Peter Landin Semantics Seminar

Edmund Robinson
Queen Mary University of London

Logical Relations and Mathematical Foundations

loncing wo eacn aemana tor
a name (aka, in Watt, "applied occurne") there is an arrow from the occurrence from ourside the phrase.
Exampleso. Block Demarv/Supply Analysis(omitting 't' because its obvious): -

	set demanded	set supplied
header	$\{y, z\}$	$\{x\}$
body	$\{x, z, \omega\}$	$\}$
whole block	$\{y, z\}_{u}\{x, z, \omega\} /\{x\}$	$\}$
	$=\{y, z, \omega\}$	

For two (or more) declarations/definitions writter one aftes
another, it is natural to suppose that a later Fig81: del ${ }^{1}$ one may depend on (refer to, demand from, be affected by, be dependent on, be supplied by) the previos onss: and that their accumulated effect is "supply/demand arrows", introduced in Fig 80 above, is a ap abou a clumsy but picturame, and precise, concreve syntax for indiating Example 81
which occurrences are supplied from where. It will be supplied trom
current languages, and also to explain
the four "plugging configurations" that
were listed on $p .62$, and have nots
Examples2 I Man:
Example 84
V_{z}
$z:$ INTEGER: $=y+w$;
x : INTEGER: $=y+2 ;$

BEGIN
END ${ }^{-\cdots} x+z+\omega$.
Examples? if if the types are right -

$$
\begin{aligned}
& \text { VAR } z:=y+w ; x:=y+z ; \\
& B E G I N \ldots x+z+\omega \ldots E N D
\end{aligned}
$$

stincture ofsing, note the varias consrete syntaxes for header/bod trivial IRRELE block. BUT, details of conarete syntax are BoRING, some intended mon, compared with questions about whether or not

Ex 10,11

Assuming an implemented language in which the following phrase is a defnicion, give an experiment-by-conimatinunded to seite case is hidden or supplied) (i.e. whethers the first defined name in each
et (stopper: type) $=$ [77.. 87]

$$
\text { in (let (listt: type) }=\text { stop of stopper }
$$

$$
1 \text { seoon of (number \& listet)) }
$$

Er 10.12

Assuming an implemented language in which the following phrase is a definition, give an experiment-by-context intended to settl case is hidden or supplied) (Le. whethers the first defined name in each

$$
\frac{\operatorname{let}}{i n}(\operatorname{lot} b=a+66)
$$

$E \times 1013$
Assuming an implemented language in which the following phrase is a definition, give an experiment-by-context intended to settle case is hidden or supplied)
let $f(x)=x+11$
in $(\operatorname{let} g(y)=f(y)+77)$

ExtO 14

Assuming an implemented language in which the following phrase
is a definition, give an experiment-by-context intended to settle
whether it is a block or not (ie. whether case is hidden or supplied)

let pair $=$ number * number

in (let treee $=$ nil I (treee * pair * treee))

Performance

- Peter was very interested in describing what programs do.

Change in Semantics

- Move from proving programs "correct" in some absolute sense
- To providing tools to improve quality
- and those tools have to fit in with the development chain

Formal models

- But you still have to produce a formal model

Mathematics

- The language we use when we want to do calculations about a system
- But the calculations are never about the actual system
- They are about models of the system

What happens if we use different models: do we get the same results?

Logical Relations

Two key messages

- Basic ideas are quite simple, and if you focus, then you can keep them like that.
- We can use them to justify (in fact derive) some standard notions of process equivalence.

Logical Relations

UNIVERSITY OF EDINBURGH

- Robert Milne: thesis proving equivalence of implementations
- Mike Gordon: unpublished discussions
- Gordon Plotkin:

The main method will be to construct certsin, so-called, logical relations which are satisfied by all (constart vectors of) λ-definable elements and yet are not satizfied by the lati,csmokecre;ic artity unzer discussion. The definition of logicel is derived from a corresponding one of $M_{\text {o }}$ Gordon for the typed λ-calculus. This in turn generalised the idea of an invariant iunctional [2]. R. Wilne [3] has indepencently developed analogues of the logical relations for use in equivalense prootis about programming lang゙uazes.

\equiv Google Scholar

"logical relation"
About 1,290 results $(0.12 \mathrm{sec})$

Logical Relation Inference and Multiview Information Interaction for Domain Adaptation Person Re-Identification
SLi, F Li, J Li, HLi, B Zhang, D Tao ... - IEEE Transactions on ..., 2023 - ieeexplore.ieee.org
... -to-intermechanism is introduced, in which samples from their own cameras are first grouped and then aligned at the class level across different cameras followed by our logical relation ... $\hat{\$}$ Save Cite Cited by 4 Related articles All 3 versions

A Novel Logical Neural Network Structure for Representing Logical Relations Clearly and Incrementally in a More Direct Mapping Manner

Z Han - papers.ssrn.com

.. they are not good at cognitive intelligence such as lagical representation, blocking the further application of ANN into the domains which need knowing clearly what logical relation ..
\Leftrightarrow Save $5 \square$ Cite Related articles 0

Logical Relations for Session-Typed Concurrency

.. This paper develops a logical relation to reason about program equivalence of sessiontyped processes, proves soundness and completeness of the relation via a biorthogonality ..
\approx Save 0 Cite All 2 versions $\delta \delta$

三 Google Scholar

Articles

```
About }837\mathrm{ results (0.14 sec)
```

Any time
Since 2023
Since 2022
Since 2019
Custom range．．．

Sort by relevance
Sort by date

Any type
Review articlesinclude patents
\checkmark include citationsCreate alert

［PDF］Automatic Differentiation for ML－Familiy Languages：Correctness via Logical Relations

F Lucatelli Nunes，M Vákár－ 2023 －publications．mfo．de
INTRODUCTION AD and the PL community．Automatic differentiation（AD）is a popular technique for computing derivatives of functions implemented by a piece of code，particularly ．．． is Save 0 Cite Related articles \rangle

CLOMO：Counterfactual Logical Modification with Large Language Models Y Huang，R Hong，H Zhang，W Shao，Z Yang．．．－arXiv preprint arXiv ．．．， 2023 －arxiv．org

．．．logical relation．The objective for these models is to adeptly modify the argument text until the

 specified logical relation is ．．．Argument：Statement1：It is widely assumed that people need to ．．．令 Save 咆 Cite 领
［PDF］Engineering logical relations for MLTT in Coq

A Adjedj12，M Lennon－Bertrand，K Maillard．．．－．．．Conference on Types for ．．．－meven．ac
．．．［1］formalize an inductive－recursive［5］definition of a logical relation for a representative ．．． Thus，we reformulate the logical relation using small induction－recursion，which can in turn ．．．

Basic types and operations

A Simple View

- Our structure comprises:
- Some basic entities (objects, A, B, \ldots)
- And operations between them.

A Simple View

A Simple View

Putting things together: operations compose

Putting things together: operations compose

Putting things together: relations compose

Putting things together: relations compose

A system of relations is "Logical" if operations respect relations.

A system of relations between models is "logical" if
the operations respect the relations.

Algebra

- Objects - giving basic sorts
- Operations - between objects
- Equations - between operations
- Usual interpretation:
- Object = Set
- Operation = Function

Example: Groups

- One basic objects/sort: the group carrier
- Three operations:

- Plus equations: associativity, identity, inverse

Models: Groups

- Actual groups:
G

$$
\begin{aligned}
& G \\
& \frac{b}{\frac{C^{-1}}{d}} \\
& \frac{G}{L}
\end{aligned}
$$

Definition. A group G is a system of elements which is closed under a single-valued binary operation which is associative, and relative to which G contains an element satisfying the identity law, and with each element another element (called its inverse) satisfying the inverse law.

Corollary. A group has only one identity element, and only one inverse a^{-1} for each element a.

Birkhoff and Mac Lane: A Survey of Modern Algebra

Models

- Models are actual groups: $G \quad G$
- A relation $G \quad G$ is logical ff
- $g \sim g \Delta$

- $1-1$

$$
\Rightarrow g^{-1} \curvearrowright g^{-1}
$$

Models

- If f is a function $G->G$ and G and G are groups, then
- Graph(f) is a logical relation for the group operations
- iff f is a group homomorphism.
- This result holds for arbitrary algebraic theories.
- Logical relations generalise, and encapsulate a standard algebraic concept.

First-order types and a bit of category theory

We want to use more than just the basic objects

- First-order types:
- Products and sums
- If we have a product of types in our structure, then we want to generate a relation between the corresponding products in our two different models.

Products of relations

$A \frown A$
 $B \frown B$

Sums of relations

$$
\begin{aligned}
& A \frown A \\
& B \frown B \\
& +\underset{B}{A}+{ }_{B} \\
& a \text { or } a \\
& b>b
\end{aligned}
$$

n-ary operations

- A n-ary operation is equivalent to a unary operation on the product of the inputs.

amalgamating operations

- Having two operations is equivalent to a unary operation on the sum of the inputs.
- Example: groups

Algebra and Co-algebra

- Classically, both deal with one-sorted theories, ie one basic type
- algebra says that elements of that type can be combined into others by applying operations
- co-algebra says that elements of that type can be decomposed into the result of applying such operations to other elements of the type.

Multiplication and co-multiplication

Category Theory

- In the categorical account of algebra, terms are packaged up into a functor.
- TA = terms built from algebra operations and constants that are elements of A
- Algebra:

- Coalgebra:

Compositionality

- At this level everything is fine.
- Operations compose.
- We can use type-theoretic operations we expect (projection, tupling, injection, case).
- Logical relations compose.

Higher-order types: Functions

Exponentiation of relations

- Given pairs of types
- And relations
- Can we get a relation

$$
[A \rightarrow B] \quad[A \rightarrow B]
$$

A Simple View

Exponentiation of relations

- Given pairs of types
- And relations
- Can we get a relation

\sqrt{V}
- Ans: yes

How this works

- Application is OK:

$$
f \frown f \Delta a \frown a \Rightarrow f a \frown f a
$$

How it breaks down: failure of composition

- Other constructors preserve order on relations,

- Compositionality of relations fails

How it breaks down: failure of composition

How it breaks down: failure of composition

So far all very concrete:

 Sets are the go to mathematical structure for building things
But logic is the go to tool for reasoning about them.

Get rid of the sets: a logicbased approach

Look at the proofs

- Proofs all use logic and basic type theory, not really set theory
- We need a predicate logic, with sorts and predicates over sorts.
- Start with a unary version.

Logic as a type theory

- Types: sort (=context) + predicate defined in that context.
- Terms: have two components -
- substitution

Contexts

- entailment

Predicates in
Context

Logic as a type theory

- Functions between contexts generalise terms (they are substitutions).
$x: A \xrightarrow{y=e(x)} y: B$
- Predicates have a context (their free variables).

Predicates in

 Context

$$
x: A \vdash P(x)
$$

Logic as a type theory

- Predicates have a context (their free variables).

$$
x: A \not P P(x)
$$

Predicates in
Context

- Functions between predicates are a substitution and an entailment.
$\begin{aligned} x: A \mid P(x) & \leadsto y: B+Q(y) \\ y & =c(x)\end{aligned}$

Contexts

$$
x: A \vdash P(x) \rightarrow Q(e(x))
$$

Logic as a type theory

- Model of type theory
- Homomorphism of structure
- Model of type theory

Can also do this for binary predicates (relations)

Core idea

Core idea

Sets again

- This story works semantically for sets and relations.
- Ditch the idea that a relation is just the set of elements.
- A relation also has to know what sets it is a relation between.

Why should we care?

- Ans: not everything is a set, not every construction uses set-theoretic constructions.
- Example: Kripke logical relations, step-indexed logical relations
- Idea: work in a world where everything is, say, Kripke. Kripke gives good interpretation of logic. Binary predicates give logical relations.
- Key to understanding lots of complicated papers is that they are just talking about this simple picture in the context of a complicated world.

Using structure to derive congruences

Example: State transition systems

Different forms of bisimulation can be derived from different ways of modelling systems

Labelled non-deterministic state transition system

- A set of States
- a labelled transition relation

Labelled non-deterministic state transition system: bisimulation (Park-Milner)

- Two systems

- Relation between them is a

Formalising

$$
\begin{aligned}
& \alpha: A \times s \longrightarrow P(s) \\
& \alpha(a, s)=\left\{s^{\prime} \mid s \longrightarrow s^{\prime}\right\}
\end{aligned}
$$

Given $\alpha: A \times s \rightarrow P(s)$

$$
\alpha: A_{x} S \longrightarrow P(s)
$$

for what relation $S \frown S$ is $\alpha-\alpha$?

Formalising
Given $\alpha: A_{x} S \longrightarrow P(s)$

$$
\alpha: A_{x} S \longrightarrow P(s)
$$

for what relation $S \supset S$ is $\alpha-\alpha$?

- Does not depend on exact way model is structured. egg. $A \longrightarrow[S \rightarrow P(s)]$
- Does depend on haw we extend $P(S)$ of relations.

Power-set as a type constructor: possibility 1

- Interpret the powerset of S as functions S-> Bool: $P(S)=S$-> Bool
- really strong, relational version of the contravariant power-set functor.

Power-set as a type constructor: possibility 2

- $P(S)$ covariant power set functor,
- is the "free complete sup-semi-lattice on S"
- algebraic theory
- have V_x for any set X.
- equations between the V_x
- (Proper class of operations and proper class of equations, but up to equality only a set of operations for each set).

Extension to Rel

- What is the free complete supsemilattice in Rel?
- Given R a relation between A and B, we need $P(R)$ defined to be a relation between $P(A)$ and $P(B)$
- $\operatorname{UP}(R) V$ iff
- there is an S subset of R such that pi_o $S=U$ and pi_1 S = V
- iff forall u in U there is a v in V such that $u R v$, and for all v in V there is a u

$$
P A \stackrel{P R}{ }_{P A}
$$ in U such that uRv.

Extension to Rel

- What is the free complete supsemilattice in Rel?
- Given R a relation between A and B, we need $P(R)$ defined to be a relation between $P(A)$ and $P(B)$
- $\operatorname{UP}(R) V$ iff
- there is an S subset of R such that pi_o $S=U$ and pi_1 S = V
- iff forall u in U there is a v in V such that $u R v$, and for all v in V there is a u

$$
P A \stackrel{P R}{ }_{P A}
$$ in U such that uRv.

Extension to Rel

- U $P(R) V$
- iff there is an S subset of R such that pi_o $S=U$ and pi_1 S = V
- iff forall u in U there is a v in V such that $u R v$, and for all v in V there is a u in U such that uRv.

$$
P A \stackrel{P R}{P A}
$$

Strong bisimulation
Gwen $S \xrightarrow{R} S$ and $\alpha: A \times S \longrightarrow P(S)$

$$
\alpha: A \times S \rightarrow P(S)
$$

then $\alpha \triangleright \alpha$ iff when $s \frown s$ then

$$
\alpha(a, s) \sim \alpha(a, s)
$$

ie. When $s^{\prime} \in \alpha(a, s) \quad\left(s, a \rightarrow s^{\prime}\right)$
then there is $s^{\prime}-s^{\prime} \in \alpha(a, s)\left(s \not a s^{\prime}\right)$
etc. R is a strong bseimulation.

Other forms of bisimulation

Other forms of bisimulation

- weak bisimulation
- branching bisimulation
- semi-branching bisimulation
- probabilistic bisimulation

Basic strategy

- There are other ways of modelling state transition systems.
- For weak bisimulation we are interested in systems that have silent internal computations.
- For branching bisimulation we have silent internal computations, but also synchronisation points.
- For probabilistic bisimulation we need models of stochastic processes.

State transition systems as monoid HM

- Our model only deals with single transitions.

- We could ask it to account for sequences of transitions.

- A monoid homomorphism

Weak bisimulation (Milner)

- Processes have silent tau actions, representing internal computation.

Definition 20. (Milner (1989)) Let S be a labelled transition system for $A=L+\{\tau\}$, and $v \in L^{*}$, then

$$
s \stackrel{v}{\Rightarrow} s^{\prime} \text { iff there is a } w \in A^{*}=(L+\{\tau\})^{*} \text { such that } v=\hat{w} \text { and } s \xrightarrow{w} s^{\prime} .
$$

We can type \Rightarrow as $\Rightarrow:\left[L^{*} \rightarrow[S \rightarrow \mathscr{P} S]\right]$, and we refer to it as the system derived from \rightarrow.

Weak bisimulation (Milner)

- Processes have silent tau actions, representing internal computation.

Definition 20. (Milner (1989)) Let S be a labelled transition system for $A=L+\{\tau\}$, and $v \in L^{*}$, then

$$
s \stackrel{v}{\Rightarrow} s^{\prime} \text { iff there is } a w \in A^{*}=(L+\{\tau\})^{*} \text { such that } v=\hat{w} \text { and } s \xrightarrow{w} s^{\prime} .
$$

We can type \Rightarrow as $\Rightarrow:\left[L^{*} \rightarrow[S \rightarrow \mathscr{P} S]\right]$, and we refer to it as the system derived from \rightarrow.
Definition 21. If S and T are two labelled transition systems for $A=L+\{\tau\}$, then a relation $R \subseteq S \times T$ is a weak bisimulation iff for all $a \in A=L+\{\tau\}$, whenever $s R t$

- for all $s \xrightarrow{a} s^{\prime}$, there is t^{\prime} such that $t \stackrel{a}{\Rightarrow} t^{\prime}$ and $s^{\prime} R t^{\prime}$
- and for all $t \xrightarrow{a} t^{\prime}$, there is s^{\prime} such that $s \stackrel{a}{\Rightarrow} s^{\prime}$ and $s^{\prime} R t^{\prime}$.

Weak Bisimulation

$$
\begin{aligned}
& S \xrightarrow{S} s^{\prime} \\
& \text { matched by } \\
& S \xrightarrow{ } T, \ldots \xrightarrow{a} I, \ldots \mp s^{\prime} \\
& \text { or if } a=T \text { additionally } \\
& S \xrightarrow{a=T} s^{\prime} \\
& S
\end{aligned}
$$

Weak bisimulation (1): saturation

Definition 26. Let $F:(L+\{\tau\}) \longrightarrow[S \rightarrow \mathscr{P} S]$ be a transition system with internal action. We say that F is saturated if
(1) $\mathrm{id} \leq F(\tau)$ and $F(\tau) \cdot F(\tau) \leq F(\tau)$ and
(2) for all $a \in L, F(\tau) \cdot F(a) \cdot F(\tau) \leq F(a)$
(1)

(z)

Weak bisimulation (1): saturation

Definition 26. Let $F:(L+\{\tau\}) \longrightarrow[S \rightarrow \mathscr{P} S]$ be a transition system with internal action. We say that F is saturated if
(1) id $\leq F(\tau)$ and $F(\tau) \cdot F(\tau) \leq F(\tau)$ and
(2) for all $a \in L, F(\tau) \cdot F(a) \cdot F(\tau) \leq F(a)$

Proposition 27. Suppose $F:(L+\{\tau\}) \longrightarrow[S \rightarrow \mathscr{P} S]$ and $G:(L+\{\tau\}) \longrightarrow[T \rightarrow \mathscr{P} T]$ are saturated transition systems with internal actions, then $R \subseteq S \times T$ is a weak bisimulation between the systems if and only if it is a strong bisimulation between them.

Weak bisimulation (1): saturation
ORIGINAL MODEL $\alpha:(A+\{\uparrow\}) \times S \longrightarrow P(S)$
SATURATE it $\bar{\alpha}:(A+\{T\}) \times S \rightarrow P(S)$

- same state space
- check al fur strong simulation

Weak bisimulation (1): saturation

Original model: visible action. T actions generates new model:

- sequencer of visible actions

$$
\alpha: A^{*} \longrightarrow[s \rightarrow P(s)]
$$

But $\alpha(\varepsilon) \neq \lambda s .\{s\}$
So not a monoid HM
Twit respects cencateration (seni-grump).

Weak Bisimulation

- Model is a semi-group HM
- constructed from an original
- A relation between two such models is logical iff it is a weak bisimulation between the original models.

Weak bisimulation (2): lax HM

Definition 31. A lax transition system on an alphabet L (not including an internal action τ) is a function $F: L^{*} \longrightarrow[S \rightarrow \mathscr{P} S]$ such that:
(1) $\mathrm{id} \leq F(\varepsilon)$ (reflexivity)
(2) $F(v w)=F(v) \cdot F(w)$ (composition)

Definition 32. Let $F:(L+\{\tau\}) \longrightarrow[S \rightarrow \mathscr{P} S]$ be a transition system with internal action, then its laxification $\hat{F}: L^{*} \longrightarrow[S \rightarrow \mathscr{P} S]$ is the lax transition system defined by:
(1) $\hat{F}(\varepsilon)=F(\tau)^{*}$
(2) $\hat{F}(a)=F(\tau)^{*} \cdot F(a) \cdot F(\tau)^{*}$, for any $a \in L$.
(3) $\hat{F}(v w)=\hat{F}(v) \cdot \hat{F}(w)$.

Lemma 35. Suppose $F:(L+\{\tau\}) \longrightarrow[S \rightarrow \mathscr{P} S]$ and $G:(L+\{\tau\}) \longrightarrow[T \rightarrow \mathscr{P} T]$ are transition systems with internal actions, and $R \subseteq S \times T$. Then the following are equivalent:
(1) R is a weak bisimulation between F and G
(2) $(\hat{F}, \hat{G}) \in\left[\mathrm{Id}_{L^{*}} \rightarrow[R \rightarrow \mathscr{P} R]\right]$
(3) R is the state space of a lax transition system in Rel whose first projection is \hat{F} and whose second is \hat{G}.

Weak bisimulation (2):
lax HM
Original model: visible action + T actions generates nee model:

- sequencer of visible actions

$$
\alpha: A^{*} \longrightarrow[s \rightarrow P(S)]
$$

But $\alpha(\varepsilon) \neq \lambda s .\{s\}$
So not a monoid Hr
Twit respects cencateration (seni-grump).

Branching bisimulation

$$
\begin{aligned}
& \text { Definition 36. A relation } R \subseteq S \times T \text { is called } a \text { branching bisimulation if and only if whenever } \\
& s R t \text { : } \\
& \text { • } s \xrightarrow{a} s^{\prime} \text { implies }\left(\left(\exists t_{1}, t_{2} \in T . t \xrightarrow{\tau^{*}} t_{1} \xrightarrow{a} t_{2} \wedge s R t_{1} \wedge s^{\prime} R t_{2}\right) \text { or }\left(a=\tau \wedge s^{\prime} R t\right)\right) \text {, } \\
& \cdot t \xrightarrow{a} t^{\prime} \text { implies }\left(\left(\exists s_{1}, s_{2} \in S . s \xrightarrow{\tau^{*}} s_{1}{ }^{a} s_{2} \wedge s_{1} R t \wedge s_{2} R t^{\prime}\right) \text { or }\left(a=\tau \wedge s R t^{\prime}\right)\right) \text {. }
\end{aligned}
$$

Branching bisimulation

Definition 36. A relation $R \subseteq S \times T$ is called a branching bisimulation if and only if whenever sRt:

- $s \xrightarrow{a} s^{\prime}$ implies $\left(\left(\exists t_{1}, t_{2} \in T . t \xrightarrow{\tau^{*}} t_{1} \xrightarrow{a} t_{2} \wedge s R t_{1} \wedge s^{\prime} R t_{2}\right)\right.$ or $\left.\left(a=\tau \wedge s^{\prime} R t\right)\right)$,
$\cdot t \xrightarrow{a} t^{\prime}$ implies $\left(\left(\exists s_{1}, s_{2} \in S . s \xrightarrow{\tau^{*}} s_{1} \xrightarrow{a} s_{2} \wedge s_{1} R t \wedge s_{2} R t^{\prime}\right)\right.$ or $\left.\left(a=\tau \wedge s R t^{\prime}\right)\right)$.

$$
\bar{F}^{b}:(L+\{\tau\}) \longrightarrow[S \rightarrow \mathscr{P}(S \times S)]
$$

$$
\bar{F}^{b} \text { as }=\left\{\left(s_{1}, s_{2}\right) \in S \times S \mid\left(s \xrightarrow{\tau^{*}} s_{1} \xrightarrow{a} s_{2}\right) \text { or }\left(a=\tau \text { and } s=s_{1}=s_{2}\right)\right\} .
$$

Branching bisimulation

Definition 36. A relation $R \subseteq S \times T$ is called a branching bisimulation if and only if whenever sRt:

- $s \xrightarrow{a} s^{\prime}$ implies $\left(\left(\exists t_{1}, t_{2} \in T . t \xrightarrow{\tau^{*}} t_{1} \xrightarrow{a} t_{2} \wedge s R t_{1} \wedge s^{\prime} R t_{2}\right)\right.$ or $\left.\left(a=\tau \wedge s^{\prime} R t\right)\right)$,
$\cdot t \xrightarrow{a} t^{\prime}$ implies $\left(\left(\exists s_{1}, s_{2} \in S . s \xrightarrow{\tau^{*}} s_{1} \xrightarrow{a} s_{2} \wedge s_{1} R t \wedge s_{2} R t^{\prime}\right)\right.$ or $\left.\left(a=\tau \wedge s R t^{\prime}\right)\right)$.

$$
\begin{gathered}
\bar{F}^{b}:(L+\{\tau\}) \longrightarrow[S \rightarrow \mathscr{P}(S \times S)] \\
\bar{F}^{b} a s=\left\{\left(s_{1}, s_{2}\right) \in S \times S \mid\left(s \xrightarrow{\tau^{*}} s_{1} \xrightarrow{a} s_{2}\right) \text { or }\left(a=\tau \text { and } s=s_{1}=s_{2}\right)\right\}
\end{gathered}
$$

Theorem 39. Let $R \subseteq S \times T$. Then R is a branching bisimulation if and only if $\left(\bar{F}^{b}, \bar{G}^{b}\right) \in$ $\left[\mathrm{Id}_{L+\{\tau\}} \rightarrow[R \rightarrow \mathscr{P}(R \times R)]\right]$.

Probabilistic Bisimulation

- Need to model stochastic processes not just state transition.
- Idea (Lawvere, Giry) process is given by a form of "Markov kernel": an operator that relates a probability space on the domain to a measure space on the codomain and gives the probability of a transition function taking a value in a given measurable set.
- Notion of bisimulation arising from logical relations is strong probabilistic bisimulation.
- Have to work harder to get close to Pi-bisimulation.

References

Plotkin, Gordon. Lambda-definability and logical relations. Edinburgh University, 1973.
Milne, Robert. "The Formal Semantics of Computer Languages and their Implementations." PhD diss., University of Cambridge, 1974.

Hermida, Claudio, Uday S. Reddy, and Edmund P. Robinson. "Logical relations and parametricity-a Reynolds programme for category theory and programming languages." Electronic Notes in Theoretical Computer Science 303 (2014): 149-180.

Hermida, Claudio, Uday S. Reddy, and Edmund P. Robinson. "Deriving Logical Relations from Interpretations of Predicate Logic." Electronic Notes in Theoretical Computer Science 347 (2019): 241-259.

Hermida, Claudio, Uday Reddy, Edmund Robinson, and Alessio Santamaria. "Bisimulation as a logical relation."
Mathematical Structures in Computer Science 32, no. 4 (2022): 442-471.

