
BCS LEVEL 6 PROFESSIONAL

PROGRAMMING PARADIGMS

This is a United Kingdom government regulated qualification
which is administered and approved by one or more of the

following: Ofqual, Qualifications Wales, CCEA Regulation or SQA.

SYLLABUS

September 2023 v3.1

CONTENTS

Introduction

Qualification Suitability and Overview

SFIA Levels

Learning Outcomes

Syllabus

Examination Format

Question Weighting

Recommended Reading

Using BCS Books

Document Change History

3.

4.

4.

5.

6.

12.

12.

13.

14.

14.

GRADUATE DIPLOMA IN IT

THIS QUALIFICATION WILL BE RETIRING IN 2026

Total Qualification Time
(Certificate)

Guided Learning Hours
(Module)

Assessment Time
(Exam)

1414 hours 250 hours Three hours

Introduction
The final stage within the BCS three-stage Higher Education Qualification programme, the Level 6
Professional Graduate Diploma (PGD) enables candidates who have already achieved the Level 5 Diploma in
IT to gain depth of knowledge and expertise in their field.

Our modules have been created in-line with the SFIAPlus framework and latest developments in the
industry, giving you a competitive edge in the IT job market and showing your dedication to the industry.
You will have the opportunity to learn about topics such as advanced database management, network
information systems, web engineering and programming paradigms, as well as to build upon knowledge
and skills developed during the Level 5 Diploma.

To successfully achieve the qualification, candidates need to complete:

· One core module (Professional Project in IT)
· Four optional modules

Depending on entrance conditions, completing the Level 6 PGD in IT may support entry onto a Master’s
degree course at selected global universities.

3 4

Qualification Suitability and
Overview
Candidates must have achieved the Diploma in IT or have an appropriate exemption in order to be entered
for the Professional Graduate Diploma (PGD). Candidates can study for this PGD by attending a training
course provided by a BCS accredited Training Provider or through self-study, although it is strongly
recommended that all candidates register with an approved centre. Studying with an approved centre will
deliver significant benefits.

Candidates are required to become a member of BCS, The Chartered Institute for IT, to sit and be awarded
the qualifications. Candidates may apply for a four-year student membership that will support them
throughout their studies.

The Level 6 PGD is suitable for professionals wishing to gain an advanced formal IT qualification, and this
module may be particularly relevant for candidates who are interested in career opportunities such as web,
app, software or game development.

Programming Paradigms optional module

The Programming Paradigms module is an optional module that forms part of the Level 6 PGD in IT – the
final stage within the BCS three-stage Higher Education Qualification programme.

Candidates will develop an overview of modern programming languages and the programming paradigms
they implement, as well as an appreciation for the new perspectives on software construction that
each language offers. This module explores a range of software development tools and programming
techniques, and is designed to showcase the contribution language designers can make to software
engineering practice.

SFIA Levels
This award provides candidates with the level of knowledge highlighted within the table, enabling
candidates to develop the skills to operate successfully at the levels of responsibility indicated.

Level Levels of Knowledge Levels of Skill and Responsibility (SFIA)
K7 Set strategy, inspire and mobilise

K6 Evaluate Initiate and influence

K5 Synthesise Ensure and advise

K4 Analyse Enable

K3 Apply Apply

K2 Understand Assist

K1 Remember Follow

5

Further detail around the SFIA Levels can be found at www.bcs.org/levels.

SFIA Plus
This syllabus has been linked to the SFIA knowledge skills and behaviours required at Level 6.

PROG4
Designs, codes, verifies, tests, documents, amends and refactors complex programs/scripts and integration
software services. Contributes to selection of the software development approach for projects, selecting
appropriately from predictive (plan-driven) approaches or adaptive (iterative/agile) approaches. Applies
agreed standards and tools, to achieve well-engineered outcomes. Participates in reviews of own work and
leads reviews of colleagues’ work..

Learning Outcomes
Upon completion of this module, candidates will be able to:

• Compare and contrast a range of programming paradigms.
• Evaluate programming language features critically with respect to the way they support good software

engineering practice
• Discuss the appropriateness of the use of a given programming paradigm within a given environment.

6

Syllabus
1. The nature of programming languages

Learners will be able to:

Critically compare imperative and declarative languages.1.1

Indicative content

a. General characteristics of
Imperative languages

b. General characteristics of
declarative languages

Guidance

This considers the general distinction between specifying how
the computer should perform a task (i.e. an imperative style) and
what the computer should do (i.e. a declarative style). Candidates
should be able to compare these two general paradigms, consider
the application of these for a problem and discuss examples of
different languages.

Discuss different styles of language.1.2

Indicative content

a. Object-oriented languages
b. Procedural languages
c. Scripting languages
d. Data-oriented languages

Guidance

Understanding different styles of programming languages is
important to help chose appropriate tools for a problem. Candidates
should be aware of the main concepts and the similarities and
differences between these language styles. Candidates should also
be able to discuss examples of these styles of development and
consider when some are more appropriate than others for a given
task.

Discuss event-driven programming and its use.1.3

Indicative content

a. Events and event handlers
b. Use in programs with

graphical user interfaces
c. Use in web development

Guidance

Event-driven programming is typically used in systems with user
interfaces, including desktop, mobile and web systems. Candidates
should be familiar with the ideas of events and event handlers, and
how these are used to develop systems.

https://www.bcs.org/media/5165/sfia-levels-knowledge.pdf

7

Discuss language standardisation and its use.1.4

Indicative content

a. Purpose of standardisation
for a programming language

b. Benefits for developers and
tool vendors

c. Potential drawbacks of
standardisation

d. Awareness standardisation
bodies, e.g. ECMA, ANSI, ISO

Guidance

This section of the syllabus aims to consider the benefits of having
a definition of a language that developers and tool vendors can
work with and how that helps with portability and tool support.
Candidates should be aware of some of the standardisation bodies
and be able to discuss possible problems with standardisation in
terms of the speed of change and getting agreement for changes.

8

Learners will be able to:

Describe the use of compilers and interpreters and how they work.2.1

2. Programming environments

Discuss the purpose and use of debugging tools.2.3

Discuss the purpose and use of testing tools.2.4

Discuss interactive development tools (IDE) and their use.2.2

Indicative content

a. Purpose and architecture/
framework of IDE

b. Tools available, e.g.:
i. Code editing
ii. Syntax highlighting
iii. Code completion
iv. Debugging
v. Testing
vi. Build tools
vii. Version control

h. Support for team
development

Guidance

This considers how IDEs provide a way to bring together a set of
development tools into a single development environment. There
are numerous IDEs available, some of which are designed for
a single language or development environment and some that
provide support for multiple languages. Candidates should have an
awareness of the typical tools that are available and how they can
be used to support development of a system and also collaboration
within a team.

Indicative content

a. Purpose of testing tools
b. Automated testing, e.g.:

i. Using unit testing
frameworks

ii. UI testing frameworks
c. Use of static checking, e.g.:

i. Lint
e. Role of testing in continuous

integration

Guidance

Candidates should show an understanding of the relevance of
testing tools for software development and how tests can be
automated to have repeatable tests for different parts of the
system. Automated tests may include testing the code during
execution or running static analysis to catch common issues. There
should be an awareness of how continuous integration is used in
modern systems to run tests.

Indicative content

a. Purpose of debugging in
system development

b. Common features in
debugging tools, e.g.:
i. Run
ii. Pause
iii. Step into
iv. Step over

c. Inspecting values
d. Watch values
e. Breakpoints

Guidance

Debugging tools provide invaluable support to developers to
interrogate the state of a system while it is running. Candidates
should understand the key functions and how these can be used to
investigate and solve problems in the logic of the system.

Indicative content

a. Process of converting code
into executable programs

b. Compilation
c. Interpreters
d. Hybrid use of compilation

and interpreters
e. Steps for compilation and

interpreters, e.g.:
i. Tokenising
ii. Parsing
iii. Code generation
iv. Linking

Guidance

Computer programs need to be converted from some human-
readable format into a format that can be executed on the
computer. Different languages use compilation, interpretation
or a mixture of these techniques to produce executable code.
Candidates should be familiar with the concepts and understand
that different languages require their own tools for this process.
They should have an awareness of the similarities and differences
of the main processing stages for compilers and interpreters.

9 10

Describe configuration management.2.5

Indicative content

a. Build tools
b. Version control systems, e.g.:

i. Git
ii. Subversion

c. Building different versions of
software

Guidance

Configuration management is used to manage dependencies,
build software, track the development of different versions of
the software, and rebuild specific versions of software systems.
Candidates should be able to discuss the general processes and
example tools that can support this.

Learners will be able to:

Discuss concepts of object-oriented programming.3.1

3. Object orientation

Learners will be able to:

Discuss the concepts in functional programming.4.1

4. Functional programming

Indicative content

a. Definition of functions
b. Domain and range of

functions
c. Total and partial functions
d. Strict functions
e. Recursive functions and

differences between
recursion and iteration

f. Examples of applying
these concepts to a sample
problem

Guidance

Functional programming is a programming paradigm that
creates programs by composing and applying functions. As well
as functional languages such as Haskell, some of the functional
concepts are being adopted in other programming languages. An
awareness of these concepts gives candidates an alternative way
to think about developing software, and an understanding of how
these concepts can be applied in other programming languages.
Candidates should be able to write a short extract of code in a
functional language, e.g. Haskell.

Indicative content

a. Basic concepts, e.g.:
i. Objects
ii. Classes
iii. Methods
iv. Overloading methods
v. Messages

b. Inheritance, e.g.:
i. Single inheritance
ii. Multiple inheritance
iii. Overriding methods
iv. Interfaces (e.g. in Java)
v. Generalisation

c. Encapsulation
d. Polymorphism

Guidance

Object oriented systems are a popular way of
developing modern systems and they are an
example of imperative programming. Candidates
should be able to describe the main concepts and
apply them to example problems to show how the
concepts are used in programs.

Discuss the concept of side-effects and referential transparency.4.2

Indicative content

a. Purpose of side-effects
b. Pure function
c. Referential transparency

Guidance

Candidates should have an understanding of side-effects and their
relevance for functional and non-functional languages.

Learners will be able to:

Discuss the concepts in logic programming.5.1

5. Logic programming

Indicative content

a. Definition and semantics of a
logic program

b. Facts, queries and rules,
atoms, types and structures

c. Recursion
d. First-order logic

Guidance

This aims to provide a grounding in logic programming so that a
learner understands the main concepts and how they compare and
contrast with other programming paradigms. Candidates should be
familiar with Prolog as an example logic language and be able to
understand and write simple programs.

11

Discuss the use of queries.5.2

Indicative content

a. Existential queries
b. Conjunctive queries
c. The application of rules

Guidance

This section of the syllabus is about using queries to interrogate
the knowledgebase as part of a logic program. This is an important
aspect that makes active use of the facts that are defined in the
system.

Discuss and show understanding of goal reduction.5.3

Indicative content

a. Specifying goals
b. Control flow, e.g. cut operator

Guidance

Candidates should be able to demonstrate an understanding of
how goals are processed and how the control flow can be managed

Learners will be able to:

Discuss the term concurrency.6.1

6. Related issues

Indicative content

a. The purpose of concurrent
systems

b. Mutual exclusion blocks
c. Semaphores
d. Race condition
e. Deadlock

Guidance

Modern computer systems run concurrently, and candidates are
expected to be aware of the key issues of concurrency and how
it can be used in systems. They should have an awareness of
general techniques such as how to handle shared data between
the concurrent parts of the system. Candidates should also be able
to apply the ideas to a problem, and also show an awareness of
problems that can exist in concurrent systems.

Discuss negation in logic programming.5.4

Indicative content

a. Closed world assumption
b. Negation as failure

Guidance

This is about what knowledge is contained within a logic program
and what that means for processing when knowledge is not
contained within the knowledge base.

12

Examination Format
This module is assessed through completion of an invigilated written exam.

Adjustments and/or additional time can be requested in line with the BCS reasonable adjustments policy
for candidates with a disability or other special considerations.

Type Three written questions from a choice of five, each with equal marks

Duration Three hours

Supervised Yes

Open Book No (no materials can be taken into the examination room)

Passmark 10/25 (40%)

Delivery Paper format only

Question Weighting
Candidates will choose three questions from a choice of five. All questions are equally weighted and worth
25 marks.

13

Recommended Reading Additional texts

Title: Programming Language Pragmatics

Author: Scott, M.

Publisher: Morgan Kaufmann

Date: 2015

ISBN: 978-0201710120

Title: Concepts in Programming Languages

Author: J. C. Mitchell

Publisher: Cambridge University Press

Date: 2002

ISBN: 978-0521780988

Title: Programming Languages: Principles and Paradigms (second
edition)

Author: A. Tucker and R. Noonan

Publisher: McGraw-Hill

Date: 2006

ISBN: 978-0072866094

Primary texts

Title: Concepts of Programming Languages

Author: Sebesta, R.

Publisher: Pearson

Date: 2016

ISBN: 978-1292100555

Title: Programming Language Pragmatics

Author: Scott, M.

Publisher: Morgan Kaufmann

Date: 2015

ISBN: 978-8131222560

Title: Programming Languages: Principles and Paradigms

Author: Gabbrielli, M., Martini, S.

Publisher: Springer

Date: 2010

ISBN: 978-1848829138

Using BCS Books
Accredited Training Organisations may include excerpts from BCS books in the course materials. If you
wish to use excerpts from the books you will need a license from BCS. To request a license, please contact
the Head of Publishing at BCS outlining the material you wish to copy and its intended use.

14

Document Change History
Any changes made to the syllabus shall be clearly documented with a change history log. This shall include
the latest version number, date of the amendment and changes made. The purpose is to identify quickly
what changes have been made.

Version Number Changes Made
Version 1.0
July 2021

Document Creation

Copyright © BCS 2021
BCS Level 6 Professional Graduate Diploma in

Programming Paradigms v1.0

For further information please contact:

BCS
The Chartered Institute for IT
3 Newbridge Square
Swindon
SN1 1BY

T +44 (0)1793 417 445

www.bcs.org

© 2021 Reserved. BCS, The Chartered Institute for IT

All rights reserved. No part of this material protected by this copyright may be reproduced or utilised in any form,
or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and
retrieval system without prior authorisation and credit to BCS, The Chartered Institute for IT.

Although BCS, The Chartered Institute for IT has used reasonable endeavours in compiling the document it does not
guarantee nor shall it be responsible for reliance upon the contents of the document and shall not be liable for any
false, inaccurate or incomplete information. Any reliance placed upon the contents by the reader is at the reader’s
sole risk and BCS, The Chartered Institute for IT shall not be liable for any consequences of such reliance.

CONTACT

