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Conduct practical research in information retrieval:
 - Learned Sparse Expansion
 - Search Result Evaluation using LLMs
 - Document Quality Prediction
 - Adaptive Re-Ranking
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To overcome this recall problem, 
people typically focus on the retriever
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I’ll show this can be done with minimal cost.
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I’ll show this can be done with minimal cost.

The idea can improve retrievers like ColBERT, too.
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I’ll show this can be done with minimal cost.

The idea can improve retrievers like ColBERT, too.

Ready-to-use with Open-Source tools!



Battleship
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We could issue the document 
as a query to the engine and 
take the top k results.
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We could issue the document 
as a query to the engine and 
take the top k results.

retriever
(e.g., BM25, Dense)

datasetReally slow!

Right idea, bad execution.
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Better: Use a KNN graph.
(You may recognize from HNSW search.)

 - Establishes proximity
 - Fast lookups
 - Constructed offline



Alright, so how well does this

adaptive re-ranking strategy work?
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A few technical bits…
• We fix the re-ranking “budget” (number of docs

to score) across all pipelines.
• In adaptive setting, we take half from first-stage 

ranker and half from graph.
• Measure nDCG (overall ranking quality) and

Recall (% of relevant docs retrieved).
• Test on a variety of re-ranking pipelines.
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Adaptive Re-Ranking
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In summary

Nearest neighbor graph exploration helps re-rankers

Focusing on the neighbors of the top scored documents helps 
prioritize the documents that are most likely to be relevant

Other findings
 - A version works for LLM-based listwise re-rankers
 - Even works when no relevant documents returned by the first stage
 - Robust to various measures of document similarity (semantic or lexical)

Conference Papers:
MacAvaney, Tonellotto, Macdonald. Adaptive Re-Ranking with a Corpus Graph. CIKM 2022.
Rathee, MacAvaney, Anand. Guiding Retrieval using Large Language Models. ECIR 2025.
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Adaptive Re-Ranking involved two strategies:

Score docs near the best ones found so far.
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Adaptive Re-Ranking involved two strategies:

Score docs near the best ones found so far.
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Adaptive Re-Ranking involved two strategies:

Score docs near the best ones found so far.

Start with good (but cheap) guesses.

Can this strategy help 
dense retrievers?
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= document node

= neighbor edge

HNSW: Score random nodes to narrow in on the best ones.

Level 0Level 1Level 2
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How well does it work?
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Exhaustive search
(~65ms on GPU)

TREC DL 2019, TAS-B model, single CPU core
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by varying degree
of graph exploration

TREC DL 2019, TAS-B model, single CPU core

* FAISS implementation
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TREC DL 2019, TAS-B model, single CPU core

* FAISS implementation

Tree/partitioning methods
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TREC DL 2019, TAS-B model, single CPU core

by varying top k
results from BM25
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TREC DL 2019, TAS-B model, single CPU core

(one-step)

(iterative)
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PLAID

Re-Ranking

LADR

A bespoke retrieval
engine for ColBERT

TREC DL 2019, ColBERTv2, single CPU core



In summary

Adaptive Re-Ranking improves retrievers too!

Both single-vector and multi-vector dense retrieval.

Other findings
 - Clear trade-offs between the model parameters and efficiency/effectiveness
 - Works across a variety of dense retrieval models and standard benchmarks
 - Works with approximate NN graph, and even graphs constructed from other models

Conference Papers:
Kulkarni, MacAvaney, Goharian, Frieder. Lexically-Accelerated Dense Retrieval. SIGIR 2023.
MacAvaney, Tonellotto. A Reproducibility Study of PLAID. SIGIR 2024. [Best Paper Runner-
Up]



Open Source!
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Adaptive Re-Ranking and LADR in PyTerrier

https://github.com/terrierteam/pyterrier_dr
https://github.com/terrierteam/pyterrier_adaptive

https://github.com/terrierteam/pyterrier_dr
https://github.com/terrierteam/pyterrier_adaptive


64

Adaptive Re-Ranking using the rerankers package

Currently on my fork here: https://github.com/seanmacavaney/rerankers, pull request coming soon :)

https://github.com/seanmacavaney/rerankers
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Included in Lucene core

org.apache.lucene.search.SeededKnnVectorQuery
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Adaptive re-ranking improves the quality of 
search results with minimal cost.

It improves retrievers like ColBERT, too.

Ready-to-use with Open-Source tools!



Thanks to my collaborators!

Nicola Tonellotto 
University of Pisa

Craig Macdonald
University of Glasgow
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extra slides



Search Strategy Effectiveness Query Efficiency Index Efficiency Storage Costs

Sparse Low High High Low

Dense High Low Low High
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