
This qualification is regulated by one or more of the following:
Ofqual, Qualifications Wales, CCEA Regulation or SQA.

SYLLABUS

September 2023 v3.2

CONTENTS

Introduction

Qualification Suitability and Overview

SFIA Levels

Learning Outcomes

Syllabus

Examination Format

Question Weighting

Recommended Reading

Document Change History

3.

4.

5.

6.

7.

18.

18.

19.

21.

BCS LEVEL 5 DIPLOMA IN IT

SOFTWARE ENGINEERING

THIS QUALIFICATION WILL BE RETIRING IN 2026

Introduction
Level 5 Diploma in IT
The second stage within the BCS three-stage Higher Education Qualification programme, the Level 5
Diploma enables candidates who have already achieved the Level 4 Certificate in IT to progress to higher
levels of knowledge and competency.

This internationally-recognised qualification introduces you to the business-related aspects of the IT
industry, developing your technological expertise while also considering the potential challenges of the day-
to-day running of an organisation, such as legal obligations and intellectual property.

Our modules have been created in-line with the latest developments in the industry, giving you a
competitive edge in the IT job market. You will have the opportunity to learn about object-oriented
programming, user experience, systems analysis and design, as well as to build upon knowledge and skills
developed during the Level 4 Certificate.

To successfully achieve the qualification, candidates need to complete:
•	 One core module
•	 Three optional modules
•	 One Professional Project in IT

Candidates who wish to progress onto the next stage will need to complete the Project at end of the Level 6
Professional Graduate Diploma in IT.

3 4

Qualification Suitability and
Overview
Candidates must have achieved the Certificate in IT or have an appropriate exemption to be entered for
the Diploma in IT. Candidates can study for this diploma by attending a training course provided by a BCS
accredited Training Provider or through self-study, although it is strongly recommended that all candidates
register with an approved centre. Studying with an approved centre will deliver significant benefits.

Candidates are required to become a member of BCS, The Chartered Institute for IT, to sit and be awarded
the qualifications. Candidates may apply for a four-year student membership that will support them
throughout their studies.

The Level 5 Diploma is suitable for professionals wishing to gain a formal IT qualification, and this module
may be particularly relevant for candidates interested in career opportunities such as intelligent systems,
forensic computing, or computer security.

Total Qualification Time Guided Learning Hours Assessment Time

1086 hours 225 hours 2 hours

Software Engineering Optional Module
The Software Engineering module is an optional module that forms part of the Level 5 Diploma in IT – the
second stage within the BCS three-stage Higher Education Qualification programme.
Candidates will be introduced to software engineering and its theoretical models, software design princi-
ples and will learn about the software development process, including project planning and product risk
management.

SFIA Levels
This module provides candidates with the level of knowledge highlighted within the table, enabling
candidates to develop the skills to operate successfully at the levels of responsibility indicated.

5

SFIA Plus
This syllabus has been linked to the SFIA
knowledge skills and behaviours required at Level
5.

ASUP3
Identifies and resolves issues with applications,
following agreed procedures. Uses application
management software and tools to collect agreed
performance statistics. Carries out agreed
applications maintenance tasks.

DESN4
Designs components using appropriate modelling
techniques following agreed architectures, design
standards, patterns and methodology. Identifies
and evaluates alternative design options and trade-
offs. Creates multiple design views to address
the concerns of the different stakeholders of the
architecture and to handle both functional and
non-functional requirements. Models, simulates
or prototypes the behaviour of proposed systems
components to enable approval by stakeholders.
Produces detailed design specification to form the
basis for construction of systems. Reviews, verifies
and improves own designs against specifications.

PROG3
Designs, codes, verifies, tests, documents, amends
and refactors moderately complex programs/
scripts. Applies agreed standards and tools, to
achieve a well-engineered result. Collaborates in
reviews of work with others as appropriate.

DLMG5
Defines systems development projects which
support the organisation’s objectives and plans.
Selects, adopts and adapts appropriate systems
development methods, tools and techniques
selecting appropriately from predictive (plan-
driven) approaches or adaptive (iterative/agile)
approaches. Ensures that senior management
is both aware of and able to provide the required
resources. Facilitates availability and optimum
utilisation of resources. Monitors and reports on the
progress of development projects, ensuring that
projects are carried out in accordance with agreed
architectures, standards, methods and procedures
(including secure software development). Develops
road maps to communicate future development
activity.

Level Levels of Knowledge Levels of Skill and Responsibility (SFIA)
K7 Set strategy, inspire and mobilise

K6 Evaluate Initiate and influence

K5 Synthesise Ensure and advise

K4 Analyse Enable

K3 Apply Apply

K2 Understand Assist

K1 Remember Follow

Learning Outcomes
Upon completion of this module, candidates will be able to:

•	 Explain the background of the software crisis and the need for an engineering approach.
•	 Appreciate the distinction between software programming and an engineering approach to the

development of a software product.
•	 Create models of software data and processes using object oriented modelling approaches such as the

UML.
•	 Describe and evaluate software tools and technology to enhance productivity and quality of software

development.
•	 Demonstrate skills of software documentation, quality assurance and evaluation, and testing as part of

software development.

Further detail regarding the SFIA Levels can be found at www.bcs.org/levels.

6

TEST3
Reviews requirements and specifications, and
defines test conditions. Designs test cases and
test scripts under own direction, mapping back to
pre-determined criteria, recording and reporting
outcomes. Analyses and reports test activities and
results. Identifies and reports issues and risks
associated with own work.

HCEV3
Applies tools and methods to design and develop
users’ digital and off-line tasks, interactions
and interfaces to meet agreed usability and
accessibility requirements for selected system,
product or service components. Creates workable
prototypes. Assists, as part of a team, on overall
user experience design. Assists in the evaluation of
design options and trade-offs. Consistently applies
visual design and branding guidelines.

https://www.bcs.org/media/5165/sfia-levels-knowledge.pdf

7

Syllabus
1.	 The Nature of Software

Learners will be able to:

Discuss the nature of software.1.1

1.2

Indicative content

a.	 Defining software
b.	 	Software application

domains
i.	 Systems software
ii.	 Application software
iii.	 Engineering/scientific
software
iv.	 Embedded software
v.	 Artificial intelligence
software

c.	 Legacy software
d.	 	Changing nature of software

i.	 Web apps
ii.	 Mobile apps
iii.	 Cloud computing
iv.	 Product line software

Guidance
Candidates should be able to understand that producing software
is an engineering task and that engineering disciplines are often
applicable to it. They should also appreciate that producing
software is more than just programming.

Discuss theoretical models.

Indicative content

a.	 Prescriptive models:
i.	 Waterfall models, e.g.
classic lifecycle or V model
ii.	 Incremental process
models
iii.	 Evolutionary process
models, e.g. prototyping or
spiral model
iv.	 Concurrent models

Guidance
Candidates should understand how models have brought useful
structure to the discipline of software engineering, as well as
how modern software is characterised by constant change,
tight schedules and the need to meet users’ expectations. They
should also understand and be able to discuss both strengths and
weaknesses of evolutionary process models, which were originally
conceived to address these issues.

1.3 Explain the motivation for development of software engineering.

Indicative content

a.	 Projects running over budget
b.	 Projects running over time
c.	 Inefficient software
d.	 	Software not meeting

requirements
e.	 Unmanageable projects
f.	 Code difficult to maintain
g.	 	Failure to deliver

Guidance
Candidates need to be able to understand the motivations for the
development of software engineering as a discipline, as well as to
describe issues that have led to its development.

8

Describe the cost of maintenance.1.4

Indicative content

a.	 Characterising maintenance,
e.g. ISO/IEC 14764

b.	 Corrective maintenance
c.	 Adaptive maintenance
d.	 Perfective maintenance
e.	 Preventative maintenance

Guidance
Candidates need to be able to understand a variety of reasons
for which maintenance is necessary, and appreciate that the
maintenance costs may often be larger than initial development
costs.

9

2.	 Software Engineering key practices

Learners will be able to:

Describe and analyse the multidisciplinary nature of software design.2.1

2.2

Indicative content

a.	 Requirements analysis and
specification

b.	 Software design
c.	 Software development
d.	 Software testing
e.	 Software maintenance
f.	 Software configuration

management
g.	 Project management

Guidance
Candidates are expected to be able to identify distinct sub-
disciplines of software engineering and to be able to identify their
characteristics.

Explain team work in software engineering.

Indicative content

a.	 Characteristics of a software
engineer

b.	 Psychology of software
engineering

c.	 Cohesiveness of the software
team

d.	 Team structures
e.	 Agile and global teams
f.	 Collaboration tools

Guidance
It is important for candidates to appreciate the overall concept
that software is never developed in isolation. Paired programming
would be one example. Candidates should also understand how
having a sense of purpose, involvement, trust and improvement will
all contribute to a software team’s overall effectiveness.

2.3 Describe productivity in software engineering.

Indicative content

a.	 Lines of code
b.	 Function points
c.	 Constructive cost model

(CoCoMo)
d.	 Cyclomatic complexity

Guidance
In general, candidates should be able to measure the effectiveness
of software engineering processes for this section, possibly in lines
of code, but other measures may be applicable.

1.5 Explain software quality.

Indicative content

a.	 Software functional quality
b.	 Software structural quality
c.	 The cost of quality
d.	 Quality of design
e.	 Quality of conformance
f.	 Performance quality
g.	 Feature quality
h.	 Reliability
i.	 Durability
j.	 Serviceability
k.	 Aesthetics

Guidance
Candidates need to have an appreciation of the wide variety
of factors which contribute to a measure of software quality.
They should also be able to appreciate that given factors will be
differently emphasised in a variety of contexts.

10

11

Describe testing in software engineering.2.4

2.5

Indicative content

a.	 Black-box testing
b.	 White-box testing
c.	 Grey-box testing
d.	 Unit testing
e.	 Integration testing
f.	 System testing
g.	 	Acceptance testing
h.	 	Smoke and sanity testing
i.	 Regression testing
j.	 Functional and non-

functional testing
k.	 	 Usability testing
l.	 Security testing
m.	 Traceability testing

Guidance
Candidates are expected to be able to describe a range of valid
range of testing techniques, rather than one single technique.
Candidates should also understand that one testing approach is not
necessarily an alternative to another, but can be a complementary
approach which may uncover a different class of errors to other
methods.

Explain product maintenance.

Indicative content

a.	 Maintenance debt
b.	 	Dependence on external

factors
c.	 Lifecycle

Guidance
Candidates need to be aware that delivery of a product is not
the end of the cycle – it will be followed by maintenance. The
idea of maintenance debt, which ties in more closely the cost of
maintenance with decisions taken earlier in the maintenance
lifecycle, is also important.

2.6 Describe the software product life cycle.

Indicative content

a.	 Preliminary analysis
b.	 Systems analysis,

requirements definition
c.	 Systems design
d.	 Development
e.	 Integration and testing
f.	 Acceptance, installation,

deployment
g.	 Maintenance
h.	 Evaluation
i.	 Disposal

Guidance
Candidates need to be able to explain and describe the phases that
a typical software development exercise will go through.

12

3.	 Software development models and methods

Learners will be able to:

Explain design principles.3.1

3.2

Indicative content

a.	 Transparency
b.	 Separation of concerns
c.	 Abstraction
d.	 Modularity
e.	 Development by incremental

methods

Guidance
Candidates should understand the role of software design and
its place within the modelling activity, as it sets the stage for the
construction phase – its goal is to create a software model which
will take into account (and meet) all user requirements.

Utilise and demonstrate notations for software components.

Indicative content

a.	 Syntax
b.	 Semantics

Guidance
Candidates need to be familiar with techniques for modelling
software systems. They should be able to identify the essential
features of modelling notations and distinguish between the
allowable symbols within notations and the meaning of those
symbols.

3.3 Demonstrate Unified Modelling Language (UML) modelling.

Indicative content

a.	 UML modelling of use cases
for a logical/end-user view
(e.g. use case diagram)

b.	 Class diagram
c.	 Object diagram
d.	 Activity diagram
e.	 Sequence diagram

Guidance
Candidates must be able to discuss and demonstrate the use of
UML techniques in order to visualise the design of a system.

13

4.	 Validation, verification and testing

Learners will be able to:

Describe product and process visibility.4.1

4.2

Indicative content

a.	 Product visibility
b.	 Process visibility

Guidance
Candidates will need to be able to explain the concept of visibility
and outline ways in which visibility can be achieved for both
software products and software processes.

Explain traceability in software systems and describe the processes.

Indicative content

a.	 Mapping from requirements
to specifications

b.	 Mapping from specification to
design

c.	 Mapping from design to
implementation

d.	 Testing to ensure traceability
e.	 Derivation paths
f.	 Flowdown paths

Guidance
Candidates should be able to identify the steps a software
engineer will take to ensure that user requirements identified in a
specification are realised in an implementation.

14

5.	 Software engineering tools and environments

Learners will be able to:

Demonstrate and explain Computer Aided Software Engineering (CASE) tools.5.1

5.2

Indicative content

a.	 Automated support
b.	 Semi-automated support
c.	 Upper CASE
d.	 Lower CASE

Guidance
Candidates should be able to discuss the ways in which automated
tools can aid the software engineer.

Describe the role of repositories.

Indicative content

a.	 Package management
systems

b.	 	Source control software
c.	 Software dependencies

Guidance
Candidates should understand the role of repositories in supporting
incremental development.

5.3 Explain software reuse and evolution.

Indicative content

a.	 The reuse landscape
b.	 Design patterns
c.	 Generator-based reuse
d.	 Application frameworks
e.	 Application system reuse

Guidance
Candidates should be able to identify the way in which software
reuse can contribute to the development of new applications.
Software should be designed to be reusable in the first instance, as
well as making sure to reuse it when the opportunity arises.

6.	 Project management

Learners will be able to:

Explain how to use project estimating and project planning tools.6.1

6.2

Indicative content

a.	 Algorithmic cost modelling
b.	 Expert judgement
c.	 Estimation by analogy
d.	 Parkinson’s Law
e.	 Pricing to win

Guidance
Candidates need to be able to discuss a range of techniques they
might need to employ in order to estimate the amount of effort
necessary to produce a software component.

Describe the management and maintenance of software products.

Indicative content

a.	 Variety of mechanisms for
updating software deployed
in customer environments

b.	 Risks associated with
software updates

Guidance
Candidates should be able to describe a range of strategies for
updating software products which have been deployed and are
operating in user environments. They should be able to discuss the
different levels of risks of said strategies and the context in which
they should be used.

6.3 Explain the total cost of system ownership.

Indicative content

a.	 Computer hardware and
programs

i.	 Network hardware and
software
ii.	 Server hardware and
software
iii.	 Workstation hardware
and software
iv.	 Installation and
integration of hardware and
software
v.	 Purchasing research
vi.	 Warranties and licenses
vii.	 License tracking
compliance
viii.	 Migration expenses
ix.	 Risk

b.	 Operation expenses
i.	 Infrastructure
ii.	 Power
iii.	 Testing costs
iv.	 Downtime, outage and
failure expenses
v.	 Diminished performance
vi.	 Security
vii.	 Backup and recovery
viii.	 User training
ix.	 Audit
x.	 Insurance
xi.	 Information technology
personnel costs
xii.	 Management costs

c.	 Long-term expenses
i.	 Replacement
ii.	 Upgrade
iii.	 Decommissioning

Guidance
Candidates need to be able to identify all of the issues contributing
to the cost of a software product and be able to use these to
evaluate different software development strategies.

15 16

18

Examination Format
This module is assessed through completion of an invigilated written exam.

Adjustments and/or additional time can be requested in line with the BCS reasonable adjustments policy
for candidates with a disability or other special considerations.

Type Four written questions from a choice of six, each with equal marks

Duration Two hours

Supervised Yes

Open Book No (no materials can be taken into the examination room)

Passmark 10/25 (40%)

Delivery Paper format only

Analyse and explain the software life cycle cost modelling.6.4

6.5

Indicative content

a.	 Prevention costs
b.	 Appraisal costs
c.	 Failure costs

i.	 Internal failure costs
ii.	 External failure costs

Guidance
Candidates should understand and have an appreciation for the
cost of quality, as well as the cost of a lack of quality, both for users
who must try to contend with glitches in software and for the team
that has built and now has to maintain it.

Describe project and product risk management.

Indicative content

a.	 Schedule flaws
b.	 Requirements inflation
c.	 Employee turnover
d.	 Specification breakdown
e.	 Poor productivity

Guidance
Candidates should be able to list the main risk factors in producing
software products and be able to describe techniques to mitigate
them.

Question Weighting
Candidates will choose four questions from a choice of six. All questions are equally weighted and worth 25
marks.

17

19

Recommended Reading
Primary texts

Title: Software Engineering

Author: I. Somerville

Publisher: Pearson

Date: 2015

ISBN: 978-1292096131

Title: Software Engineering: A Practitioner’s Approach

Author: R. S. Pressman and B. Maxim

Publisher: McGraw-Hill Education

Date: 2014

ISBN: 978-1259253157

Title: The Mythical Man-Month

Author: F. P. Brooks

Publisher: Addison-Wesley

Date: 1995

ISBN: 978-0201835953

Additional texts and resources

Title: Clean Architecture

Author: R. C. Martin

Publisher: Prentice Hall

Date: 2017

ISBN: 978-0134494164

Title: Beginning Software Engineering

Author: R. Stephens

Publisher: Sybex

Date: 2015

ISBN: 978-8126555376

Title: Effective Project Management: Traditional, Agile, Extreme

Author: R. K. Wysocki

Publisher: Wiley India

Date: 2014

ISBN: 978-8126552207

Title: Peopleware: Productive Projects and Teams

Author: T. Demarco and T. Lister

Publisher: Addison Wesley

Date: 2016

ISBN: 978-0321934113

Title: ISO/IEC/IEEE International Standard for Software Engineering -
Software Life Cycle Processes – Maintenance ISO/IEC 14764:2006
(E) IEEE

Author: International Organization for Standardization (ISO)

Publisher: International Organization for Standardization (ISO)

Date: 2006

ISBN: 978-0580465963

Title: Managing Software Debt: Building for Inevitable Change

Author: C. Sterling

Publisher: Addison Wesley

Date: 2020

ISBN: 978-0321948618

20

Using BCS Books
Accredited Training Organisations may include excerpts from BCS books in the course materials. If you
wish to use excerpts from the books you will need a license from BCS. To request a license, please contact
the Head of Publishing at BCS outlining the material you wish to copy and its intended use.

Document Change History
Any changes made to the syllabus shall be clearly documented with a change history log. This shall include
the latest version number, date of the amendment and changes made. The purpose is to identify quickly
what changes have been made.

Version Number Changes Made
Version 1.0
August 2021

Document created

Version 3.2
January 2024

Minimal title edit

21

Copyright © BCS 2021
BCS Level 5 Diploma in Software Engineering v3.2

For further information please contact:

BCS
The Chartered Institute for IT
3 Newbridge Square
Swindon
SN1 1BY

T +44 (0)1793 417 445

www.bcs.org

© 2021 Reserved. BCS, The Chartered Institute for IT

All rights reserved. No part of this material protected by this copyright may be reproduced or utilised in any form,
or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and
retrieval system without prior authorisation and credit to BCS, The Chartered Institute for IT.

Although BCS, The Chartered Institute for IT has used reasonable endeavours in compiling the document it does not
guarantee nor shall it be responsible for reliance upon the contents of the document and shall not be liable for any
false, inaccurate or incomplete information. Any reliance placed upon the contents by the reader is at the reader’s
sole risk and BCS, The Chartered Institute for IT shall not be liable for any consequences of such reliance.

CONTACT

Title: International Experiences and Initiatives in IT Quality Management

Author: O. Khan, P. Marchbank, E. Georgiadou, M. Ross, G. Staples and P.
Linecar

Publisher: Solent University

Date: 2019

ISBN: 978-1999654924

Title: Debt Metaphor

Author: W. Cunningham

Creation Date: 2009

Accessible at: <https://www.youtube.com/watch?v=pqeJFYwnkjE>
[Accessed 09 July 2021]

