BCS Higher Education Qualification

Professional Graduate Diploma

October 2023

EXAMINERS' REPORT TEMPLATE

Advanced Database Management Systems

Questions Report:

	All markers of section A are required to add comments here:
A1	
	Approximately 30% of candidates attempted this question of which just over half
	achieved a pass grade in the question.
	This question was poorly answered, with candidates seeming to know the
	fundamental ideas related to object orientation and how it compares to database
	modelling approaches. However, answers generally lacked depth of understanding. In
	part a) as well as part b) the vagueness of understanding of object oriented concepts
	was most obvious, with many students failing to identify the relation between an
	entity and tables/relations and the respective OO concepts, as well as a lack of
	understanding of inheritance, overwriting, encapsulation and how these transpire in
	database modelling. The substantial question on ORM often had very short answers
	that simply missed many of the aspects that needed considering for describing how
	data between objects and database is mapped. Part c) was generally well
	understood, but some candidates returned too many or too few values as well as not
	always identifying the correct columns to be returned.
A2	
	This question was attempted by 75% of candidates, with approximately 50% of these
	passing the question.
	Most candidates could describe the key concepts, uses of and approaches in data
	warehousing. Many would have scored higher by providing some detail beyond the
	keywords and ensuring that they did not only select one or two of the possible four
	or five aspects that were of relevance. Also, most parts were asking for examples and
	candidates omitted providing these. The prior observations are relevant to all the
	subquestions in this question, but in the final part on metadata many failed to
	express the essence that metadata is data about data.
A3	
	Approximately half of the candidates answered this question, with approximately
	40% of those passing the question.
	This question was poorly answered, with candidates often not answering
	subquestions or doing so very superficially. The technical results were generally
	correct (i.e. the result of running queries), but the explanations were imprecise. For
	part a) many students explained what each line of the code would do but did not
	explain the overall function of the trigger. Part d) was the most problematic – it
	required discussion of a number of tuning methods and many answers did not
	manage to explain clearly what the mentioned techniques were or how they help
	improve performance.

B4	
	This was the most popular question on the paper attempted by around 90% of
	candidates. Overall performance was one of the best on the paper with around 64%
	achieving a pass mark. There was a good spread of marks with a top mark of 25
	achieved.
Part a)	This question had three subparts, related to data security, all of which attracted a
	good set of marks overall.
	Most candidates could explain concepts of SQL injection and described how attacks
	occur. Examples of SQL code that result in an injection attack were expected and
	were rewarded with higher marks. This also applies to the remedial action to prevent
	attacks.
	The role of a database administrator (DBA) in handling a database was familiar to
	most candidates, as were the data masking techniques. Examples of each technique
	were expected to show how these techniques were used in practice.
Part b)	This question had three subparts related to distributed databases, specifically data
	fragmentation. This part was generally well answered and showed a sound
	understanding of this topic. The final subpart included an example to apply data
	fragmentation. Given that the benefits of data fragmentation were well understood
	by candidates such as local autonomy, it was surprising that many candidates
	incorrectly produced two vertical fragments that included duplicated columns that of
	the original table. Each fragment should autonomously reflect the two views:
	academic and finance.
Part c)	This part covered conformity of input into a database.
	A significant number of candidates seemed to have difficulty understanding the
	requirements of this question.
	Many answers concentrated on data integrity constraints applied within the database
	using SQL DDL (such as Entity Referential Integrity) rather than covering the shape of
	data. This means: When data is inserted; is it of the right type, length and format? An
	example was expected such as the date of birth needs to be valid; such as in the past
	have a suitable shape (DD-MM-YYYY). This is validated when data is inserted into the
	database and is usually achieved by suitable masks on data entry fields.
B5	
	This was a fairly popular question, attempted by around 67% of candidates. Overall
	performance was one of the highest on the paper, having a pass rate of around 63%.
	There was a good spread of marks. This question covered concurrency control in a
	multi-access RDBMS.
Part a)	This part had two subparts covering concepts related to ACID support for
	transactions. Most candidates were familiar with the ACID acronym and gave well-
	reasoned answers to the conflict of maintaining ACID properties when there are
	transactions that run for a long time before being able to commit. It was good to see
	that many candidates provided a suitable example of a long-running transaction.
Part b)	This part had two subparts where candidates were required to explain the effects of
	different concurrency control scenarios. Two further subparts related to row level
	clocking and conservative 2 phase locking, which were fairly well answered.
	The first scenario depicted two concurrent transactions that place locks on the same
	data item. Many candidates didn't consider the type of lock applied, whether it was
	an exclusive lock or a shared lock. If the transactions simply read the data item, then

	the logic is that conflicts only apply when no other transaction is trying to update that
	data item.
	The second scenario included a schedule of two concurrent transactions that had no
	locks applied to data items that interleaved read and update operations on the same
	data item.
	Many candidates had difficulty expanding the schedule by applying the two different
	concurrency control strategies (pessimistic vs optimistic). Candidates were generally
	fairly familiar with the pessimistic approach as this followed a strict locking strategy
	to guarantee consistency. An optimistic locking strategy based on versioning was
	unfamiliar to many candidates and as a result, scored fewer marks than for the
	pessimistic locking strategy. The final outcome is that in both cases (optimistic or
	pessimistic), one of the transactions would either have to abort or roll back to
	prevent a lost update.
Part c)	This part covered concurrency control in a distributed database where consistency
	between two databases was managed by coordinating the throughput of transactions
	to each database. Knowledge of the 2 phase commit protocol was required in order
	to answer this question. A small number of candidates were sufficiently familiar with
	the protocol and managed to conclude that coordinator C would send an 'abort'
	transaction to both participating databases.