
BCS Higher Education Qualification

Professional Graduate Diploma

April 2025

EXAMINERS’ REPORT

Programming Paradigms

Questions Report:

A1

 This year’s most popular question, attempted by more than 90% of candidates.

In part (a), most candidates were able to identify differences between
procedural and object-oriented paradigms. However, some answers were
repetitions of the same difference with slightly different phrasing. Some
incorrectly implied that procedural programming languages do not support
control structures such as selection and iteration, and that programs in this
paradigm are linear. Language was also a little to definite in places where the
answer should be more nuanced (for instance, in the procedural paradigm’s
ability to support encapsulation, etc).

In part (b), which asked for example software development tasks that are better
suited to each paradigm, some answers were a little too abstract, suggesting
very broad areas to which one paradigm might be best suited, rather than
specific tasks. Other tasks suggested were not well argued (for instance, some
candidates argued for implementing a calculator in procedural paradigm, while
others suggested object orientation). Whilst the examiner was willing to accept a
coherent argument either way, this was not always present.

Part (c) was not as well answered generally, with some candidates showing a
lack of familiarity with the functional paradigm, often confusing it for a language
supporting functions in the procedural paradigm.

A2

 A very popular question, attempted by >85% of candidates.

In part (a), similarly to question A1, there was a tendency to repeat points with
slightly different phrasing, which did not score marks. However, overall, most
candidates were able to identify a number of differences between compilation
and interpretation. Note that the question asked for differences, not examples of
languages, so simply listing languages in each paradigm did not score marks. In
some cases, the difficulty in identifying errors in compiled languages was
misrepresented.

In part (b), there was more inconsistency, with some candidates able to identify
use cases for each approach, but others making more tenuous suggestions.
Most answers centred around rapidity of prototyping and speed of execution,
which were valid avenues of reasoning.

In part (c), which asked about assembly languages, most candidates made valid
points around difficult, optimisation/speed of execution, and closeness to
hardware. However, a number of candidates did not appear to be familiar with
the term and related it to assembly of code in a methodological sense.

A3

 A very popular question, attempted by >85% of candidates.

In part (a), following the trend from earlier, there was a tendency to repeat the
same point with slightly different phrasing, which did not score additional marks.
However, most candidates made thoughtful suggestions concerning the
difference between CLI and IDE based programming, mainly focussing on
difficulty of use, tool integration, and AI integration.

In part (b), most candidates made valid suggestions of IDE features that make
life easier for the programmer, with the most common answers focussing on
syntax highlighting and auto-completion.

In part (c) there was a split – some candidates clearly knew what step over and
step into meant, and some did not, which lead to some creative guesses.

B4

 An unpopular question, attempted by around 20% of candidates.

However, more than 75% of those that did attempt the question did well, scoring
a pass mark. It could be that more candidates were insecure in their knowledge
base in this topic.

Of those that submitted answers, in part (a), most were able to identify major
differences between iterative and imperative approaches. Many also alluded to
potential risks in the recursive approach in relation to memory usage.

In part (b), most were able to offer iterative and recursive implementations of the
factorial function, also though some iterative answers had logical errors that
would have caused the answer to be miscalculated, so performing a
walkthrough is recommended.

In part (c), which asked for a functional language implementation, some
candidates were familiar enough with a functional language to offer an answer
(most commonly in Haskell) whilst others were not, and in some cases
misinterpreted functional and meaning to implement a function in an imperative
language.

B5

 Like B4, an unpopular question in this year’s paper, attempted by around 20%
of candidates. However, more than 85% of those that did attempt the question
did well, scoring a pass mark, showing secure knowledge of logic languages.

In part (a), which was only worth 4 marks, some answers were overly
long/complicated.

In part (b), many were able to identify the meaning of existential and universal
quantification in predicate logic, although some unduly linked this to logic
programming again. Not many candidates convincingly demonstrated the
interchangeability of this operators, but instead focussed on their inherent
difference in meaning.

In part (c), most candidates demonstrated facts, rules and queries in Prolog,
with some quite elegant answers. Inevitably, there were some syntactic and
other errors for which marks were reduced proportionately. Some examples
were a little oversimplistic to informatively demonstrate the power of rules and
queries.

