threat, an unprivileged user gains privileged access and thereby has
sufficient access to compromise or destroy the entire system. Elevation of privilege threats
include those situations in which an attacker has effectively penetrated all system
defenses and become part of the trusted system itself, a dangerous situation indeed.

STRIDE Threat model
Threat |Property |Definition |Example

Spoofing

Tampering

Repudiation

Information
Disclosure

Denial of Service

Elevation of Privilege

Authentication

Integrity

Non-
repudiation

Confidentiality

Availability

Authorization

Impersonating
something or somecne
else

Modifying data or code

Claiming to have not
performed an action

Exposing information to
someone not authorized
to see it

Deny or degrade service
to users

Gain capabilities without
proper authorization

An example of identity spoofing s illegally accessing and then using another user's
authentication information, such as username and password.

Data tampering involves the malicious modification of data. Examples include
unauthorized changes made to persistent data, such as that held in a database, and the
alteration of data as it flows between two computers over an open network, such as the
Internet.

Repudiation threats are associated with users who deny performing an action without
other parties having any way to prove otherwise—for example, a user performs an illegal
operation in a system that lacks the ability to trace the prohibited operations.

Nonrepudiation refers to the ability of a system to counter repudiation threats. For
example, a user who purchases an item might have to sign for the item upon receipt. The
vendor can then use the signed receipt as evidence that the user did receive the package.

Information disclosure threats involve the exposure of information to individuals who are
not supposed to have access to it—for example, the ability of users to read a file that they
were not granted access to, or the ability of an intruder to read data in transit between
two computers.

Denial of service (DoS) attacks deny service to valid users—for example, by making a Web
server temporarily unavailable or unusable. You must protect against certain types of DoS
threats simply to improve system availability and reliability.

In this type of threat, an unprivileged user gains privileged access and thereby has
sufficient access to compromise or destroy the entire system. Elevation of privilege threats
include those situations in which an attacker has effectively penetrated all system
defenses and become part of the trusted system itself, a dangerous situation indeed.

Development Phase

Implementation
considerations

* Perform and require code reviews
* Static code analysis

* Validate every input and sanitize
every output

* Including file uploads

» Segregate production and test data

* Keep on top of application

Verification dependencies
COﬂSiderations * Test the application in an operating

state

e DAST — Dynamic application
security testing

* Penetration testing
* Fuzz testing
* Security verification testing

e Attack surface review

Deployment

N—_/

e Consider your infrastructure
* e.g. deploy a Web Application

* Run load tests and check performance
* Create an incident response plan

* Final security review

Sign off and archive the release

Post-release

Monitor

* Application
performance

e Security logs and events

Execute the incident
response plan

Look for continual
improvement

Wargame
/ exercises \
Monitor Red
emerging threats teaming
Execute Insider attack
post breach simulation
Blue

teaming

(1 A
N

-

IN PRACTICE

Ongoing program of developer led
security

Providing training and building a

INTERNAL culture of security

SECURITY . Co.m!omat@n.ofwdely delivered
training briefing, capture the flag

TRAINING contests and shorter “lightning”
sessions

Participation is mandatory for all in
development and technical roles

- The SDL has been encoded into over 90
specific requirements

- Forexample

« Applications must adhere to the least privilege
principle

« Secrets must not be present in code,
documentation, telemetry or pipelines

S D L - Service specific DDoS mitigations must be
implemented

REQUIREMENTS : etc..

- Each requirement is backed up with more
details, including
« Guidance on applicability

« Technical information to help with implementation

- We've also developed tools to help
determine the applicability on given code

THREAT

MODELLING

Required part of the SDL process

Starts with a list of use cases for the
system

Adds “data flow diagrams” that show the

« High level view of components and data flows
- Entry points

« Trust boundaries

Brings in any assets to be protected
(databases, storage accounts, keys,
servers, etc.)

From this develops a list of threats,
mitigations and accepted risks

Threat modelling

B New Threat Model™ - Microsoft Threat Modeling Tool (Preview)
File Edit View Settings Diagram Reporis _Help

am D) Qam
Diagram1 X
i d
< . | "
Human User Commands // _onfigu ratior
’ = =
(TEnEr ta
Human User | 7l Web Server |}/ JENErc Lata
3 SEnra
.-'-'.-

[Threat List

D+ Disgram Changed By v LastModified State v Title v Category v Description v Justification v Inter Results

0 Diagram 1 Generated Not Started Spoofing the... Spoefing Human User... Com

1 Diagram 1 Generated Not Started Cross Site Scr... Tampering The web serv... ‘Com

2 Diagram 1 Generated Not Started Elevation Usi... Elevation Of... Web Server... ‘Comi

3 Diagram 1 Generated Not Started Spoofing of ... Spoofing Generic Data... Confi

4 Diagram 1 Generated Not Started Potential Exc... Denial Of Ser... Does Web Se... Confif

5 Diagram 1 Generated Not Started Spoofing of S... Spoofing Generic Data... Results High

6 Diagram 1 Generated Not Started Cross Site Scr... Tampering The web serv... Results High

7 Diagram 1 Generated Not Started Persistent Cr... Tamperin The web serv... Results M

8 Diagram 1

ID: 0 Diagram: Diagram 1 Status: | Mot Started -
9 Threats (] " -

Title: |opoofing the Hurman User External Entity

Category:
Description:
| et papenis [JUSTITICATION:
Interaction:

Pricrity:

Spoofing

Human User may be spoofed by an attacker and this may lead to unauthorized access to Web Server. Consider using a standard authentication mechanism to identify the external entity.

Commands

High

https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool

https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool

EMBEDDING SECURITY IN THE WORKFLOW

Automation is good... .. but mustn’t kill developer efficiency

- ... automated processes can’t get - Security has to go into the workflow

forgotten

Credential scanning
Static Application Security Testing (SAST) in the pipeline
Antivirus

Package vulnerability scanning

Introduction of a major security issue
needs to break the build

efficiently

parallel security pipeline

tune tools which always generate false positives

Push tooling further left if possible

Use a package manager that only serves approved
packages

Add security testing into unit test

« Negative unit testing — test how we handle unexpected
inputs

Use pre-commit checks for things like credential
scanning

AUTOMATION
AT MICROSOFT

One engineering system across all development
teams

Based on Azure DevOps

Includes extensions that pull together a broad set
of security tasks into the pipeline

Also provides workflows to ensure things like
Threat model review and sign off are complete

« ...and reviewed at least every six months

e Credscan
* Microsoft developed tool to identify credential leaks
in source code and configuration files
e BinSkim - https://github.com/Microsoft/binskim

* Lightweight scanner to validate security related
compiler and linker settings

SeC U rlty e Bandit - https://github.com/PyCQA/bandit
 Python security linter
Code ’ !

e ESLint - https://github.com/eslint/eslint

An a |yS | S e Javascript security linter

e Terrascan - https://github.com/tenable/terrascan

tOO ‘ S Static analysis for laaC

* Terraform, AWS CFT, Azure ARM, dockerfiles, etc

* Trivy - https://github.com/aquasecurity/trivy

* Vulnerability detection across multiple platforms
including k8s, Docker, Terraform

https://github.com/Microsoft/binskim
https://github.com/PyCQA/bandit
https://github.com/eslint/eslint
https://github.com/tenable/terrascan
https://github.com/aquasecurity/trivy

Defender for
DevOps

Microsoft Azure P Search resources, services, and docs (G+, B B @ 8 0 &

) Refresh) DevOps workbock A7 Guides

Add environment onfig
General
. . . o] Security Overview
* Brings visibility of code e |
evOps security vulnerabilities © Security results DevOps coverage
security from across repos e B wn 01 oy
o e scanning vulnerabilites posed Secret ts ithub Connectors Azure DevOps Connec tors
and sources into one pane e an =124 21t |
0 vulnerabilities Recommendations — e —
Of glass ~ 1 Github repositories 18 | Azure DevOps rep 3
ubscripti.. == Mi Azure ip 2, Contoso DD T... X Resource Types == Github Repository, Azure DevOps Repository < T Add filter
Same tools that the security -
. O © sample- N/A ® Unhealthy (1) 1 — 1 —
team use to monitor and 0 © e B o | e—
. O © otdvuinweb N/A 1 e— |
protect the infrastructure 00 —_—
0 © secretscan-tes N § —
0o: N/A | —
Oos N/A 1 —
[© containerscanningGitHubCR N/A 1 e—
O © securevm N/A 1 —
[© samplebiceptest N/A ——
[< ADo-cicoscantest or
) © repototest-delete-1 9 or

https://www.microsoft.com/en-us/security/business/cloud-security/microsoft-defender-devops

https://www.microsoft.com/en-us/security/business/cloud-security/microsoft-defender-devops

e

Thank You!

	Slide 1: SecurE Software Development
	Slide 2: whoami
	Slide 3: Contents
	Slide 4: History
	Slide 5: Security not always Microsoft’s shining Light
	Slide 6: Something had to be done
	Slide 7: Trustworthy Computing and the Security Development Lifecycle
	Slide 8: Tangible Impact
	Slide 9: Power to the People
	Slide 10: SDL Timeline
	Slide 11: SHIFTING LEFT
	Slide 12: Cultural change
	Slide 13: SecDevOps
	Slide 14: What does Shifting Left mean?
	Slide 15: What does Shifting Left mean?
	Slide 16: Security Development Lifecycle (SDL)
	Slide 17: Security in the Design Process
	Slide 18: Provide Security Training
	Slide 19: Defining Security Requirements
	Slide 20: Design considerations
	Slide 21: Identity as the primary security perimeter
	Slide 22: Threat Modelling
	Slide 23: STRIDE Threat model
	Slide 24: Development Phase
	Slide 25: Implementation considerations
	Slide 26: Verification considerations
	Slide 27: Deployment
	Slide 28: Release
	Slide 29: Post-release
	Slide 30: In practice
	Slide 31: Internal Security Training
	Slide 32: SDL Requirements
	Slide 33: Threat ModelLing
	Slide 34: Threat modelling
	Slide 35: Embedding security in the workflow
	Slide 36: Automation at Microsoft
	Slide 37: Security Code Analysis tools
	Slide 38: Defender for DevOps
	Slide 39: Thank You!

