
15 years UI test automation

Eyk Haneklaus
ehaneklaus@rosen-group.com

Agenda

- How things started
- Writing test automation code
- Running tests with Azure Devops
- Current challenges
- Summary

The early years

What does the industry offer?

- SmartBear TestComplete: “With codeless
[...] creation, you can run automated tests
regardless of technical skill level.”

- LeapWork: “No-code, visual approach for
testers and business users”

- Ranorex: “Tools for script-free automation”

Record & play back: Let’s try it!

- We have made rapid progress…
- … initially
- But:
- sometimes “hack scripts” required
- Small changes to our application caused

re-recording lots of test cases again…
- … and again!

Record & play back: What a bad idea…

- “Recordings” are hard to maintain

- too many “hack scripts” were necessary

- Result: We ended up using an unstable, custom scripting language in an
IDE that was NOT designed for writing code

“Ok, now let’s write code”: CodedUI

- Microsoft introduced “Coded UI” VisualStudio 2010
- Yay, we could write UI tests in C#!
- Finding controls was sloooow -> custom “caching” strategy
- Finding controls was unreliable, “flaky” -> custom retry strategy
- Code complex and ugly
- Microsoft retired CodedUI in VisualStudio 2019

“Ok, now let’s write code”: Appium WinAppDriver

- Microsoft recommends using Appium WinAppDriver (still today:
https://techcommunity.microsoft.com/t5/testingspot-blog/winappdriver-and-desktop-ui-test-automation/ba-p/11
24543)

- No proper control inspection tool
- Ugly code
- “Druid skills” required
- Writing UI tests takes much too long and is way too complicated
- Microsoft does not update WinAppDriver anymore (since ~3 years)
- The community is not amused https://github.com/microsoft/WinAppDriver/issues/1550

https://techcommunity.microsoft.com/t5/testingspot-blog/winappdriver-and-desktop-ui-test-automation/ba-p/1124543
https://techcommunity.microsoft.com/t5/testingspot-blog/winappdriver-and-desktop-ui-test-automation/ba-p/1124543
https://github.com/microsoft/WinAppDriver/issues/1550

But finally!!!

Finally we found a solution that

- has a Control Finder with code generation(!)
- fast and reliable
- can be used from C# and Visual Studio (proper

refactoring, debugging, version control, …)
- is not bound to VS, can also be used from

prototyping tools (LINQPad)
- Easy to learn!

Let’s dip our toes into some code

The Task

- Start the calculator
- type 2 * 3 =
- check that the result equals 6
- close the calculator

The code

Let’s clean up: The Page Object Pattern

- https://martinfowler.com/bliki/PageObject.html
- a simple but effective software design pattern
- separates test code from automation code

https://martinfowler.com/bliki/PageObject.html

Let’s clean up: The Page Object

Let’s clean up: The test code

- New tests can be added easily!
- If the application changes, only the “page object” needs to be

changed, not dozens (hundreds?) of tests!

Some additional tips

- Don’t do error handling in your tests!
- Messes up your code, wastes time (development)
- The errors happen in places that you do NOT expect
- The exception message is sufficient to quickly find the cause

- Don’t write “retry logic”, when a control can not be found
- messes up your code, wastes time (development & execution)
- there are better APIs to wait for a control until it is enabled
- … if not, get a better tool!

- Don’t implement control caching for performance reasons
- Messes up your code, wastes time (development)
- Very unstable
- If your automation framework is too slow, get a better tool!

Some general tips

- Write simple and “flat” test code
- Don’t create a company testing framework. Get a tool that works.
- Don’t use inheritance, generics, … sure, you know your stuff

Let’s automate… the automation

Azure DevOps

- Developers can run the tests directly from any source branch!

- The test code is associated to “Test cases” in order to organize them and
for documentation purposes

- The team (including managers) has convenient access to the latest test
results (and also an archive of previous test results)

- Testers are able to create bugs from failed test runs (and attach logs,
screenshots, videos)

Setup an agent to run UI tests

Download the agent zip, and unpack

Set up an agent to run UI tests

Run config.cmg to configure the agent (interactive mode!)
config.cmd --url https://<your-azure-devops>
--auth pat --token <your-pat>
--unattended --replace
--pool <your-pool>
--agent <your-agent-name>
--runAsAutoLogon --overwriteAutoLogon
--windowsLogonAccount <your-test-user>
--windowsLogonPassword <test-user-password>

needs Agent Pool permissions
no questions, overwrites existing agent

required to run UI tests
(“interactive”)

Parallel test execution

Configure the Agent Job as “Multi-agent”

Parallel test execution

ALWAYS run the VS Test Platform Installer!

choose a specific version
(faster!)

Will actually run the
tests

Parallel test execution

Configure the VS Test Runner Task

Utilizes all available agents

Ensures no agent is waiting (most
efficient for long running tests)

Add test attachments

Use TestContext::AddResultFile to attach files

Where to store attachments

Log file location Do NOT use any of these
directories for logs!!!

Will be DELETED after test run

… before they are actually
attached.

Instead use something like
%TEMP%\MyTests\...

Cleanup %TEMP% on every reboot

Where to store attachments

Viewing test results

Viewing test attachments

Viewing test attachments (custom extensions)
Custom extension that shows
attached files directly in the
browser (screenshots, PDFs,
Videos)

Custom “VideoRecorder”
implementation that creates a
screen capture (much better
than MS version)

Current challenge: Image Comparison

Current challenges: Image Comparison

Use cases:

- Custom view of ultrasonic sensor data
- 3rd party map controls (openstreetmap,

gmaps, yahoo, …)

Problem: Image comparison has false alerts

- Copyright 2023/2024
- Slight differences Win10 / Win11

Image Comparison: Change perspective

- assume that control is already tested
- test the application, NOT the control!
- 3rd party controls are tested by others
- custom controls should be tested at an earlier stage

- test the underlying data
- “hack” into the tested process
- supported by test tool
- … also with code generation

Example:

- Select an item in a list control
- check if the scale/pan of a custom control is as expected

“Hacking”?, seriously?

Cons

- Needs developer knowledge about application
- hurts “black box principle”
- breaks when DataModel changes

Pros

- no reference images to maintain
- “rock solid”

SumƐƄƯy

● wƕiƱƈ sƦƐƭle ƆƒơƢ!
● cƋoƒưƢ tƋe ƯƌgƋƱ tƬoƏ!

(tiƐƈ Ʀư moƑƈƶ)
● aƘtƬƐaƱƈ!
● be ƓƯƄgƐƞƱic!

Thanks for your attention!
Questions?

Eyk Haneklaus
ehaneklaus@rosen-group.com
www.linkedin.com/in/eykh

These slides online

