
BCS LEVEL 5 DIPLOMA IN IT

OBJECT-ORIENTED
PROGRAMMING

This qualification is regulated by one or more of the following:
Ofqual, Qualifications Wales, CCEA Regulation or SQA.

SYLLABUS

September 2023 v4.1

CONTENTS

Introduction

Qualification Suitability and Overview

SFIA Levels

Learning Outcomes

Syllabus

Examination Format

Question Weighting

Recommended Reading

Document Change History

3.

4.

5.

6.

7.

14.

14.

15.

18.

THIS QUALIFICATION WILL BE RETIRING IN 2026

Introduction
Level 5 Diploma in IT
The second stage within the BCS three-stage Higher Education Qualification programme, the Level 5
Diploma enables candidates who have already achieved the Level 4 Certificate in IT to progress to higher
levels of knowledge and competency.

This internationally-recognised qualification introduces you to the business-related aspects of the IT
industry, developing your technological expertise while also considering the potential challenges of the day-
to-day running of an organisation, such as legal obligations and intellectual property.

Our modules have been created in-line with the latest developments in the industry, giving you a
competitive edge in the IT job market. You will have the opportunity to learn about object-oriented
programming, user experience, systems analysis and design, as well as to build upon knowledge and skills
developed during the Level 4 Certificate.

To successfully achieve the qualification, candidates need to complete:
• One core module
• Three optional modules
• One Professional Project in IT

Candidates who wish to progress onto the next stage will need to complete the Project at end of the Level 6
Professional Graduate Diploma in IT.

3 4

Qualification Suitability and
Overview
Candidates must have achieved the Certificate in IT or have an appropriate exemption to be entered for
the Diploma in IT. Candidates can study for this diploma by attending a training course provided by a BCS
accredited Training Provider or through self-study, although it is strongly recommended that all candidates
register with an approved centre. Studying with an approved centre will deliver significant benefits.

Candidates are required to become a member of BCS, The Chartered Institute for IT, to sit and be awarded
the qualifications. Candidates may apply for a four-year student membership that will support them
throughout their studies.

The Level 5 Diploma is suitable for professionals wishing to gain a formal IT qualification, and this module
may be particularly relevant for candidates interested in career opportunities such as software engineering,
creating apps, or designing systems.

Total Qualification Time Guided Learning Hours Assessment Time

1086 hours 225 hours 2 hours

Object-Oriented Programming Optional Module

The Object-Oriented Programming module is an optional module that forms part of the Level 5 Diploma in
IT – the second stage within the BCS three-stage Higher Education Qualification programme.

Candidates will explore the foundations of Object-Oriented Programming, the concepts relating to abstrac-
tion, encapsulation and inheritance, as well as design patterns, Unified Modelling Language (UML) and
Object Constraint Language (OCL). Candidates will have the opportunity to develop knowledge of the SOLID
design principles, class hierarchies, implementation of designs and testing OO code.

SFIA Levels
This module provides candidates with the level of knowledge highlighted within the table, enabling
candidates to develop the skills to operate successfully at the levels of responsibility indicated.

5

SFIA Plus
This syllabus has been linked to the SFIA
knowledge skills and behaviours required at Level

5.

PROG3
Designs, codes, verifies, tests, documents, amends
and refactors moderately complex programs/
scripts. Applies agreed standards and tools, to
achieve a well-engineered result. Collaborates in
reviews of work with others as appropriate.

Level Levels of Knowledge Levels of Skill and Responsibility (SFIA)
K7 Set strategy, inspire and mobilise

K6 Evaluate Initiate and influence

K5 Synthesise Ensure and advise

K4 Analyse Enable

K3 Apply Apply

K2 Understand Assist

K1 Remember Follow

Learning Outcomes
Upon completion of this module, candidates will be able to:

• Explain the motivation for and development of object-oriented programming languages.
• Produce a set of use cases given a problem statement.
• Produce class diagrams, object interaction diagrams and object state transition diagrams for a given

problem.
• Describe the essential features of an object-oriented programming language.
• Produce and/or debug code fragments that illustrate principles of object-oriented software

development.
• Describe the principles for testing object-oriented software and derive sets of test data given a

specification.

Further detail regarding the SFIA Levels can be found at www.bcs.org/levels.

6

https://www.bcs.org/media/5165/sfia-levels-knowledge.pdf

7

Syllabus
1. Foundations

Learners will be able to:

Explain the genealogy of object-oriented (OO) languages.1.1

1.2

Indicative content

a. Structured programming
b. Procedural programming
c. Abstract data types (ADTs)

Guidance
Candidates should be able to define these terms and understand
their contribution to the development of OO languages.

Explain the difference between typed and untyped languages.

Indicative content

a. Type of variable and range of
applicable operations

b. Use of classes in object-
oriented programming

Guidance
The syllabus is designed to be language-agnostic, although it
leans towards languages with classes rather than those without.
Candidates are expected to be proficient in one OO language and
aware of others, as well as to provide their own examples.

8

1.3 Explain coupling and cohesion.

Indicative content

a. Coupling
b. Cohesion
c. How these are implemented

in OOP

Guidance
Coupling and cohesion are Software Engineering concepts and can
be regarded as aspects of software quality; coupling measures the
extent to which one part of the software depends on other parts,
while cohesion is a measure of how much parts of the software
which are grouped together actually belong together. This part
of the syllabus is intended to emphasise that the rationale for OO
is to encourage low coupling and high cohesion. Candidates are
expected to be able to discuss these two terms and explain how
they are operationalised in OOP.

2. Concepts

Learners will be able to:

Describe techniques for establishing user requirements.2.1

Indicative content

a. Abstraction
b. Encapsulation
c. Data hiding/information

hiding
d. Classes and objects

(instances)

Guidance
Candidates should be able to compare these concepts and explain
how they are different to each other - sometimes the differences
are quite subtle. These ideas can be realised in languages which
are not object-oriented, so candidates should also be able to explain
how they are implemented in OO, as well as their relevance to OOP.

2.2 Explain inheritance and other inter-class relationships.

Indicative content

a. Single, multilevel, multiple,
hierarchical and hybrid
inheritance

b. Super-classes (base classes)
c. Sub-classes (derived classes)
d. Specialisation vs.

generalisation
e. Abstract and concrete

classes and methods
f. Inheritance for specialisation

vs. specification
g. Inter-class relationships, e.g.:

i. Isa
ii. Has-a
iii. Part-of
iv. Association
v. Aggregation
vi. Composition

Guidance
Candidates may be given a scenario and asked to derive a
hierarchy for that scenario. They should understand subtle
differences between each term and how they are distinguished
from each other. Candidates could also be asked to explain a real-
world scenario in which these concepts could be used.

2.3 Describe class members.

Indicative content

a. Fields (data members,
variables, attributes) and
methods (member functions,
procedures)

b. Messages
c. Object state
d. Constructors (parameterised,

copy, conversion, default) and
destructors

e. Accessors (getters) and
mutators (setters)

f. Object and member scope

 Guidance
Candidates may be given a scenario and asked to present a class
definition which places members in correct sections and gives
them the correct visibility. They should be able to understand when
it is appropriate to use different kinds of constructor and destructor,
as well as the role of accessors and mutators in implementation
of information or data hiding or encapsulation. They should also
understand advantages and disadvantages of using accessors and
mutators to control access to data.

9

Explain polymorphism.2.4

Indicative content

a. Ad-hoc and parametric
b. Method overloading
c. Method overriding
d. Operator overloading
e. Templates

Guidance
Candidates may be asked to give examples of ad-hoc or parametric
polymorphism. They should understand the relationship between
overriding and inheritance, as well as the advantages and
disadvantages of ad-hoc and parametric polymorphism.

10

3. Design

Learners will be able to:

Use Unified Modelling Language (UML).3.1

Indicative content

a. Use case diagrams, e.g.:
i. Actors
ii. System boundaries
iii. <<uses>>, <<extends>>
and <<includes>>

Guidance
Candidates may be given a scenario and asked to draw a Use Case
diagram. They will need to understand what the system boundary
is and the role of actors and use cases to capture the functionality
and requirements of the given scenario. The scenario may also
require use of include and extend relationships. Candidates may
also be asked to provide a use case description, which will provide
a description of the interactions between the actors and use cases,
which can also include alternative steps.

Analyse scenarios using appropriate tools.3.2

Indicative content

a. Class diagrams, e.g.:
i. Associations
ii. Aggregation
iii. Dependency
iv. Inheritance

b. Object interaction diagrams
c. Object state transition

diagrams

Guidance
Candidates may be given a scenario and asked to draw the
appropriate diagram depending on whether a static or dynamic
view is required. For a Class diagram, they need to be able
distinguish what the classes are, showing the attributes, operations
and how they relate to each other, plus understand when it is
appropriate to apply the concepts of aggregation, dependency and
inheritance. For Object interaction diagrams, candidates should be
able to show the interactive behaviour of the scenario in the form
of either a sequence or collaboration diagram. Key elements are
to show the objects which take part in the interaction, messages
which flow between them and the sequence in which the messages
flow. For state transition diagrams, candidates need to be able to
show what states an object can have and what events can cause an
object to change state.

Write and interpret Object Constraint Language (OCL).3.3

Indicative content

a. Invariants
b. Preconditions
c. Postconditions

Guidance
As part of the design of a given scenario, candidates may be
required to provide greater precision when defining some of the
constraints which are to be applied to the behaviour of some of
the objects. Candidates need to be able to construct unambiguous
OCL expressions, demonstrating their understanding of concepts of
invariants, preconditions and postconditions.

12

4. Practice

Learners will be able to:

Describe SOLID.4.1

4.2

Indicative content

a. Single-responsibility
principle

b. Open-closed principle
c. Liskov substitution principle
d. Interface segregation

principle
e. Dependency inversion

principle

Guidance
Candidates should be able to explain the implications of each
of the five Solid principles. They should be able to demonstrate
the implementation of each principle in an object oriented
programming language with which they are familiar.

Construct and understand class hierarchies.

Indicative content

a. Implementing concepts listed
in 2.2

Guidance
Candidates are expected to be able to use inheritance and other
interclass relationships to construct software artefacts.

4.3 Demonstrate and explain implementation of designs.

Indicative content

a. Implementing designs in an
object oriented programming
language

b. Refactoring

Guidance
Candidates are expected to be able to take the provided design
and show how that design might be implemented in a specific OO
language. Designs are usually provided in UML (see 3.1).

Explain and analyse design patterns.3.4

Indicative content

a. Pattern documentation, e.g.:
i. Motivation
ii. Pre-requisites
iii. Structure
iv. Participants
v. Consequences

b. Examples of patterns, e.g.:
i. Adapter
ii. Decorator
iii. Iterator
iv. Observer
v. Singleton
vi. Factory

Guidance
Design patterns in the context of object-oriented programming
are there to provide solutions to common problems found in
software design. Candidates need to be aware what information the
documentation provides and how they help provide the solution.
There are three broad categories of design patterns: creational;
behavioural and structural patterns and candidates need to have
in-depth knowledge of at least one from each type.

11

14

Examination Format
This module is assessed through completion of an invigilated written exam.

Adjustments and/or additional time can be requested in line with the BCS reasonable adjustments policy
for candidates with a disability or other special considerations.

Type Four written questions from a choice of six, each with equal marks

Duration Two hours

Supervised Yes

Open Book No (no materials can be taken into the examination room)

Passmark 10/25 (40%)

Delivery Paper format only

Question Weighting
Candidates will choose four questions from a choice of six. All questions are equally weighted and worth 25
marks.

4.4 Understand how OO code might be tested in practice.

Indicative content

a. Class testing, constructing
class tests from OCL or state
transition diagrams, test
driver construction.

b. Testing interactions and class
hierarchies

c. Black box and white box

Guidance
Candidates may be expected to compare different approaches for
testing and to understand their advantages and disadvantages, and
where and when it would be appropriate to use them. Candidates
may be given a piece of code and asked which may be an
appropriate approach to test it, or to provide test cases to show that
it is working correctly.

13

15

Recommended Reading

Title: Growing Object-Oriented Software Guided by Tests

Author: S. Freeman and N. Pryce

Publisher: Addison-Wesley

Date: 2009

ISBN: 978-0321503626

Primary texts

Title: UML Distilled

Author: M. Fowler

Publisher: Addison-Wesley

Date: 2003

ISBN: 978-0321193681

Title: Design Patterns Explained: A New Perspective on Object-oriented
Design

Author: A. Shalloway and J. Trott

Publisher: Addison-Wesley

Date: 2004

ISBN: 978-0321247148

16

Additional texts

Title: The Object-Oriented Thought Process

Author: M. Weisfeld

Publisher: Addison-Wesley Professional

Date: 2013

ISBN: 978-0321861276

Title: Object-Oriented Programming with C++

Author: E. Balagurusamy

Publisher: McGraw Hill India

Date: 2017

ISBN: 978-9352607990

Title: Object-Oriented JavaScript

Author: V. Antani and S. Stefanov

Publisher: Pakt Publishing

Date: 2017

ISBN: 978-1785880568

Title: Objects First with Java: A Practical Introduction Using BlueJ

Author: D. Barnes and M. Kolling

Publisher: Pearson

Date: 2016

ISBN: 978-0134477367

Title: The Unified Modelling Language User Guide

Author: G. Booch, J. Rumbaugh and I. Jacobson

Publisher: Addison-Wesley

Date: 2017

ISBN: 978-0134852157

Title: Beginning C# Object-Oriented Programming

Author: D. Clark

Publisher: Apress

Date: 2013

ISBN: 978-1430249351

Using BCS Books
Accredited Training Organisations may include excerpts from BCS books in the course materials. If you
wish to use excerpts from the books you will need a license from BCS. To request a license, please contact
the Head of Publishing at BCS outlining the material you wish to copy and its intended use.

Document Change History
Any changes made to the syllabus shall be clearly documented with a change history log. This shall include
the latest version number, date of the amendment and changes made. The purpose is to identify quickly
what changes have been made.

Version Number Changes Made
Version 1.0
August 2021

Document created

18

Title: Design Patterns: Elements of Reusable Object-Oriented Software

Author: E. Gamma, R. Helm, R. Johnson and J. Vissides

Publisher: Addison-Wesley

Date: 1995

ISBN: 978-0201633610

Title: Object-Oriented Programming with Visual Basic .NET

Author: J. P. Hamilton

Publisher: O’Reilly Media

Date: 2002

ISBN: 978-0596001469

Title: Python 3 Object-oriented Programming

Author: D. Philips

Publisher: Pakt Publishing

Date: 2018

ISBN: 978-1789615852

17

Copyright © BCS 2021
BCS Level 5 Diploma in Object Oriented Programming v1.0

For further information please contact:

BCS
The Chartered Institute for IT
3 Newbridge Square
Swindon
SN1 1BY

T +44 (0)1793 417 445

www.bcs.org

© 2021 Reserved. BCS, The Chartered Institute for IT

All rights reserved. No part of this material protected by this copyright may be reproduced or utilised in any form,
or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and
retrieval system without prior authorisation and credit to BCS, The Chartered Institute for IT.

Although BCS, The Chartered Institute for IT has used reasonable endeavours in compiling the document it does not
guarantee nor shall it be responsible for reliance upon the contents of the document and shall not be liable for any
false, inaccurate or incomplete information. Any reliance placed upon the contents by the reader is at the reader’s
sole risk and BCS, The Chartered Institute for IT shall not be liable for any consequences of such reliance.

CONTACT

