
S E C U R E S O F T W A R E
D E V E L O P M E N T

A Microsoft Perspective

Ed Harrison

W H O A M I

• Ed Harrison

• Computer Science grad

• University of St Andrews, 1996

• Software developer at Metaswitch

• née Data Connection

• Moved into security role in 2015(ish)

• Director of Security for Metaswitch

• Metaswitch acquired by Microsoft in 2020

• Moved into Cloud Solution Architect role

at end of 2021

C O N T E N T S

History of the SDL

What it all means - Shifting Left

In practice – the SDL at Microsoft

H I S T O R Y

S E C U R I T Y N O T A L W A Y S M I C R O S O F T ’ S
S H I N I N G L I G H T

• 1990s massive growth in PC usage

• 1995 – Internet to be a part of all Microsoft

Products

• Microsoft was widely regarded as a soft target

for viruses and malware

• Melissa virus – 1999 – email delivered word macro

• ILOVEYOU – 2000 – email delivered VBS based attack

• Code Red – 2001 – IIS buffer overflow flaw

S O M E T H I N G H A D T O B E D O N E

• January 15 2002 - Bill Gates famous
“Trustworthy Computing” memo

• Computing as an essential service like power
and water

• Focus on
• Availability

• Security

• Privacy

• Kicked off security reviews of .NET, Windows,
etc.

https://news.microsoft.com/2012/01/11/memo-from-bill-gates/

https://news.microsoft.com/2012/01/11/memo-from-bill-gates/

T R U S T W O R T H Y
C O M P U T I N G A N D

T H E S E C U R I T Y
D E V E L O P M E N T

L I F E C Y C L E

• TwC started culture of building secure,

available and reliable software

• Software developers needed something

more concrete than “culture”

• Microsoft Security Development Lifecycle

(SDL)

• First released internally in 2004

• Borne from the development teams as an integral

part of the software development process

• Became mandatory policy for all developers

• Windows Vista and Office 2007 first products to fully

integrate the SDL

T A N G I B L E I M P A C T

• In first year since launch, Vista had 45%
fewer vulnerabilities found than were found
in Windows XP’s first year

• 24% fewer vulnerabilities in Vista in 2007,
compared to XP (which was launched in
2001)

• SQL Server 2005 had 91% fewer
vulnerabilities than SQL Server 2000 after 36
months

P O W E R T O T H E
P E O P L E

• While Windows was the biggest target, by

mid-2000s the majority of attacks were

against applications

• SDL principles couldn’t be kept internal

• Microsoft published the SDL and made a

push to evangelise amongst the

development community

• SDL has been through continual

improvement to address changing

landscape

• Mobile applications

• Adoption of cloud computing

S D L T I M E L I N E

https://www.microsoft.com/en-us/securityengineering/sdl/about

https://www.microsoft.com/en-us/securityengineering/sdl/about

S H I F T I N G L E F T

How the SDL turns DevOps into
SecDevOps

Cultural
change

DEVOPSSEC

SECURITY COMES LAST

A SINGLE SECURITY ASSESSMENT
BEFORE DEPLOYMENT OF SILOED

APPLICATIONS WILL NOT EVALUATE
THE FULL SECURITY OF THE

PROGRAMME.

DEVSECOPS

SECURITY BUILT IN

SECURITY BUILT INTO PIPELINES;
ENGINEERING TEAMS KNOW THAT
SECURITY IS IMPORTANT AND ARE
CONTINUOUSLY EVALUATING BEST

POSTURE. APPLICATION SECURITY IS
STILL AN ENGINEER'S JOB WITH

LIMITED VISIBILITY FROM OTHER
TEAMS.

SECDEVOPS

SECURITY COMES FIRST

SECURITY IS ELEVATED TO ALL
TEAMS, PROVIDING CORE VISIBILITY

OVER THE CHALLENGES AND THE
BUSINESS PRIORITIES FOR SECURITY

FROM DEVELOPER LEVEL TO

BUSINESS LEVEL.

S E C D E V O P S

Make security everyone’s priority

Bake it into the development lifecycle from the start

Keep it in focus beyond deployment

W H A T D O E S S H I F T I N G L E F T M E A N ?

W H A T D O E S S H I F T I N G L E F T M E A N ?

Security Development Lifecycle (SDL)

Provide Security Training Define and Update Security
requirements

Define Metrics and
Compliance Reporting

Perform Threat Modelling Establish Design
Requirements

Use Cryptographic
Standards

Manage and Monitor
Dependencies

Use Approved Tools

Perform Static Code
analysis

Perform Dynamic Analysis
Security Testing (DAST)

Perform Penetration
Testing

Establish a standard
Incident Response Process

https://www.microsoft.com/en-us/securityengineering/sdl/practices

https://www.microsoft.com/en-us/securityengineering/sdl/practices

Security in the Design Process

Provide
Security
Training

Defining
Security
Requirements

Design considerations

Secure coding
libraries, software
frameworks and
standard tools

Vulnerability
scanning and
component

updates

Reduce attack
surface

Key management

Data classification
and encryption

Error handling,
logging and

alerting

Identity as the
primary security

perimeter
Threat modelling

Identity as the
primary
security
perimeter

• Enforce MFA

• use a platform that already
enforces it for you

• Principle of least privilege

• Limit access based on user roles

• Reauthenticate for important
transactions

• Consider just-in-time access for
administrators

Threat Modelling

• Identifies potential security threats to the
application

• Evil brainstorming

• Pulls in reps from each stakeholder group

• Business / Customer / Security / Dev
Team

• Ensures identified threats are “handled”

• Mitigated – removed or reduced

• Accepted – signed off by senior
management

STRIDE Threat model

Development Phase

Implementation
considerations • Perform and require code reviews

• Static code analysis

• Validate every input and sanitize
every output

• Including file uploads

• Segregate production and test data

Verification
considerations

• Keep on top of application
dependencies

• Test the application in an operating
state

• DAST – Dynamic application
security testing

• Penetration testing

• Fuzz testing

• Security verification testing

• Attack surface review

Deployment

Release

Post-release

I N P R A C T I C E

I N T E R N A L
S E C U R I T Y
T R A I N I N G

• Ongoing program of developer led

security

• Providing training and building a

culture of security

• Combination of widely delivered

training briefing, capture the flag

contests and shorter “lightning”

sessions

• Participation is mandatory for all in

development and technical roles

S D L
R E Q U I R E M E N T S

• The SDL has been encoded into over 90
specific requirements

• For example
• Applications must adhere to the least privilege

principle

• Secrets must not be present in code,
documentation, telemetry or pipelines

• Service specific DDoS mitigations must be
implemented

• etc…

• Each requirement is backed up with more
details, including
• Guidance on applicability

• Technical information to help with implementation

• We’ve also developed tools to help
determine the applicability on given code

T H R E A T
M O D E L L I N G

• Required part of the SDL process

• Starts with a list of use cases for the

system

• Adds “data flow diagrams” that show the

• High level view of components and data flows

• Entry points

• Trust boundaries

• Brings in any assets to be protected

(databases, storage accounts, keys,

servers, etc.)

• From this develops a list of threats,

mitigations and accepted risks

Threat modelling

https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool

https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool

E M B E D D I N G S E C U R I T Y I N T H E W O R K F L O W

Automation is good…

• … automated processes can’t get
forgotten
Credential scanning

Static Application Security Testing (SAST) in the pipeline

Antivirus

Package vulnerability scanning

• Introduction of a major security issue
needs to break the build

… but mustn’t kill developer efficiency

• Security has to go into the workflow
efficiently
parallel security pipeline

tune tools which always generate false positives

• Push tooling further left if possible
Use a package manager that only serves approved
packages

Add security testing into unit test

• Negative unit testing – test how we handle unexpected
inputs

Use pre-commit checks for things like credential
scanning

A U T O M A T I O N
A T M I C R O S O F T

• One engineering system across all development

teams

• Based on Azure DevOps

• Includes extensions that pull together a broad set

of security tasks into the pipeline

• Also provides workflows to ensure things like

Threat model review and sign off are complete

• … and reviewed at least every six months

Security
Code
Analysis
tools

https://github.com/Microsoft/binskim

https://github.com/PyCQA/bandit

https://github.com/eslint/eslint

https://github.com/tenable/terrascan

https://github.com/aquasecurity/trivy

https://github.com/Microsoft/binskim
https://github.com/PyCQA/bandit
https://github.com/eslint/eslint
https://github.com/tenable/terrascan
https://github.com/aquasecurity/trivy

Defender for
DevOps

https://www.microsoft.com/en-us/security/business/cloud-security/microsoft-defender-devops

https://www.microsoft.com/en-us/security/business/cloud-security/microsoft-defender-devops

Thank You!

	Slide 1: SecurE Software Development
	Slide 2: whoami
	Slide 3: Contents
	Slide 4: History
	Slide 5: Security not always Microsoft’s shining Light
	Slide 6: Something had to be done
	Slide 7: Trustworthy Computing and the Security Development Lifecycle
	Slide 8: Tangible Impact
	Slide 9: Power to the People
	Slide 10: SDL Timeline
	Slide 11: SHIFTING LEFT
	Slide 12: Cultural change
	Slide 13: SecDevOps
	Slide 14: What does Shifting Left mean?
	Slide 15: What does Shifting Left mean?
	Slide 16: Security Development Lifecycle (SDL)
	Slide 17: Security in the Design Process
	Slide 18: Provide Security Training
	Slide 19: Defining Security Requirements
	Slide 20: Design considerations
	Slide 21: Identity as the primary security perimeter
	Slide 22: Threat Modelling
	Slide 23: STRIDE Threat model
	Slide 24: Development Phase
	Slide 25: Implementation considerations
	Slide 26: Verification considerations
	Slide 27: Deployment
	Slide 28: Release
	Slide 29: Post-release
	Slide 30: In practice
	Slide 31: Internal Security Training
	Slide 32: SDL Requirements
	Slide 33: Threat ModelLing
	Slide 34: Threat modelling
	Slide 35: Embedding security in the workflow
	Slide 36: Automation at Microsoft
	Slide 37: Security Code Analysis tools
	Slide 38: Defender for DevOps
	Slide 39: Thank You!

