Sean MacAvaney
University of Glasgow

Presented at:
Search Solutions 2025

a| University
) of Glasgow:

Sean MacAvaney
@macavaney

University of Glasgow - Senior Lecturer

Conduct practical research in information retrieval:
- Learned Sparse Expansion
- Search Result Evaluation using LLMs
- Document Quality Prediction
mmm) - Adaptive Re-Ranking

What's Re-Ranking?

g not-so-great awesc?me
ranking

dataset ranking

J/ N\
L 3
(" 4)

9Q

\
Q query —_— oa _ 2. —_— t-ii), —_ .

- Y \ N Y,
retriever 3. é re-ranker 3.
(e.g., BM25) (e.g., BERT/GPT/etc.)
\
Millions of documents Hundreds of documents Tens of documents

Millions of documents

If you miss the
document when
retrieving... ...you’ll never

RN

have it here

Hundreds of documents

Tens of documents

Q query

To overcome this recall problem,
people typically focus on the retriever

dataset /

retriever
(e.g., BM25)

dense retrieval
learned sparse retrieval
hybrid retrieval
etc

—_ ‘tjil —_

re-ranker 3.

(e.g., BERT/GPT/etc.)

dataset

Q query

—_ ‘tjil —_—>

ranker
(e.g., BERT/GPT/etc.)

We wish we could do this,
but too costly

[T 5 [IF7 (177

= Next best option:
Give the re-ranker access to both the

retrieved results and the rest of the corpus

dataset

; l ﬁ

re-ranker
(e.g., BERT/GPT/etc.) 4.

[T} [[
;8#»
[} [I3 (177

% I’ll show this can be done with minimal cost.

% I’ll show this can be done with minimal cost.

&
A

The idea can improve retrievers like ColBERT, too.

10

% I’ll show this can be done with minimal cost.

&

mda)}

/>

The idea can improve retrievers like ColBERT, too.

Ready-to-use with Open-Source tools!

11

Battleship

Photograph By Pavel Sevela, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18331432

12

Your Board Opponent’s board (Secret)

=D

:

B
B <=

alelclolelrloln

Goal: identify the positions of all your opponent’s ships

13

Your Board Opponent’s board (Secret)

alelclolelrloln

alelclolelrlaln

14

Your Board Opponent’s board (Secret)

= B . S

. ask opponent . B

K B

5 H

2 2
HERDEDEEED HEREEDEEED

15

Your Board Opponent’s board (Secret)

= W

. it’s @ miss! . B

. H

5 H

2 2
_Jalelclolelflalk _|alelclolelFloln

16

Your Board Opponent’s board (Secret)

=D

B B

bt —]
s cloe|r|o|n NS

.
7
.
B
.
s
=
B

alelclolelrloln

17

Your Board Opponent’s board (Secret)

=D

e

Better guesses ——g . O

Y e
alslclole[Fls|n

?

? 2k ?

?
alelclolelflaln

19

HEEEEEENNE

Opponent’s board (Secret)

Your Board

alelclolelrlaln

EEEEEEEEE

Your Board

clolelrloln

HEEEEEEEE

Opponent’s board (Secret)

elclolelrloln

20

Your Board Opponent’s board (Secret)

=D

B B

ambo

alelclolelrloln

And so forth...

v %%@%%%%

alelclolelrloln

.
7
.
B
B
s
2
=
B

=

c?j—”

retriever 3.
(e.g., BM25)

®
7
5
s
— | :B
3
2
kS
_

alelclolelrlaln

22

®
7
5
s
ﬁ.
3
2
kS
_

alelclolelrlclk

0JO

ﬁ ‘li_,'\;‘_l

re-ranker
(e.g., BERT/GPT/etc.)

23

alelclolelrlaln

G

tJ\L),

J

re-ranker

Traditional re-ranking
stops here

—

(e.g., BERT/GPT/etc.)

AlelclolelFlaln

24

But we’ve learned a lot

/ from the re-ranker!

?

? § 2

?

LB (o

Kl

7

g
2. — tJvL), _>.

3

2

1

B

k(.“)j

re-ranker
(e.g., BERT/GPT/etc.)

alelclolelrlaln AlelclolelFlaln

25

Adaptive Re-Ranking leverages the information gained from
high-scoring documents to find ones missed by the retriever.

?
. [B '3
?

4)
1. ==
2. — t-}\f»—), —

K3

s

K
" y, .
2

1

B

re-ranker
(e.g., BERT/GPT/etc.)

alelclolelrlaln AlelclolelFlaln

26

Adaptive Re-Ranking leverages the information gained from
high-scoring documents to find ones missed by the retriever.

? -

4)
1. ==
2. — t-}\f»—), —

K3

s

K
" y, .
2

1

B

re-ranker
(e.g., BERT/GPT/etc.)

alelclolelrlaln AlelclolelFlaln

And so forth...

27

Adaptive Re-Ranking leverages the information gained from
high-scoring documents to find ones missed by the retriever.

7
—
Il

1 S ?l_'?
2. _> t-}\f»—), _> |

K3

s E
K
" y, .
2
1
B

re-ranker
(e.g., BERT/GPT/etc.)

alelclolelrlaln AlelclolelFlaln

And so forth...

28

How to decide which
documents to check?

29

How to decide which
documents to check?

We could issue the document
as a query to the engine and

take the top k results.

)
=—

=

dataset

l\

@

retriever

—>

(e.g., BM25, Dense)

My [

30

Really slow!

Right idea, bad execution.

We could issue the document
as a query to the engine and
take the top k results.

=—

retriever
(e.g., BM25, Dense)

31

Better: Use a KNN graph.

(You may recognize from HNSW search.)

- Establishes proximity
- Fast lookups
- Constructed offline

32

Alright, so how well does this
adaptive re-ranking strategy work?

A few technical bits...

* We fix the re-ranking “budget” (number of docs
to score) across all pipelines.

* [n adaptive setting, we take half from first-stage
ranker and half from graph.

* Measure nDCG (overall ranking quality) and
Recall (% of relevant docs retrieved).

* Test on a variety of re-ranking pipelines.

34

nDCG

0.80

0.78

0.76

0.74

0.72

0.70

0.68

0.66

0.64

0.62

0.60

0.58
0.80

0.82

TREC DL 2020

TCT

D2Q

0.84 0.86 0.88
R@1k

SPLADE

0.90

0.92

0.94

35

nDCG

0.80

0.78

0.76

0.74

0.72

0.70

0.68

0.66

0.64

0.62

0.60

0.58
0.80

Re-Ranking

3e-

monoT5

0.82

TREC DL 2020

TCT

D2Q

0.84 0.86 0.88
R@1k

SPLADE

0.90

0.92

0.94

36

nDCG

0.80

0.78

0.76

0.74

0.72

0.70

0.68

0.66

0.64

0.62

0.60

0.58
0.80

Re-Ranking

&
]
D)

monoT5

0.82

TREC DL 2020

TCT

D2Q

0.84 0.86

Adaptive Re-Ranking

0.88
R@1k

SPLADE

0.90

0.92

0.94

37

nDCG

0.80

0.78

0.76

0.74

0.72

0.70

0.68

0.66

0.64

0.62

0.60

0.58
0.80

TREC DL 2020

Adaptive Re-Ranking

Re-Ranking

&
]
D)

monoT5

le
TCT

D2Q

0.82 0.84 0.86 0.88
R@1k

SPLADE

0.90

0.92

0.94

38

TREC DL 2020
0.80

Adaptive Re-Ranking

0.78

0.76

Re-Ranking

0.1 SPLADE

0.72

]
D)

0.70 monoT5

nDCG

0.68

D2Q

0.66

0.64

0.62

0.60

0.58
0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94

R@1k

' Sean MacAvaney
W]’/ @macavaney
| @ cross-encoders! Awesome to see another one from Cohere

A quick test showing it turbocharged when using Graph-based Adaptive
Reranking :)

dataset = pt.get_dataset('irds:msmarco-passage/trec-dl-2019/judged"')

pt.Experiment(
[
bm25,
bm25 >> cohere_rerank,
bm25 >> GAR(cohere_rerank, graph, num_results=100),
1s
dataset.get_topics(),
dataset.get_qrels(),
[nDCG@1O, nDCG, R(rel=2)@100]

40

In summary

Nearest neighbor graph exploration helps re-rankers

Focusing on the neighbors of the top scored documents helps
prioritize the documents that are most likely to be relevant

Other findings

- A version works for LLM-based listwise re-rankers
- Even works when no relevant documents returned by the first stage
- Robust to various measures of document similarity (semantic or lexical)

Conference Papers:

MacAvaney, Tonellotto, Macdonald. Adaptive Re-Ranking with a Corpus Graph. CIKM 2022.

Rathee, MacAvaney, Anand. Guiding Retrieval using Large Language Models. ECIR 2025.

41

Retrievers

Adaptive Re-Ranking involved two strategies:

@ Score docs near the best ones found so far.

43

Adaptive Re-Ranking involved two strategies:

[

@ Score docs near the best ones found so far.

44

Adaptive Re-Ranking involved two strategies:

@ ore docs near the best ones found so far.

@ Start with good (but cheap) guesses.

\

Can this strategy help
dense retrievers?

45

‘ = document node

—— = neighbor edge
Level 2 Level 1 Level O

HNSW: Score random nodes to narrow in on the best ones.

46

= top document ‘ = document node

‘ = scored document —— = neighbor edge

Level 2 Level 1 Level O

HNSW: Score random nodes to narrow in on the best ones.

47

‘ = top document ‘ = document node

' = scored document —— = neighbor edge
Level 2 Level 1 Level O

HNSW: Score random nodes to narrow in on the best ones.

48

‘ = top document ‘ = document node

‘ = scored document —— = neighbor edge
Level 2 Level 1

HNSW: Score random nodes to narrow in on the best ones.

49

‘ = top document ‘ = document node
‘ = scored document @ —— =neighbor edge
dataset
l k
B
a)
o _S5. D —
o :
- Y, \
retriever 3.
(e.g., BM25)

LADR (Lexically-Accelerated Dense Retrieval):
Use lexical search to seed dense retrieval.

50

‘ = top document ‘ = document node
‘ = scored document @ —— =neighbor edge
dataset
l k
B
a)
o _S5. D —
o :
- Y, \
retriever 3.
(e.g., BM25)

LADR (Lexically-Accelerated Dense Retrieval):
Use lexical search to seed dense retrieval.

51

‘ = top document Q = document node
‘ = scored document @ —— =neighbor edge
dataset
l k
B
4)
o _S5. D —
o :
_ Y, \
retriever 3.
(e.g., BM25)

LADR (Lexically-Accelerated Dense Retrieval):
Use lexical search to seed dense retrieval.

52

‘ = top document
‘ = scored document

=

dataset

l

-

.

oﬁ

J

(e

retriever
.g., BM25)

1.
—:[F —
B

Iterate...

‘ = document node

—— = neighbor edge

53

How well does it work?

54

nDCG

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

TREC DL 2019, TAS-B model, single CPU core

2 4 8 16

Retrieval Latency (ms/q, log scale)

32

64

Exhaustive search
(~*65ms on GPU)

55

TREC DL 2019, TAS-B model, single CPU core

0.75

0.70
\ by varying degree

of graph exploration

0.65
0.60
)
O
a)
e
0.55
>
0.50 P
L
0.45
0.40
2 4 8 16 32 04
Retrieval Latency (ms/q, log scale)

* FAISS implementation

56

TREC DL 2019, TAS-B model, single CPU core

0.75
0.70
0.65
scP™
o 060 WE
@)
)
e
0.55
=
0.50 2
= — Tree/partitioning methods
0.45
0.40
2 4 8 16 32
Retrieval Latency (ms/q, log scale)

* FAISS implementation

TREC DL 2019, TAS-B model, single CPU core

0.75
0.70 .
by varying top k
results from BM25
0.65 N
\ SO
5 0-60 WE
O
a)
[
0.55
& &
0.50 c? =
/ I
O
Q.
0.45
0.40
2 4 8 16 32
Retrieval Latency (ms/q, log scale)

64

58

TREC DL 2019, TAS-B model, single CPU core

0.65

0.60

nDCG

0.55

0.50

0.45

0.40

Adaptive
Proactive (teratve)
(one-step)
SC'*““
W¥
X =
,g)
Q =
& I
Q
4 8 16 32 64

Retrieval Latency (ms/q, log scale)

59

DL19 nDCG

0.75

0.70

0.65

0.60

0.55

TREC DL 2019, ColBERTv2, single CPU core

B o

A bespoke retrieval
engine for ColBERT

) rn S

100 200
Latency (ms/q)

Re-Ranking

300

60

In summary

Adaptive Re-Ranking improves retrievers too!
Both single-vector and multi-vector dense retrieval.

Other findings

- Clear trade-offs between the model parameters and efficiency/effectiveness
- Works across a variety of dense retrieval models and standard benchmarks
- Works with approximate NN graph, and even graphs constructed from other models

Conference Papers:

Kulkarni, MacAvaney, Goharian, Frieder. Lexically-Accelerated Dense Retrieval. SIGIR 2023.
MacAvaney, Tonellotto. A Reproducibility Study of PLAID. SIGIR 2024. [Best Paper Runner-

Up]

Open Source!

Adaptive Re-Ranking and LADR in PyTerrier

pyterrier pt
pyterrier_t5 MonoT5
pyterrier_pisa PisaIndex
pyterrier_adaptive GAR, CorpusGraph

bm25 = Pisalndex('my_index.pisa').bm25()
reranker = MonoT5()
graph = CorpusGraph.load('my_index.graph')

pipeline = bm25 >> GAR(reranker, graph)

https://github.com/terrierteam/pyterrier dr
https://github.com/terrierteam/pyterrier adaptive

pyterrier_dr FlexIndex
pyterrier_pisa PisaIndex

sparse = Pisalndex('my_index.pisa').bm25()
dense = PisaIndex('my_index.flex"').ladr()

ladr = sparse.bm25() >> dense.ladr()

63

https://github.com/terrierteam/pyterrier_dr
https://github.com/terrierteam/pyterrier_adaptive

Adaptive Re-Ranking using the rerankers package

rerankers Reranker

reranker = Reranker(...)

adaptive_reranker = GAR(reranker.as_pyterrier_transformer(), graph)

Currently on my fork here: https://github.com/seanmacavaney/rerankers, pull request coming soon :)

64

https://github.com/seanmacavaney/rerankers

Included in Lucene core

. ¥ SeededKnnVectorQuery (Lucen: X + v
&« C O O lucene.apache.org/core/10_3_2/coreforg/apac ¢ Y o =
| SEARCH |, Search X |

Package org.apache.lucene.search

Class SeededKnnVectorQuery

java.lang.Object®
org.apache.lucene.search.Query
org.apache.lucene.search.SeededKnnVectorQuery

public class SeededKnnVectorQuery
extends Query

This is a version of knn vector query that provides a query seed to initiate the vector search. NOTE:
The underlying format is free to ignore the provided seed

See "Lexically-Accelerated Dense Retrieval"® (Kulkarni, Hrishikesh and MacAvaney, Sean and
Goharian, Nazli and Frieder, Ophir). In SIGIR '23: Proceedings of the 46th International ACM
SIGIR Conference on Research and Development in Information Retrieval Pages 152 - 162

WARNING: This APl is experimental and might change in incompatible ways in the next release.

Field Summary
Modifier and Type Field
Description
protected final String™ field
protected final Query filter

org.apache.lucene.search.SeededKnnVectorQuery

&

mda [}

/>

Adaptive re-ranking improves the quality of
search results with minimal cost.

It improves retrievers like ColBERT, too.

Ready-to-use with Open-Source tools!

66

Thanks to my collaborators!

Craig Macdonald Nicola Tonellotto Hrishikesh Kulkarni Nazli Goharian
University of Glasgow University of Pisa Instacart Georgetown University

Ophir Frieder Mandeep Rathee Venktesh V Avishek Anand

Georgetown University L3S Hanover Stockholm University TU Delft .

Sean MacAvaney
University of Glasgow

Presented at:
Search Solutions 2025

a| University
) of Glasgow

extra slides

Search Strategy Query Efficiency | Index Efficiency
Sparse @ Low t High t High ‘ Low

Dense t High @ Low @ Low ﬁHigh

TREC DL 2019

..b(_‘.rr:‘
w —_
3 z
c o o
03 b T T T T) . T T T T T T T T
4 8 16 32 64 4 8 16 32 64 4 8 16 32 64
Retrieval Latency (ms/q, log scale) Retrieval Latency (ms/q, log scale) Retrieval Latency (ms/q, log scale)
TREC DL 2020
...._-_.-'--". — — 0‘9- —_ —_: —
3 E 3
2 | k2 :
04{ /i /i
S| 041 /]
031 ~ | A
T T T T 0‘3 B T T T T T T T
4 8 16 32 64 4 8 16 32 64 # 16 32 64
Retrieval Latency (ms/q, log scale) Retrieval Latency (ms/q, log scale) Retrieval Latency (ms/q, log scale)
MS MARCO Dev (small)
0.36 . — 1.04 ______HNSW——
0.34 - — _ —
0.32 1
S Re = o
® 3 2
o 0.30 1 2
0.28 A
0.5 A
] /
0.26 0.4
4 8 16 32 64 4 8 16 32 64
Retrieval Latency (ms/q, log scale)

4 8 16 32 64
Retrieval Latency (ms/q, log scale) Retrieval Latency (ms/q, log scale)

Figure 3: Performance of LADR over TAS-B and baselines across various operational points.

71

‘ DL19 ~4ms DL19 ~8ms ‘ DL20 ~4ms DL20 ~8ms ‘ Dev (sm) ~4ms Dev (sm) ~8ms
Method | nDCG R@1k nDCG R@1k | nDCG R@1k nDCG R@1k | RR@10 R@lk RR@10 R@1k
TAS-B (Exh.) 0.715 0.842 0.715 0.842 0.713 0.875 0.713 0.875 0.347 0.978 0.347 0.978
IVE [I] 0.374 0.414 0.474 0.536 0.503 0.559 0.579 0.677 0.217 0.556 0.270 0.712
ScaNN [S] 0.475 0.519 0.537 0.598 0.476 0.527 0.553 0.641 0.254 0.669 0.292 0.774
HNSW [H] - - 0.614 0.707 - - 0.699 0.836 - - 0.310 0.872
GAR [G] 0.543 0.540 0.688 0.755 0.568 0.594 0.684 0.796 0.337 0.732 0.345 0.876
Re-Ranking [R] 0.589 0.605 0.684 0.755 0.615 0.667 0.691 0.805 0.337 0.748 0.345 0.868
: IS IS ISH ISH IS IS IS IS IS IS ISH ISH
Proactive LADR | 15.0.690 150771 5 0.730 Gr 0.850 | 15,0691 [5.0.807) SG§0.722 . 5%20.857 0340 15,0868 - 0.345 Gr 0.932
Adaptive LADR - - ISHo738 [SHo.872 - ISHo.739 15H0.900 - - ISHo347 I510.960
RetroMAE (Exh) | 0699 0.806 0.699 0.806 0.701 0.839 0.701 0.839 0375 0.981 0.375 0.981
IVE [I] 0.226 0.225 0.346 0.358 0.272 0.263 0.372 0375 0.157 0381 0.221 0.541
ScaNN [S] 0.468 0.502 0.525 0.588 0.486 0.509 0.555 0.606 0.275 0.665 0312 0.769
HNSW [H] - - 0.630 0.720 - - 0.673 0.798 - - 0.338 0.874
GAR [G] 0.559 0.553 0.696 0.763 0.578 0.604 0.692 0789 | 0.357 0.750 0.368 0.890
Re-Ranking [R] 0.594 0.605 0.685 0.755 0.622 0.667 0.696 0.805 0.355 0.748 0.369 0.868
: IS IS ISH ISH IS IS ISH IS IS IS ISH ISH
Proactive LADR | 15.0.691 15,0765 or 0.733 GF 0.844 | 150702 15 0.811 G 0.723 I 0.846 0356 15,0.864 o 0.368 or 0.938
Adaptive LADR - ISHo.740 I5Ho.866 - ISHo.731 ISHo.879 - Islo374 13H0.973
TCT-HNP (Exh) | 0708 0.830 0.708 0.830 0.689 0.848 0.689 0.848 0.359 0.970 0.359 0.970
IVE [I] 0.340 0.366 0.437 0.469 0.369 0.383 0.470 0.522 0.219 0.527 0.276 0.687
ScaNN [S] 0.378 0.410 0.444 0.496 0.355 0.376 0.427 0.459 0.215 0.522 0.253 0.632
HNSW [H] - - 0.625 0.721 - - 0.634 0.762 - - 0315 0.853
GAR [G] 0.546 0.547 0.687 0.755 0.569 0.598 0.678 0.797 0.342 0.733 0.354 0.878
Re-Ranking [R] 0.586 0.605 0.679 0.755 0.614 0.667 0.685 0.805 0.342 0.748 0.353 0.868
: IS IS ISH ISH IS IS ISH ISH IS IS ISH ISH
Proactive LADR | ©5.0.680 15 0.747 G 0.719 Gr 0.827 | 15,0682 > .0.803 o 0.709 o 0.841 | o346 13,0.856 - 0.354 Gr 0.927
Adaptive LADR - - 0.729 [$Ho.848 - ISHo721 ISHo.878 - IsH0.359 15H0.962
ANCE (Exh.) | 0617 0.755 0.617 0.755 0.634 0.777 0.634 0.777 0.330 0.957 0.330 0.957
IVF [I] 0358 0395 0.441 0.500 0.407 0.437 0.498 0.549 0.212 0530 0.268 0.703
ScaNN [S] 0.374 0.405 0.433 0.488 0.440 0.495 0.535 0.614 0.262 0.691 0.287 0.783
HNSW [H] - - 0.606 0.737 - - 0.635 0.790 - - 0311 0.897
GAR [G] 0.527 0.540 0.648 0.750 0.568 0.622 0.655 0794 | 0.326 0.751 0.329 0.888
Re-Ranking [R] 0.578 0.605 0.653 0.755 0.602 0.667 0.674 0.805 0325 0.748 0.333 0.868
: IS IS IS ISH IS IS IS IS IS IS ISH ISH
Proactive LADR | [S.0.645 15,0751 0.657 0.800 | 15.0.660 15 0.807 0.666 0.822 0321 15.0.872 0327 ISHo.932
Adaptive LADR - ISHo 665 15H0.820 - ISHo 665 150.830 - ISHo329 13H0.959

72

Proactive LADR Adaptive LADR
4- .62 .66 .70 .72 - .63 .64 .66 .67 .69
8- .65 .69 12 .72 - .64 66 .68 .70 .71
16 - .69 71 713 .73 -.66 .68 .70 .71 .72
32- .72 74 73 .73 -.68 .69 .71 .72 .72
64- .73 .74 .73 .72 -.70 .71 .72 .72 .72
128 - .74 .73 .73 g2 -.74 74 74 73 .72

4- 65 71 78 82 - .65 .68 .71 .74 .77

nDCG
k neighbors

w 8- 71 .76 .81 84 - .68 .72 .76 .79 81
%3 16- 77 81 .84 .8 -.72 .75 79 83 .85
©2 3 8 8 8 .85 -.75 .78 .82 .85 .85

S 64- 85 .8 85 .85 -.79 .81 .85 .85 .84

128 - .86 .86 .85 .85 -.85 .86 .87 .86 .85

4- .65 712 .78 .81 -.68 .70 .74 .77 .79

w 8- .71 .76 .81 .84 -.72 .75 .81 .85 .87
8% 16- .76 .79 .83 .86 -.77 .80 .86
2 32- 80 .83 .86 - .80 .85

S 64- 84 .87 - 83

128 - .87 -
| | | I | I | | 1

_ 4-38 51 83 120 -46 47 49 54 6.6
Sw 8-42 59 94 136 -46 48 52 60 7.8
ES 16- 48 68 110 169 -45 47 53 64 88
02 32-58 82 144 266 -48 52 63 81 122
8% 64- 76 111 204 (422 -53 59 7.8 10.6 17.8
-

128 - 10.2 15.9 34.9 -59 7.0 99 15.1 27.7

1 I I I
100 200 500 1000 10 20 50 100 200
n seed set size ¢ exploration depth

DL19 DL20 Dev (sm)
Graph nDCG R@ilk nDCG R@lk RR@10 R@1k
Proactive LADR
Exact 0.730 0.850 0.722 0.857 0.345 0.932
Approx. ~0.731 0.845 <0.720 0.849 *0.343 *0.916
BM25 =0.732 0.835 ~0.720 0.853 *0.339 *0.883
Adaptive LADR
Exact 0.738 0.872 0.739 0.900 0.347 0.960
Approx. T0.736 0.861 T0.737 T0.900 ~0.347 *0.966
BM25 0.743 0.859 ~0.742 0.900 *0.345 *0.933

DL19 (valid.) ¢ = 100 DL19 (valid.) ¢ = 1000 DL20 (test) ¢ = 100 DL20 (test) ¢ = 1000

Pipeline | nDCG MAP R@i1k | nDCG MAP R@ilk | nDCG MAP R@1k | nDCG MAP R@lk
BM25»MonoT5-base 0.665 0417 0755 | 0.699 0483 0755 | 0.672 0421 0805 | 0711 0498 0.805
w/ GARgyps *0.697 *0.456 *0.786 | 0.727 0.490 *0.827 | *0.695 0439 *0.823 | *0.743 0.501 *0.874
w/ GARrer *0.722 *0.491 *0.800 | *0.743 0.511 *0.839 | *0.714 *0.472 *0.831 | *0.749 0.501 *0.892
BM25»MonoT5-3b 0.667 0418 0755 | 0.700 0.489 0755 | 0.678 0442 0805 | 0.728 0.534 0.805
w/ GARgyzs *0.693 0454 *0.790 | *0.741 0517 *0.831 | *0.715 *0.469 *0.829 | *0.772 0556 *0.881
w/ GARrer *0.715 *0.484 *0.806 | *0.746 0.522 *0.846 | *0.735 *0.512 *0.837 | *0.787 *0.564 *0.899
BM25»ColBERT 0.663 0409 0755 | 0.681 0458 0755 | 0.667 0421 0.805 | 0.697 0469 0.805
w/ GARgyps *0.690 *0.442 *0.783 | *0.720 0480 *0.825 | *0.695 *0.446 *0.823 | *0.732 0479 *0.870
w/ GARrer *0.716 *0.475 *0.798 | *0.727 0.482 *0.841 | *0.707 *0.463 *0.829 | *0.740 0.481 *0.887
TCT»MonoT5-base 0.708 0472 0.830 | 0.704 0473 0830 | 0.698 0488 0848 | 0.693 0471 0.848
w/ GARgyps *0.728 0484 0.852 | *0.733 0.480 *0.883 | *0.719 *0.501 0.861 | *0.719 0.473 *0.881
w/ GARrer 0722 0481 0.847 | *0.724 0474 0866 | *0.712 0494 0856 | *0.710 0471 0.871
TCT»MonoT5-3b 0720 0498 0.830 | 0.725 0513 0830 | 0723 0.534 0848 | 0.733 0.544 0.848
w/ GARgyps *0.748 *0.521 *0.857 | *0.759 0.521 *0.885 | *0.743 0.546 *0.864 | *0.771 *0.555 *0.890
w/ GARer *0.742 *0517 0.849 | *0.749 0516 *0.868 | *0.741 * 0545 *0.861 | *0.759 0551 *0.880
TCT»ColBERT 0.708 0464 0.830 | 0.701 0452 0830 | 0.698 0476 0848 | 0.697 0470 0.848
w/ GARgyps *0.729 *0.480 0.853 | *0.727 0.459 0.876 | *0.715 0.485 0.857 | *0.722 *0.477 *0.877
w/ GARyer *0.722 0474 0.845 | *0.715 0452 0.852 | *0.711 *0.484 *0.857 | *0.713 0473 0.864
D2Q»MonoT5-base 0736 0503 0.830 | 0.747 0531 0830 | 0726 0499 0839 | 0731 0.508 0.839
w/ GARgyps *0.748 0506 0.848 | 0757 0519 *0.880 | *0.734 0497 *0.847 | 0.748 0504 *0.880
w/ GARrer *0.760 *0.528 0.350 | *0.766 0.533 *0.879 | 0.740 0.508 *0.856 | 0.748 0499 *0.895
D2Q»MonoT5-3b 0737 0506 0.830 | 0.751 0.542 0.830 | 0738 0.531 0839 | 0.753 0.557 0.839
W/ GARgyizs 0.744 0512 *0.850 | 0.772 0.549 *0.880 | *0.751 0.535 *0.852 | *0.781 0.561 *0.887
w/ GARrer 0.755 0.524 *0.857 | 0.769 0544 *0.880 | *0.764 0.550 *0.860 | *0.790 0.565 *0.905
D2Q»ColBERT 0724 0475 0.830 | 0.733 0501 0830 | 0718 0483 0839 | 0717 0479 0.839
w/ GARgyps 0734 0484 0845 | 0753 0.505 *0.876 | *0.731 0487 *0.849 | *0.737 0482 *0.872
w/ GARrer *0.744 *0.496 0.849 | *0.752 0503 *0.878 | *0.735 0.488 *0.856 | *0.746 0.485 *0.893
SPLADE»MonoT5-base | 0.750 0.506 0.872 | 0.737 0.487 0872 | 0.748 0.505 0.899 | 0.731 0.480 0.899
w/ GARpy2s *0.762 0509 0.888 | 0.745 0.487 0.893 | *0.757 0.509 0902 | 0.737 0479 0.909
w/ GARrer *0759 0.512 0878 | 0.737 0481 0875 | 0751 0506 0.903 | 0734 0475 0.908
SPLADE»MonoT5-3b 0761 0526 0.872 | 0.764 0.533 0872 | 0774 0559 0.899 | 0.775 0.560 0.899
w/ GARg2s *0.775 0532 *0.891 | 0.774 0.533 0.896 | *0.780 0.559 0.903 | *0.788 0.562 *0.919
w/ GARcr *0773 0.539 0884 | 0.769 0531 0.881 | *0.780 0.561 0.905 | 0.783 0.559 0.910
SPLADE»ColBERT 0741 0479 0872 | 0.727 0.456 0872 | 0747 0495 0899 | 0.733 0474 0.899
w/ GARpyzs *0.753 0.490 0.885 | 0.730 0.456 0.875 | *0.755 0.501 00902 | *0.742 *0.477 0.914
w/ GARcr *0750 0489 0.876 | 0.727 0.455 0.868 | *0.752 0500 0.903 | 0.740 *0.476 0.911

100 - rel

80 - x e 2
2 ® 3
g - « unjudged

60 - = 5 i .

final rank

20 — *.‘....'."“‘:.".’4{.’.‘-’][‘.'Y ‘&“"‘l
(AR e st st nnangy T e
Trag s e i ®
o' g @ "\..’_- A Vs

0 - @
!

unretrieved 0 100 200 300 400 500
initial rank

R@1k

{R@1k

-1 nDCG

1 nDCG

0.6 - 0.6 -

-

-

> gy . =
- - - e il - w gl - —— = - e " —— - N Ee——— =
0 5 e~ o ———ymmm=m=z e Ty - . s aaRsITasd
. Vs - ~

__‘—,_"_\\ -~ ——

: : - ST ~—n
e s s s s ssatasemminnne=sd MAP 051 = S anssenead MAP

B e an - ——— - —— g —
T st bt stk =
=

e e T L T L [[———
e e e S —— —_ AR RS ESNAEERESERSESS WSS S s

1 3 5 7 9 11 13 15 1 4 16 64 256
graph neighbours k batch size b

GARrer MonoT5-base

c b=16 b =64 Scoring

100 2.68+0.02 0.57+0.01 267.06 + 6.12
250 8.10+0.05 4.34+0.01 652.30 +£ 7.53
500 17.38+0.07 13.66+0.02 1,362.14 +5.27
750 2696 +£0.12 22.29+0.07 2,047.20 £ 6.71
1000 37.37+£0.07 30.82+0.04 2,631.75+6.28

Table 6: Intra-List Similarity (ILS) among retrieved relevant
documents. Since the set of retrieved documents does not
change using typical Re-Ranking (RR), each value in this
column is only listed once. ILS scores that are statistically
equivalent to the RR setting are indicated with * (procedure
described in Section 6.5).

GARBM% GﬁﬂTET
Pipeline RR ¢=100 c=1k ¢=100 c=1k
BM25»MonoT5-base 0.947 *0946 *0.946 *0947 *0.946
BM25»MonoT5-3b *0.946 *0.946 *0.946 *0.946
BM25»ColBERT *0.946 *0.946 *0.947 *0.946
TCT»MonoT5-base 0.969 *0.969 *0.968 *0.969 *0.969
TCT»MonoT5-3b *0.969 *0.968 *0.969 *0.969
TCT»ColBERT *0.969 *0.969 *0.969 *0.969
D2Q»MonoT5-base 0.969 *0.968 *0.968 *0.969 *0.968
D2Q»MonoT5-3b *0.968 *0.968 *0.968 *0.968
D2Q»ColBERT *0.968 *0.968 *0.969 *0.968
SPLADE»MonoT5-base 0.969 *0.968 *0.968 *0.969 *0.969
SPLADE»MonoT5-3b 0968 *0.968 *0.968 *0.969

SPLADE»ColBERT *0.968 *0.969 *0.969 *0.969

TREC DL 2019 (dev) TREC DL 2020 (test)

GARmeS GAthr GARbm25 GARICI
Pipeline Agent nDCG R@1k nDCG R@i1k nDCG R@1k nDCG R@1k
BM25»MonaT5 Non-Adaptive 0.699 0.755 0.699 0.755 0.711 0.805 0.711 0.805
Oracle 0.747 0.804 0.78 0.853 0.748 0.791 0.768 0.828
Alternate 0.726 No.827 N9%.743 MNp.839 No.743 MNoo.874 Mo.749 N0.892

TwoPhase-Fixed No.729 No.815 N6p.740 Mo.836 No.732 N40.838 No.742 N40.858
TwoPhase-Refine M0.741 Mo.826 N%0.743 No.841 No.743 NOpg71 NAp.744 N40.879

Threshold No.742 MNo.829 N°49.751 Y0.849 No.744 ™N9.874 No.744 N40.874
Greedy 0.723 No.g23 N9.737 No.839 No.743 NOp.868 No.744 No.882
TCT»MonoT5 Non-Adaptive 0.704 0.830 0.704 0.830 0.693 0.848 0.693 0.848
Oracle 0.793 0.891 0.766 0.846 0.762 0.874 0.754 0.861
Alternate NOog 733 Np.gs3 NOop.724 Noses N9.719 Mot N9.710 Mo.871

TwoPhase-Fixed ™°0.733 N0.874 Nop.719 Nogs7 Noo.717 No.g77 N.710 MNo.868
TwoPhase-Refine N90.733 N0.882 N0y 722 0.859 NOg,719 No.883 MNO4p.707 40.866

Threshold Nog 731 No.886 NOp.720 MNp.ges NOAp.711 0.871 No4p 705 0.862
Greedy Nop.731 No.gg1 M9o.725 MNo.g71 N940.713 Nog73 N9.708 MN0.868
D2Q»MonoT5 Non-Adaptive 0.747 0.830 0.747 0.830 0.731 0.839 0.731 0.839
Oracle 0.797 0.867 0.798 0.867 0.791 0.884 0.793 0.889
Alternate 0.757 No.880 NOg 766 M0.879 N90.748 N0.880 00.748 N0.895

TwoPhase-Fixed No.765 N0.866 NOy 765 Npo.g70 NOo.748 NA0.867 00.745 N40.870
TwoPhase-Refine M0.769 N0.875 No.767 No.g78 NO0.748 N0.877 00.747 No.892

Threshold No.766 No.876 N9.767 No.877 00.746 NA0.874 00.745 No.881
Greedy 0.754 N0.874 %.757 N0.873 %0.744 N0.878 ©0.748 M0.894
SPLADE»MonoT5 Non-Adaptive 0.737 0.872 0.737 0.872 0.731 0.899 0.731 0.899
Oracle 0.807 0.898 0.783 0.859 0.777 0.886 0.781 0.899
Alternate 00.745 0.893 00.737 0.875 00.737 0.909 00.734 0.908
TwoPhase-Fixed 00.763 0.863 0.764 0.869 0.748 40.868 00.742 N40.867
TwoPhase-Refine 20.769 0.875 0.764 0.870 90.748 0.877 00.736 “40.869
Threshold 00.766 0.871 0.759 0.857 00.746 0.874 00.744 N40.865
Greedy NOog.747 No.895 ©0.740 0.882 00.734 0.903 90.734 0.906

Table 1

Re-ranking performance on TREC Deep Learning 2019 and 2020 using various agents. The best-
performing (non-oracle) agent in section is listed in bold. Significant differences compared to the
Non-Adaptive, Oracle, and Adaptive systems are marked with N9, respectively (paired t-test, p < 0.05).

nDCG

TwoPhase-Refine
DL19 GARgumss DL19 GARyer

TGP AR Ee—rrTT T et aa et = SPLADE

0.70 A

DL20 GARter
................... _,...-r—'-""_""‘ "“----___
_ %wla \

e O P LA D E ezt ;.
...... PR TR L Y 4 OF

||

100 200 300 400 500 600 /00 800 900 100 200 300 400 500 600 /00 800 900

Cutoff k Cutoff k

Threshold
DL19 GARgu2s DL19 GARycr

nDCG

0.72 1

nDCG

0.70

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Threshold r Threshold r

	Slide 1: RE-THINKING
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: RE-THINKING
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

