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Performance

• Peter was very interested in describing what programs do. 



Change in Semantics

• Move from proving programs “correct” in some absolute sense


• To providing tools to improve quality


• and those tools have to fit in with the development chain



Formal models

• But you still have to produce a formal model 



Mathematics

• The language we use when we want to do calculations about a system


• But the calculations are never about the actual system


• They are about models of the system



What happens if we use different 
models: do we get the same 

results? 



Logical Relations



Two key messages

• Basic ideas are quite simple, and if you focus, then you can keep them 
like that. 


• We can use them to justify (in fact derive) some standard notions of 
process equivalence. 



Logical Relations

• Robert Milne: thesis - 
proving equivalence 
of implementations


• Mike Gordon: 
unpublished 
discussions


• Gordon Plotkin: 







Basic types and operations



A Simple View

• Our structure comprises: 


• Some basic entities (objects, A, B,…)


• And operations between them.



A Simple View



A Simple View



Putting things together: operations compose



Putting things together: operations compose



Putting things together: relations compose



Putting things together: relations compose



A Simple View



A system of relations is “Logical” 
if operations respect relations.



A system of relations between models  
is “logical”  

if  
the operations respect the relations. 



Algebra
• Objects - giving basic sorts


• Operations - between objects


• Equations - between operations


• Usual interpretation: 


• Object = Set


• Operation = Function



Example: Groups
• One basic objects/sort: the group carrier 


• Three operations: 


• Plus equations: associativity, identity, inverse



Models: Groups
• Actual groups:  
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Birkhoff and Mac Lane: A Survey of Modern Algebra



Models

• Models are actual groups: 


• A relation                             is logical iff


•   


•  


•  



Models
• If f is a function G -> G and G and G are groups, then


• Graph(f) is a logical relation for the group operations 


• iff f is a group homomorphism. 


• This result holds for arbitrary algebraic theories. 


• Logical relations generalise, and encapsulate a standard algebraic 
concept. 



First-order types and a bit of 
category theory



We want to use more than just the  basic objects

• First-order types: 


• Products and sums


• If we have a product of types in our structure, then we want to generate a 
relation between the corresponding products in our two different models. 



Products of relations



Sums of relations



n-ary operations

• A n-ary operation is equivalent to a unary operation on the product of the 
inputs.



amalgamating operations
• Having two operations is equivalent to a unary operation on the sum of 

the inputs. 


• Example: groups



Algebra and Co-algebra
• Classically, both deal with one-sorted theories, ie one basic type


• algebra says that elements of that type can be combined into others by applying 
operations


• co-algebra says that elements of that type can be decomposed into the result of 
applying such operations to other elements of the type.



Multiplication and co-multiplication



Category Theory

• In the categorical account of algebra, terms are packaged up into a 
functor. 


• TA = terms built from algebra operations and constants that are elements 
of A


• Algebra: 


• Coalgebra: 



Compositionality

• At this level everything is fine. 


• Operations compose. 


• We can use type-theoretic operations we expect (projection, tupling, 
injection, case). 


• Logical relations compose. 



Higher-order types: Functions



Exponentiation of relations

• Given pairs of types 


• And relations 


• Can we get a relation 



A Simple View



Exponentiation of relations

• Given pairs of types 


• And relations 


• Can we get a relation 


• Ans: yes



How this works
• Application is OK: 


• As is lambda abstraction



How it breaks down: failure of composition

• Other constructors preserve order on relations,             does not. 


• Compositionality of relations fails



How it breaks down: failure of composition



How it breaks down: failure of composition



So far all very concrete: 
Sets are the go to mathematical 

structure for building things



But logic is the go to tool for 
reasoning about them. 



Get rid of the sets: a logic-
based approach



Look at the proofs

• Proofs all use logic and basic type theory, not really set theory


• We need a predicate logic, with sorts and predicates over sorts.


• Start with a unary version. 



Logic as a type theory

• Types: sort (=context) + predicate defined 
in that context. 


• Terms: have two components - 


• substitution


• entailment
Contexts

Predicates in 
Context



Logic as a type theory

• Functions between contexts generalise 
terms (they are substitutions).


• Predicates have a context (their free 
variables). Contexts

Predicates in 
Context



Logic as a type theory
• Predicates have a context (their free 

variables).


• Functions between predicates are a 
substitution and an entailment.

Contexts

Predicates in 
Context



Logic as a type theory

• Model of type theory

Contexts

Predicates in 
Context

• Model of type theory

• Homomorphism of structure



Can also do this for binary predicates (relations)

Second Context

Relations in 
Contexts

First Context



Core idea



Core idea



Sets again

• This story works semantically for sets and relations. 


• Ditch the idea that a relation is just the set of elements. 


• A relation also has to know what sets it is a relation between. 



Why should we care?

• Ans: not everything is a set, not every construction uses set-theoretic 
constructions. 


• Example: Kripke logical relations, step-indexed logical relations


• Idea: work in a world where everything is, say, Kripke. Kripke gives good 
interpretation of logic. Binary predicates give logical relations.  


• Key to understanding lots of complicated papers is that they are just 
talking about this simple picture in the context of a complicated world. 



Using structure to derive 
congruences



Example: State transition 
systems



Different forms of bisimulation can 
be derived from different ways of 

modelling systems



Labelled non-deterministic state transition system

• A set of States


• a labelled transition relation



Labelled non-deterministic state transition 
system: bisimulation (Park-Milner)

• Two systems


• Relation between them is a 
bisimulation if



Formalising



Formalising



Power-set as a type constructor: possibility 1

• Interpret the powerset of S as functions S -> Bool:  P(S) = S -> Bool


• really strong, relational version of the contravariant power-set functor.



Power-set as a type constructor: possibility 2

• P(S) covariant power set functor, 


• is the “free complete sup-semi-lattice on S”


• algebraic theory


• have V_x for any set X. 


• equations between the V_x


• (Proper class of operations and proper class of equations, but up to 
equality only a set of operations for each set).



Extension to Rel
• What is the free complete sup-

semilattice in Rel?


• Given R a relation between A and B, we 
need P(R) defined to be a relation 
between P(A) and P(B)


• U P(R) V iff


• there is an S subset of R such that 
pi_o S = U and pi_1 S = V


• iff forall u in U there is a v in V such 
that uRv, and for all v in V there is a u 
in U such that uRv.



Extension to Rel
• What is the free complete sup-

semilattice in Rel?


• Given R a relation between A and B, we 
need P(R) defined to be a relation 
between P(A) and P(B)


• U P(R) V iff


• there is an S subset of R such that 
pi_o S = U and pi_1 S = V


• iff forall u in U there is a v in V such 
that uRv, and for all v in V there is a u 
in U such that uRv.



Extension to Rel

• U P(R) V 


• iff there is an S subset of R 
such that pi_o S = U and pi_1 
S = V


• iff forall u in U there is a v in V 
such that uRv, and for all v in 
V there is a u in U such that 
uRv.



Strong bisimulation



Other forms of bisimulation



Other forms of bisimulation

• weak bisimulation


• branching bisimulation


• semi-branching bisimulation


• probabilistic bisimulation



Basic strategy

• There are other ways of modelling state transition systems. 


• For weak bisimulation we are interested in systems that have silent 
internal computations. 


• For branching bisimulation we have silent internal computations, but also 
synchronisation points. 


• For probabilistic bisimulation we need models of stochastic processes. 



State transition systems as monoid HM

• Our model only deals with single 
transitions. 


• We could ask it to account for 
sequences of transitions.


• A monoid homomorphism 



Weak bisimulation (Milner)

• Processes have silent tau actions, representing internal computation.  



Weak bisimulation (Milner)

• Processes have silent tau actions, representing internal computation.  



Weak Bisimulation



Weak bisimulation (1): 
saturation



Weak bisimulation (1): 
saturation



Weak bisimulation (1): 
saturation



Weak bisimulation (1): 
saturation



Weak Bisimulation

• Model is a semi-group HM 


• constructed from an original


• A relation between two such models is logical iff it is a weak bisimulation 
between the original models. 



Weak bisimulation (2): 
lax HM



Weak bisimulation (2): 
lax HM



Branching bisimulation

16 Hermida et al.

Note that if G is a lax transition system, then G(w) depends only on G(e) and the G(a), all
other values are determined by composition. Note also that if F is saturated, then F̂(e) = F(t)
and F̂(a) = F(a).

We can also go the other way. Given a lax transition system, F : L⇤ �! [S !P S], then we can
define a transition system with inner action: F̌ : (L + {t})�! [S !P S] where

• F̌(t) = F(e)
• F̌(a) = F(a)

Lemma 34. If F : (L + {t})�! [S !P S] is a transition system with internal action, then its
saturation F can be constructed as ˇ̂F.

One way of looking at this is that a lax transition system is just a saturated one in thin disguise.
But from our perspective it gives us a different algebraic semantics for transition systems with
inner action that can also be made to account for weak bisimulation, and this time the t actions
do not appear in the formal statement.

Lemma 35. Suppose F : (L + {t})�! [S !P S] and G : (L + {t})�! [T !P T ] are transi-
tion systems with internal actions, and R ✓ S ⇥ T . Then the following are equivalent:

(1) R is a weak bisimulation between F and G
(2) (F̂ , Ĝ)2 [IdL⇤ ! [R !P R]]
(3) R is the state space of a lax transition system in Rel whose first projection is F̂ and whose

second is Ĝ.

11. (Semi-)Branching bisimulations
In this section, we shall always consider two labelled transition systems F : (L + {t})�! [S !
P S] and G : (L + {t})�! [T !P T ] with an internal action t . We begin by introducing the
following notation: we say that x t⇤! y, for x and y in S (or in T ) if and only if there is a finite,
possibly empty, sequence of t actions

x t! · · · t! y;

if the sequence is empty, then we require x = y.
We now recall the notion of branching bisimulation, which was introduced in van Glabbeek

and Weijland (1996).

Definition 36. A relation R ✓ S ⇥ T is called a branching bisimulation if and only if whenever
sRt:

• s a! s0 implies
�
(9t1, t2 2 T. t t⇤! t1

a! t2 ^ sRt1 ^ s0Rt2) or (a = t ^ s0Rt)
�
,

• t a! t 0 implies
�
(9s1, s2 2 S. s t⇤! s1

a! s2 ^ s1Rt ^ s2Rt 0) or (a = t ^ sRt 0)
�
.

Remark 37. In particular, if R is a branching bisimulation, sRt and s t! s0 then there exists t 0 2 T
such that t t⇤! t 0 and s0Rt 0.

We show how branching bisimulation is also an instance of logical relation between appropriate
derived versions of F and G.



Branching bisimulation

16 Hermida et al.

Note that if G is a lax transition system, then G(w) depends only on G(e) and the G(a), all
other values are determined by composition. Note also that if F is saturated, then F̂(e) = F(t)
and F̂(a) = F(a).

We can also go the other way. Given a lax transition system, F : L⇤ �! [S !P S], then we can
define a transition system with inner action: F̌ : (L + {t})�! [S !P S] where

• F̌(t) = F(e)
• F̌(a) = F(a)

Lemma 34. If F : (L + {t})�! [S !P S] is a transition system with internal action, then its
saturation F can be constructed as ˇ̂F.

One way of looking at this is that a lax transition system is just a saturated one in thin disguise.
But from our perspective it gives us a different algebraic semantics for transition systems with
inner action that can also be made to account for weak bisimulation, and this time the t actions
do not appear in the formal statement.

Lemma 35. Suppose F : (L + {t})�! [S !P S] and G : (L + {t})�! [T !P T ] are transi-
tion systems with internal actions, and R ✓ S ⇥ T . Then the following are equivalent:

(1) R is a weak bisimulation between F and G
(2) (F̂ , Ĝ)2 [IdL⇤ ! [R !P R]]
(3) R is the state space of a lax transition system in Rel whose first projection is F̂ and whose

second is Ĝ.

11. (Semi-)Branching bisimulations
In this section, we shall always consider two labelled transition systems F : (L + {t})�! [S !
P S] and G : (L + {t})�! [T !P T ] with an internal action t . We begin by introducing the
following notation: we say that x t⇤! y, for x and y in S (or in T ) if and only if there is a finite,
possibly empty, sequence of t actions

x t! · · · t! y;

if the sequence is empty, then we require x = y.
We now recall the notion of branching bisimulation, which was introduced in van Glabbeek

and Weijland (1996).

Definition 36. A relation R ✓ S ⇥ T is called a branching bisimulation if and only if whenever
sRt:

• s a! s0 implies
�
(9t1, t2 2 T. t t⇤! t1

a! t2 ^ sRt1 ^ s0Rt2) or (a = t ^ s0Rt)
�
,

• t a! t 0 implies
�
(9s1, s2 2 S. s t⇤! s1

a! s2 ^ s1Rt ^ s2Rt 0) or (a = t ^ sRt 0)
�
.

Remark 37. In particular, if R is a branching bisimulation, sRt and s t! s0 then there exists t 0 2 T
such that t t⇤! t 0 and s0Rt 0.

We show how branching bisimulation is also an instance of logical relation between appropriate
derived versions of F and G.
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a! s2. In the first case, consider the
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hence (t1, t2)2 Gbat. If t⇤ = tn, with n � 1, then by Remark 37 applied to every t in the list
t⇤, there exists t 0 in T such that t t⇤! t 0 and s1Rt 0. Now apply again the definition of branching
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Note that if G is a lax transition system, then G(w) depends only on G(e) and the G(a), all
other values are determined by composition. Note also that if F is saturated, then F̂(e) = F(t)
and F̂(a) = F(a).

We can also go the other way. Given a lax transition system, F : L⇤ �! [S !P S], then we can
define a transition system with inner action: F̌ : (L + {t})�! [S !P S] where

• F̌(t) = F(e)
• F̌(a) = F(a)

Lemma 34. If F : (L + {t})�! [S !P S] is a transition system with internal action, then its
saturation F can be constructed as ˇ̂F.

One way of looking at this is that a lax transition system is just a saturated one in thin disguise.
But from our perspective it gives us a different algebraic semantics for transition systems with
inner action that can also be made to account for weak bisimulation, and this time the t actions
do not appear in the formal statement.

Lemma 35. Suppose F : (L + {t})�! [S !P S] and G : (L + {t})�! [T !P T ] are transi-
tion systems with internal actions, and R ✓ S ⇥ T . Then the following are equivalent:

(1) R is a weak bisimulation between F and G
(2) (F̂ , Ĝ)2 [IdL⇤ ! [R !P R]]
(3) R is the state space of a lax transition system in Rel whose first projection is F̂ and whose

second is Ĝ.

11. (Semi-)Branching bisimulations
In this section, we shall always consider two labelled transition systems F : (L + {t})�! [S !
P S] and G : (L + {t})�! [T !P T ] with an internal action t . We begin by introducing the
following notation: we say that x t⇤! y, for x and y in S (or in T ) if and only if there is a finite,
possibly empty, sequence of t actions

x t! · · · t! y;

if the sequence is empty, then we require x = y.
We now recall the notion of branching bisimulation, which was introduced in van Glabbeek

and Weijland (1996).

Definition 36. A relation R ✓ S ⇥ T is called a branching bisimulation if and only if whenever
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Probabilistic Bisimulation
• Need to model stochastic processes not just state transition. 


• Idea (Lawvere, Giry) process is given by a form of “Markov kernel”: an 
operator that relates a probability space on the domain to a measure 
space on the codomain and gives the probability of a transition function 
taking a value in a given measurable set. 


• Notion of bisimulation arising from logical relations is strong probabilistic 
bisimulation. 


• Have to work harder to get close to Pi-bisimulation. 
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