
Peter Landin Semantics
Seminar
Edmund Robinson

Queen Mary University of London

Logical Relations and
Mathematical Foundations

Performance

• Peter was very interested in describing what programs do.

Change in Semantics

• Move from proving programs “correct” in some absolute sense

• To providing tools to improve quality

• and those tools have to fit in with the development chain

Formal models

• But you still have to produce a formal model

Mathematics

• The language we use when we want to do calculations about a system

• But the calculations are never about the actual system

• They are about models of the system

What happens if we use different
models: do we get the same

results?

Logical Relations

Two key messages

• Basic ideas are quite simple, and if you focus, then you can keep them
like that.

• We can use them to justify (in fact derive) some standard notions of
process equivalence.

Logical Relations

• Robert Milne: thesis -
proving equivalence
of implementations

• Mike Gordon:
unpublished
discussions

• Gordon Plotkin:

Basic types and operations

A Simple View

• Our structure comprises:

• Some basic entities (objects, A, B,…)

• And operations between them.

A Simple View

A Simple View

Putting things together: operations compose

Putting things together: operations compose

Putting things together: relations compose

Putting things together: relations compose

A Simple View

A system of relations is “Logical”
if operations respect relations.

A system of relations between models
is “logical”

if
the operations respect the relations.

Algebra
• Objects - giving basic sorts

• Operations - between objects

• Equations - between operations

• Usual interpretation:

• Object = Set

• Operation = Function

Example: Groups
• One basic objects/sort: the group carrier

• Three operations:

• Plus equations: associativity, identity, inverse

Models: Groups
• Actual groups:

-oI<3llTnIr3q)IItrsI¤nT13rjIr3

E * t'
{ IS q S3 1+ E: :' 3 E

fi:S
3

r
:

:
¤;

3
;r

s!
:fi

^? i
i

z= r :r
I=:i

i
: i

EE!
?r

A i
S= i E: i iE :: a: :* i S

iEx
'

eir;:!;;;
!;iE:l\;ii

Eii
+

i! i¤t i,l;?,ii;ii;iii
io!le;s i

-
- H

':
=

.=
-.:: q*,*

4y
-= 4 li s

'r I
-,i

t -
i

s
:5

.5r. I
.'

i
f

EtIEe:E.=
=.

;E
ia"1t

ro}s:i'=
= j-i

E *:tstTX l; E,i sl 'ia;;:
S:**EE: r r:

)
b^o l-r.

.5 I
.9 = -. I

rr i
: ft

F.
t

:-i
S tE

=
!

i
s isEiI;I

Eg,Y s1 E; Eil i
**Si;;;;

x |
=

iE sslp?.=E ':? p.s ; \ .si !" E lil:
i.66-"

-
;

:ci-\:F:o
=7 4. \\

it.-=;Z
i

Y!lliift;:
i

;f st sis i: t y f; ;i i i-; e : t;--t x;i;i s :
=a o -cr ^: -.i

=> s'o^ s.E E r'=E a
E;:

ltil.4''-
=

=

==!¤lt: 7?-!4 E'==: cs --;Lle *Eis rt+EEz ::
f ¤ =u$SSi ;i!EI 'E$ ii::;;ii

iE sirs ;:-::i ii
gI

>E:s Eoac'o 'rS -E5.8=:E?-g .os +8.
.EE.;:

=!
E¤ Es:iE iE;;i ;f s - tFE;E I: i! i::r - t;;;

=:
:E fs s s* : iE:E E'li F.3=*i: i i E: H

;S: :;;::
i=

5c,6q'.G
S

r;p>';u
f Fll {:Jrr 2Zi='

5i
9':;f

i;
==

;" ='E r'-ss
.H

E p ¤E
.J

i1":
ur f !:.* t=-;=

::

*Ezgi
7?;=z

+
=l-r

i
=i===

-. "- = a= -. :-t!-.c.= =
=

:--=i
=

-=
1=- =

.*-aC
'i=,-7.==E=:::-i-?.=

;ir=ira:=i...o-
:

=-=:
71

_
a'

.7r-=tv=eiE?
;

::;
111 li=-7

=!":z=t?gae?, z
;.:

+=;1=:=i
i::272_a=;r:

7
t,i¤

';?z ,-
.,.-

^
- =.-

a
-

;.F
I

I't
L

9: :t-
;

=
f,

a
i=-'i':-!':-Af,

T
'tt

:!:i:==
itylf;e_2i-*s i

Ei!
:;===2..,_

gE
*=i:=.Ai'a

V
=--a.

r==:-:-
:.aaZ;!:=ia , :Si! E=2,'.==l
-!

>.:
-

"';
--=:=

g
I

;;
L

-=-
-:

-
::

=''-?' i i;
- -..;-

-
i ='^.i

- == -: r f f
::--'5',-;=':=1

:-
=:ii

E=''-l:n
=.==

l
cd ,, i

-
=.':

aL
;

I
6S.=

='-'t-
= ::.:

:
-.=.:.

il i-
=:.:.

i:
..--.5 =':

i=2.=:
_

=
2i*-i:'*1'';1.== Z

==Ss -;jl==_:
E4==='i=¤tEi= ;

;**i= j;;=ii:
pI=f.i==-=g!=.:

a
;==:

a=1=l-'-
1==-;-:w

-=L.i-:<-=.t
a-

- !-=
:::i

i=!'-
:---

iiifif
'E;;, E I:i!

i,i7-711=
¤Eie=;2,:sa

E-t: a:-=: 3:-"7i:=
.,._ = r- = :,.; a=.>.. _ i

+iE a E|E:
==

=_

+ ¤EE= i E4;=EZ :'= i iI i i:I
.=:

e 6Ec2.,1?ca*il.^ ti
-:ili

-::i;
=,:.

o : ; : == -= = ="ri Zi i
= :,

: -s I 1'; -; : i_ : =
=_

E ;¤9
=i|E;='*'!:?

>z
d ! = =

;.j--
- =:

p ;E2
3.1!;='F,1f,,r

i-o
.Y i:.

-r. - --'
E

a.:'-
t-'= a

:.-
- = -- =

.!==-- i'
=>..-r-:

=:1:
fr 67.a 5:s21=i=_3!: +r:-

=_=:i=-:=
.r}

=r)==n
==_-_:

=
;.:a

.= :=:-:.

lJa-5o\o@

1-:-_-

-oI<3llTnIr3q)IItrsI¤nT13rjIr3

E * t'
{ IS q S3 1+ E: :' 3 E

fi:S
3

r
:

:
¤;

3
;r

s!
:fi

^? i
i

z= r :r
I=:i

i
: i

EE!
?r

A i
S= i E: i iE :: a: :* i S

iEx
'

eir;:!;;;
!;iE:l\;ii

Eii
+

i! i¤t i,l;?,ii;ii;iii
io!le;s i

-
- H

':
=

.=
-.:: q*,*

4y
-= 4 li s

'r I
-,i

t -
i

s
:5

.5r. I
.'

i
f

EtIEe:E.=
=.

;E
ia"1t

ro}s:i'=
= j-i

E *:tstTX l; E,i sl 'ia;;:
S:**EE: r r:

)
b^o l-r.

.5 I
.9 = -. I

rr i
: ft

F.
t

:-i
S tE

=
!

i
s isEiI;I

Eg,Y s1 E; Eil i
**Si;;;;

x |
=

iE sslp?.=E ':? p.s ; \ .si !" E lil:
i.66-"

-
;

:ci-\:F:o
=7 4. \\

it.-=;Z
i

Y!lliift;:
i

;f st sis i: t y f; ;i i i-; e : t;--t x;i;i s :
=a o -cr ^: -.i

=> s'o^ s.E E r'=E a
E;:

ltil.4''-
=

=

==!¤lt: 7?-!4 E'==: cs --;Lle *Eis rt+EEz ::
f ¤ =u$SSi ;i!EI 'E$ ii::;;ii

iE sirs ;:-::i ii
gI

>E:s Eoac'o 'rS -E5.8=:E?-g .os +8.
.EE.;:

=!
E¤ Es:iE iE;;i ;f s - tFE;E I: i! i::r - t;;;

=:
:E fs s s* : iE:E E'li F.3=*i: i i E: H

;S: :;;::
i=

5c,6q'.G
S

r;p>';u
f Fll {:Jrr 2Zi='

5i
9':;f

i;
==

;" ='E r'-ss
.H

E p ¤E
.J

i1":
ur f !:.* t=-;=

::

*Ezgi
7?;=z

+
=l-r

i
=i===

-. "- = a= -. :-t!-.c.= =
=

:--=i
=

-=
1=- =

.*-aC
'i=,-7.==E=:::-i-?.=

;ir=ira:=i...o-
:

=-=:
71

_
a'

.7r-=tv=eiE?
;

::;
111 li=-7

=!":z=t?gae?, z
;.:

+=;1=:=i
i::272_a=;r:

7
t,i¤

';?z ,-
.,.-

^
- =.-

a
-

;.F
I

I't
L

9: :t-
;

=
f,

a
i=-'i':-!':-Af,

T
'tt

:!:i:==
itylf;e_2i-*s i

Ei!
:;===2..,_

gE
*=i:=.Ai'a

V
=--a.

r==:-:-
:.aaZ;!:=ia , :Si! E=2,'.==l
-!

>.:
-

"';
--=:=

g
I

;;
L

-=-
-:

-
::

=''-?' i i;
- -..;-

-
i ='^.i

- == -: r f f
::--'5',-;=':=1

:-
=:ii

E=''-l:n
=.==

l
cd ,, i

-
=.':

aL
;

I
6S.=

='-'t-
= ::.:

:
-.=.:.

il i-
=:.:.

i:
..--.5 =':

i=2.=:
_

=
2i*-i:'*1'';1.== Z

==Ss -;jl==_:
E4==='i=¤tEi= ;

;**i= j;;=ii:
pI=f.i==-=g!=.:

a
;==:

a=1=l-'-
1==-;-:w

-=L.i-:<-=.t
a-

- !-=
:::i

i=!'-
:---

iiifif
'E;;, E I:i!

i,i7-711=
¤Eie=;2,:sa

E-t: a:-=: 3:-"7i:=
.,._ = r- = :,.; a=.>.. _ i

+iE a E|E:
==

=_

+ ¤EE= i E4;=EZ :'= i iI i i:I
.=:

e 6Ec2.,1?ca*il.^ ti
-:ili

-::i;
=,:.

o : ; : == -= = ="ri Zi i
= :,

: -s I 1'; -; : i_ : =
=_

E ;¤9
=i|E;='*'!:?

>z
d ! = =

;.j--
- =:

p ;E2
3.1!;='F,1f,,r

i-o
.Y i:.

-r. - --'
E

a.:'-
t-'= a

:.-
- = -- =

.!==-- i'
=>..-r-:

=:1:
fr 67.a 5:s21=i=_3!: +r:-

=_=:i=-:=
.r}

=r)==n
==_-_:

=
;.:a

.= :=:-:.

lJa-5o\o@

1-:-_-

Birkhoff and Mac Lane: A Survey of Modern Algebra

Models

• Models are actual groups:

• A relation is logical iff

•

•

•

Models
• If f is a function G -> G and G and G are groups, then

• Graph(f) is a logical relation for the group operations

• iff f is a group homomorphism.

• This result holds for arbitrary algebraic theories.

• Logical relations generalise, and encapsulate a standard algebraic
concept.

First-order types and a bit of
category theory

We want to use more than just the basic objects

• First-order types:

• Products and sums

• If we have a product of types in our structure, then we want to generate a
relation between the corresponding products in our two different models.

Products of relations

Sums of relations

n-ary operations

• A n-ary operation is equivalent to a unary operation on the product of the
inputs.

amalgamating operations
• Having two operations is equivalent to a unary operation on the sum of

the inputs.

• Example: groups

Algebra and Co-algebra
• Classically, both deal with one-sorted theories, ie one basic type

• algebra says that elements of that type can be combined into others by applying
operations

• co-algebra says that elements of that type can be decomposed into the result of
applying such operations to other elements of the type.

Multiplication and co-multiplication

Category Theory

• In the categorical account of algebra, terms are packaged up into a
functor.

• TA = terms built from algebra operations and constants that are elements
of A

• Algebra:

• Coalgebra:

Compositionality

• At this level everything is fine.

• Operations compose.

• We can use type-theoretic operations we expect (projection, tupling,
injection, case).

• Logical relations compose.

Higher-order types: Functions

Exponentiation of relations

• Given pairs of types

• And relations

• Can we get a relation

A Simple View

Exponentiation of relations

• Given pairs of types

• And relations

• Can we get a relation

• Ans: yes

How this works
• Application is OK:

• As is lambda abstraction

How it breaks down: failure of composition

• Other constructors preserve order on relations, does not.

• Compositionality of relations fails

How it breaks down: failure of composition

How it breaks down: failure of composition

So far all very concrete:
Sets are the go to mathematical

structure for building things

But logic is the go to tool for
reasoning about them.

Get rid of the sets: a logic-
based approach

Look at the proofs

• Proofs all use logic and basic type theory, not really set theory

• We need a predicate logic, with sorts and predicates over sorts.

• Start with a unary version.

Logic as a type theory

• Types: sort (=context) + predicate defined
in that context.

• Terms: have two components -

• substitution

• entailment
Contexts

Predicates in
Context

Logic as a type theory

• Functions between contexts generalise
terms (they are substitutions).

• Predicates have a context (their free
variables). Contexts

Predicates in
Context

Logic as a type theory
• Predicates have a context (their free

variables).

• Functions between predicates are a
substitution and an entailment.

Contexts

Predicates in
Context

Logic as a type theory

• Model of type theory

Contexts

Predicates in
Context

• Model of type theory

• Homomorphism of structure

Can also do this for binary predicates (relations)

Second Context

Relations in
Contexts

First Context

Core idea

Core idea

Sets again

• This story works semantically for sets and relations.

• Ditch the idea that a relation is just the set of elements.

• A relation also has to know what sets it is a relation between.

Why should we care?

• Ans: not everything is a set, not every construction uses set-theoretic
constructions.

• Example: Kripke logical relations, step-indexed logical relations

• Idea: work in a world where everything is, say, Kripke. Kripke gives good
interpretation of logic. Binary predicates give logical relations.

• Key to understanding lots of complicated papers is that they are just
talking about this simple picture in the context of a complicated world.

Using structure to derive
congruences

Example: State transition
systems

Different forms of bisimulation can
be derived from different ways of

modelling systems

Labelled non-deterministic state transition system

• A set of States

• a labelled transition relation

Labelled non-deterministic state transition
system: bisimulation (Park-Milner)

• Two systems

• Relation between them is a
bisimulation if

Formalising

Formalising

Power-set as a type constructor: possibility 1

• Interpret the powerset of S as functions S -> Bool: P(S) = S -> Bool

• really strong, relational version of the contravariant power-set functor.

Power-set as a type constructor: possibility 2

• P(S) covariant power set functor,

• is the “free complete sup-semi-lattice on S”

• algebraic theory

• have V_x for any set X.

• equations between the V_x

• (Proper class of operations and proper class of equations, but up to
equality only a set of operations for each set).

Extension to Rel
• What is the free complete sup-

semilattice in Rel?

• Given R a relation between A and B, we
need P(R) defined to be a relation
between P(A) and P(B)

• U P(R) V iff

• there is an S subset of R such that
pi_o S = U and pi_1 S = V

• iff forall u in U there is a v in V such
that uRv, and for all v in V there is a u
in U such that uRv.

Extension to Rel
• What is the free complete sup-

semilattice in Rel?

• Given R a relation between A and B, we
need P(R) defined to be a relation
between P(A) and P(B)

• U P(R) V iff

• there is an S subset of R such that
pi_o S = U and pi_1 S = V

• iff forall u in U there is a v in V such
that uRv, and for all v in V there is a u
in U such that uRv.

Extension to Rel

• U P(R) V

• iff there is an S subset of R
such that pi_o S = U and pi_1
S = V

• iff forall u in U there is a v in V
such that uRv, and for all v in
V there is a u in U such that
uRv.

Strong bisimulation

Other forms of bisimulation

Other forms of bisimulation

• weak bisimulation

• branching bisimulation

• semi-branching bisimulation

• probabilistic bisimulation

Basic strategy

• There are other ways of modelling state transition systems.

• For weak bisimulation we are interested in systems that have silent
internal computations.

• For branching bisimulation we have silent internal computations, but also
synchronisation points.

• For probabilistic bisimulation we need models of stochastic processes.

State transition systems as monoid HM

• Our model only deals with single
transitions.

• We could ask it to account for
sequences of transitions.

• A monoid homomorphism

Weak bisimulation (Milner)

• Processes have silent tau actions, representing internal computation.

Weak bisimulation (Milner)

• Processes have silent tau actions, representing internal computation.

Weak Bisimulation

Weak bisimulation (1):
saturation

Weak bisimulation (1):
saturation

Weak bisimulation (1):
saturation

Weak bisimulation (1):
saturation

Weak Bisimulation

• Model is a semi-group HM

• constructed from an original

• A relation between two such models is logical iff it is a weak bisimulation
between the original models.

Weak bisimulation (2):
lax HM

Weak bisimulation (2):
lax HM

Branching bisimulation

16 Hermida et al.

Note that if G is a lax transition system, then G(w) depends only on G(e) and the G(a), all
other values are determined by composition. Note also that if F is saturated, then F̂(e) = F(t)
and F̂(a) = F(a).

We can also go the other way. Given a lax transition system, F : L⇤ �! [S !P S], then we can
define a transition system with inner action: F̌ : (L + {t})�! [S !P S] where

• F̌(t) = F(e)
• F̌(a) = F(a)

Lemma 34. If F : (L + {t})�! [S !P S] is a transition system with internal action, then its
saturation F can be constructed as ˇ̂F.

One way of looking at this is that a lax transition system is just a saturated one in thin disguise.
But from our perspective it gives us a different algebraic semantics for transition systems with
inner action that can also be made to account for weak bisimulation, and this time the t actions
do not appear in the formal statement.

Lemma 35. Suppose F : (L + {t})�! [S !P S] and G : (L + {t})�! [T !P T] are transi-
tion systems with internal actions, and R ✓ S ⇥ T . Then the following are equivalent:

(1) R is a weak bisimulation between F and G
(2) (F̂ , Ĝ)2 [IdL⇤ ! [R !P R]]
(3) R is the state space of a lax transition system in Rel whose first projection is F̂ and whose

second is Ĝ.

11. (Semi-)Branching bisimulations
In this section, we shall always consider two labelled transition systems F : (L + {t})�! [S !
P S] and G : (L + {t})�! [T !P T] with an internal action t . We begin by introducing the
following notation: we say that x t⇤! y, for x and y in S (or in T) if and only if there is a finite,
possibly empty, sequence of t actions

x t! · · · t! y;

if the sequence is empty, then we require x = y.
We now recall the notion of branching bisimulation, which was introduced in van Glabbeek

and Weijland (1996).

Definition 36. A relation R ✓ S ⇥ T is called a branching bisimulation if and only if whenever
sRt:

• s a! s0 implies
�
(9t1, t2 2 T. t t⇤! t1

a! t2 ^ sRt1 ^ s0Rt2) or (a = t ^ s0Rt)
�
,

• t a! t 0 implies
�
(9s1, s2 2 S. s t⇤! s1

a! s2 ^ s1Rt ^ s2Rt 0) or (a = t ^ sRt 0)
�
.

Remark 37. In particular, if R is a branching bisimulation, sRt and s t! s0 then there exists t 0 2 T
such that t t⇤! t 0 and s0Rt 0.

We show how branching bisimulation is also an instance of logical relation between appropriate
derived versions of F and G.

Branching bisimulation

16 Hermida et al.

Note that if G is a lax transition system, then G(w) depends only on G(e) and the G(a), all
other values are determined by composition. Note also that if F is saturated, then F̂(e) = F(t)
and F̂(a) = F(a).

We can also go the other way. Given a lax transition system, F : L⇤ �! [S !P S], then we can
define a transition system with inner action: F̌ : (L + {t})�! [S !P S] where

• F̌(t) = F(e)
• F̌(a) = F(a)

Lemma 34. If F : (L + {t})�! [S !P S] is a transition system with internal action, then its
saturation F can be constructed as ˇ̂F.

One way of looking at this is that a lax transition system is just a saturated one in thin disguise.
But from our perspective it gives us a different algebraic semantics for transition systems with
inner action that can also be made to account for weak bisimulation, and this time the t actions
do not appear in the formal statement.

Lemma 35. Suppose F : (L + {t})�! [S !P S] and G : (L + {t})�! [T !P T] are transi-
tion systems with internal actions, and R ✓ S ⇥ T . Then the following are equivalent:

(1) R is a weak bisimulation between F and G
(2) (F̂ , Ĝ)2 [IdL⇤ ! [R !P R]]
(3) R is the state space of a lax transition system in Rel whose first projection is F̂ and whose

second is Ĝ.

11. (Semi-)Branching bisimulations
In this section, we shall always consider two labelled transition systems F : (L + {t})�! [S !
P S] and G : (L + {t})�! [T !P T] with an internal action t . We begin by introducing the
following notation: we say that x t⇤! y, for x and y in S (or in T) if and only if there is a finite,
possibly empty, sequence of t actions

x t! · · · t! y;

if the sequence is empty, then we require x = y.
We now recall the notion of branching bisimulation, which was introduced in van Glabbeek

and Weijland (1996).

Definition 36. A relation R ✓ S ⇥ T is called a branching bisimulation if and only if whenever
sRt:

• s a! s0 implies
�
(9t1, t2 2 T. t t⇤! t1

a! t2 ^ sRt1 ^ s0Rt2) or (a = t ^ s0Rt)
�
,

• t a! t 0 implies
�
(9s1, s2 2 S. s t⇤! s1

a! s2 ^ s1Rt ^ s2Rt 0) or (a = t ^ sRt 0)
�
.

Remark 37. In particular, if R is a branching bisimulation, sRt and s t! s0 then there exists t 0 2 T
such that t t⇤! t 0 and s0Rt 0.

We show how branching bisimulation is also an instance of logical relation between appropriate
derived versions of F and G.

Bisimulation as a logical relation 17

Definition 38. The branching saturation of F, denoted by Fb, is a function

Fb : (L + {t})�! [S !P(S ⇥ S)]

defined as follows. Given s 2 S and a 2 L + {t},

Fbas = {(s1, s2)2 S ⇥ S | (s t⇤! s1
a! s2) or (a = t and s = s1 = s2)}.

Theorem 39. Let R ✓ S ⇥ T . Then R is a branching bisimulation if and only if (Fb
, Gb

)2
[IdL+{t} ! [R !P(R ⇥ R)]].

Proof. Let us unpack the definition of the relation [IdL+{t} ! [R !P(R ⇥ R)]]. We have that
(Fb

, Gb
)2 [IdL+{t} ! [R !P(R ⇥ R)]] if and only if for all a 2 L + {t} and for all s 2 S and

t 2 T such that sRt we have (Fbas)[P(R ⇥ R)](Gbat). By definition of P(R ⇥ R), this means
that for all (s1, s2)2 Fbas there exists (t1, t2) in Gbat such that s1Rt1 and s2Rt2.

Suppose then that R is a branching bisimulation, consider sRt and take (s1, s2)2 Fbas. We have
two possible cases to discuss: a = t and s = s1 = s2, or s t⇤! s1

a! s2. In the first case, consider the
pair (t, t): this clearly belongs to Gbat. In the second case, we are in the following situation:

s t

s1

s2

R

t⇤

a

If t⇤ is the empty list, then s = s1, hence s1Rt: by definition of branching bisimulation, there are
indeed t1 and t2 such that:

t

s

t1

s2 t2

t⇤

R

R

a

a
R

hence (t1, t2)2 Gbat. If t⇤ = tn, with n � 1, then by Remark 37 applied to every t in the list
t⇤, there exists t 0 in T such that t t⇤! t 0 and s1Rt 0. Now apply again the definition of branching

Bisimulation as a logical relation 17

Definition 38. The branching saturation of F, denoted by Fb, is a function

Fb : (L + {t})�! [S !P(S ⇥ S)]

defined as follows. Given s 2 S and a 2 L + {t},

Fbas = {(s1, s2)2 S ⇥ S | (s t⇤! s1
a! s2) or (a = t and s = s1 = s2)}.

Theorem 39. Let R ✓ S ⇥ T . Then R is a branching bisimulation if and only if (Fb
, Gb

)2
[IdL+{t} ! [R !P(R ⇥ R)]].

Proof. Let us unpack the definition of the relation [IdL+{t} ! [R !P(R ⇥ R)]]. We have that
(Fb

, Gb
)2 [IdL+{t} ! [R !P(R ⇥ R)]] if and only if for all a 2 L + {t} and for all s 2 S and

t 2 T such that sRt we have (Fbas)[P(R ⇥ R)](Gbat). By definition of P(R ⇥ R), this means
that for all (s1, s2)2 Fbas there exists (t1, t2) in Gbat such that s1Rt1 and s2Rt2.

Suppose then that R is a branching bisimulation, consider sRt and take (s1, s2)2 Fbas. We have
two possible cases to discuss: a = t and s = s1 = s2, or s t⇤! s1

a! s2. In the first case, consider the
pair (t, t): this clearly belongs to Gbat. In the second case, we are in the following situation:

s t

s1

s2

R

t⇤

a

If t⇤ is the empty list, then s = s1, hence s1Rt: by definition of branching bisimulation, there are
indeed t1 and t2 such that:

t

s

t1

s2 t2

t⇤

R

R

a

a
R

hence (t1, t2)2 Gbat. If t⇤ = tn, with n � 1, then by Remark 37 applied to every t in the list
t⇤, there exists t 0 in T such that t t⇤! t 0 and s1Rt 0. Now apply again the definition of branching

Branching bisimulation

16 Hermida et al.

Note that if G is a lax transition system, then G(w) depends only on G(e) and the G(a), all
other values are determined by composition. Note also that if F is saturated, then F̂(e) = F(t)
and F̂(a) = F(a).

We can also go the other way. Given a lax transition system, F : L⇤ �! [S !P S], then we can
define a transition system with inner action: F̌ : (L + {t})�! [S !P S] where

• F̌(t) = F(e)
• F̌(a) = F(a)

Lemma 34. If F : (L + {t})�! [S !P S] is a transition system with internal action, then its
saturation F can be constructed as ˇ̂F.

One way of looking at this is that a lax transition system is just a saturated one in thin disguise.
But from our perspective it gives us a different algebraic semantics for transition systems with
inner action that can also be made to account for weak bisimulation, and this time the t actions
do not appear in the formal statement.

Lemma 35. Suppose F : (L + {t})�! [S !P S] and G : (L + {t})�! [T !P T] are transi-
tion systems with internal actions, and R ✓ S ⇥ T . Then the following are equivalent:

(1) R is a weak bisimulation between F and G
(2) (F̂ , Ĝ)2 [IdL⇤ ! [R !P R]]
(3) R is the state space of a lax transition system in Rel whose first projection is F̂ and whose

second is Ĝ.

11. (Semi-)Branching bisimulations
In this section, we shall always consider two labelled transition systems F : (L + {t})�! [S !
P S] and G : (L + {t})�! [T !P T] with an internal action t . We begin by introducing the
following notation: we say that x t⇤! y, for x and y in S (or in T) if and only if there is a finite,
possibly empty, sequence of t actions

x t! · · · t! y;

if the sequence is empty, then we require x = y.
We now recall the notion of branching bisimulation, which was introduced in van Glabbeek

and Weijland (1996).

Definition 36. A relation R ✓ S ⇥ T is called a branching bisimulation if and only if whenever
sRt:

• s a! s0 implies
�
(9t1, t2 2 T. t t⇤! t1

a! t2 ^ sRt1 ^ s0Rt2) or (a = t ^ s0Rt)
�
,

• t a! t 0 implies
�
(9s1, s2 2 S. s t⇤! s1

a! s2 ^ s1Rt ^ s2Rt 0) or (a = t ^ sRt 0)
�
.

Remark 37. In particular, if R is a branching bisimulation, sRt and s t! s0 then there exists t 0 2 T
such that t t⇤! t 0 and s0Rt 0.

We show how branching bisimulation is also an instance of logical relation between appropriate
derived versions of F and G.

Bisimulation as a logical relation 17

Definition 38. The branching saturation of F, denoted by Fb, is a function

Fb : (L + {t})�! [S !P(S ⇥ S)]

defined as follows. Given s 2 S and a 2 L + {t},

Fbas = {(s1, s2)2 S ⇥ S | (s t⇤! s1
a! s2) or (a = t and s = s1 = s2)}.

Theorem 39. Let R ✓ S ⇥ T . Then R is a branching bisimulation if and only if (Fb
, Gb

)2
[IdL+{t} ! [R !P(R ⇥ R)]].

Proof. Let us unpack the definition of the relation [IdL+{t} ! [R !P(R ⇥ R)]]. We have that
(Fb

, Gb
)2 [IdL+{t} ! [R !P(R ⇥ R)]] if and only if for all a 2 L + {t} and for all s 2 S and

t 2 T such that sRt we have (Fbas)[P(R ⇥ R)](Gbat). By definition of P(R ⇥ R), this means
that for all (s1, s2)2 Fbas there exists (t1, t2) in Gbat such that s1Rt1 and s2Rt2.

Suppose then that R is a branching bisimulation, consider sRt and take (s1, s2)2 Fbas. We have
two possible cases to discuss: a = t and s = s1 = s2, or s t⇤! s1

a! s2. In the first case, consider the
pair (t, t): this clearly belongs to Gbat. In the second case, we are in the following situation:

s t

s1

s2

R

t⇤

a

If t⇤ is the empty list, then s = s1, hence s1Rt: by definition of branching bisimulation, there are
indeed t1 and t2 such that:

t

s

t1

s2 t2

t⇤

R

R

a

a
R

hence (t1, t2)2 Gbat. If t⇤ = tn, with n � 1, then by Remark 37 applied to every t in the list
t⇤, there exists t 0 in T such that t t⇤! t 0 and s1Rt 0. Now apply again the definition of branching

Bisimulation as a logical relation 17

Definition 38. The branching saturation of F, denoted by Fb, is a function

Fb : (L + {t})�! [S !P(S ⇥ S)]

defined as follows. Given s 2 S and a 2 L + {t},

Fbas = {(s1, s2)2 S ⇥ S | (s t⇤! s1
a! s2) or (a = t and s = s1 = s2)}.

Theorem 39. Let R ✓ S ⇥ T . Then R is a branching bisimulation if and only if (Fb
, Gb

)2
[IdL+{t} ! [R !P(R ⇥ R)]].

Proof. Let us unpack the definition of the relation [IdL+{t} ! [R !P(R ⇥ R)]]. We have that
(Fb

, Gb
)2 [IdL+{t} ! [R !P(R ⇥ R)]] if and only if for all a 2 L + {t} and for all s 2 S and

t 2 T such that sRt we have (Fbas)[P(R ⇥ R)](Gbat). By definition of P(R ⇥ R), this means
that for all (s1, s2)2 Fbas there exists (t1, t2) in Gbat such that s1Rt1 and s2Rt2.

Suppose then that R is a branching bisimulation, consider sRt and take (s1, s2)2 Fbas. We have
two possible cases to discuss: a = t and s = s1 = s2, or s t⇤! s1

a! s2. In the first case, consider the
pair (t, t): this clearly belongs to Gbat. In the second case, we are in the following situation:

s t

s1

s2

R

t⇤

a

If t⇤ is the empty list, then s = s1, hence s1Rt: by definition of branching bisimulation, there are
indeed t1 and t2 such that:

t

s

t1

s2 t2

t⇤

R

R

a

a
R

hence (t1, t2)2 Gbat. If t⇤ = tn, with n � 1, then by Remark 37 applied to every t in the list
t⇤, there exists t 0 in T such that t t⇤! t 0 and s1Rt 0. Now apply again the definition of branching

Bisimulation as a logical relation 17

Definition 38. The branching saturation of F, denoted by Fb, is a function

Fb : (L + {t})�! [S !P(S ⇥ S)]

defined as follows. Given s 2 S and a 2 L + {t},

Fbas = {(s1, s2)2 S ⇥ S | (s t⇤! s1
a! s2) or (a = t and s = s1 = s2)}.

Theorem 39. Let R ✓ S ⇥ T . Then R is a branching bisimulation if and only if (Fb
, Gb

)2
[IdL+{t} ! [R !P(R ⇥ R)]].

Proof. Let us unpack the definition of the relation [IdL+{t} ! [R !P(R ⇥ R)]]. We have that
(Fb

, Gb
)2 [IdL+{t} ! [R !P(R ⇥ R)]] if and only if for all a 2 L + {t} and for all s 2 S and

t 2 T such that sRt we have (Fbas)[P(R ⇥ R)](Gbat). By definition of P(R ⇥ R), this means
that for all (s1, s2)2 Fbas there exists (t1, t2) in Gbat such that s1Rt1 and s2Rt2.

Suppose then that R is a branching bisimulation, consider sRt and take (s1, s2)2 Fbas. We have
two possible cases to discuss: a = t and s = s1 = s2, or s t⇤! s1

a! s2. In the first case, consider the
pair (t, t): this clearly belongs to Gbat. In the second case, we are in the following situation:

s t

s1

s2

R

t⇤

a

If t⇤ is the empty list, then s = s1, hence s1Rt: by definition of branching bisimulation, there are
indeed t1 and t2 such that:

t

s

t1

s2 t2

t⇤

R

R

a

a
R

hence (t1, t2)2 Gbat. If t⇤ = tn, with n � 1, then by Remark 37 applied to every t in the list
t⇤, there exists t 0 in T such that t t⇤! t 0 and s1Rt 0. Now apply again the definition of branching

Probabilistic Bisimulation
• Need to model stochastic processes not just state transition.

• Idea (Lawvere, Giry) process is given by a form of “Markov kernel”: an
operator that relates a probability space on the domain to a measure
space on the codomain and gives the probability of a transition function
taking a value in a given measurable set.

• Notion of bisimulation arising from logical relations is strong probabilistic
bisimulation.

• Have to work harder to get close to Pi-bisimulation.

References
Plotkin, Gordon. Lambda-definability and logical relations. Edinburgh University, 1973.

Milne, Robert. "The Formal Semantics of Computer Languages and their Implementations." PhD diss.,
University of Cambridge, 1974.

Hermida, Claudio, Uday S. Reddy, and Edmund P. Robinson. "Logical relations and parametricity–a Reynolds
programme for category theory and programming languages." Electronic Notes in Theoretical Computer
Science 303 (2014): 149-180.

Hermida, Claudio, Uday S. Reddy, and Edmund P. Robinson. "Deriving Logical Relations from Interpretations of
Predicate Logic." Electronic Notes in Theoretical Computer Science 347 (2019): 241-259.

Hermida, Claudio, Uday Reddy, Edmund Robinson, and Alessio Santamaria. "Bisimulation as a logical relation."
Mathematical Structures in Computer Science 32, no. 4 (2022): 442-471.

