Our mission as BCS, The Chartered Institute for IT, is to enable the information society. We promote wider social and economic progress through the advancement of information technology science and practice. We bring together industry, academics, practitioners and government to share knowledge, promote new thinking, inform the design of new curricula, shape public policy and inform the public.

Our vision is to be a world-class organisation for IT. Our 70,000 strong membership includes practitioners, businesses, academics and students in the UK and internationally. We deliver a range of professional development tools for practitioners and employees. A leading IT qualification body, we offer a range of widely recognised qualifications.

Further Information
BCS, The Chartered Institute for IT,
First Floor, Block D,
North Star House, North Star Avenue,
Swindon, SN2 1FA, United Kingdom.
T +44 (0) 1793 417 424
F +44 (0) 1793 417 444
www.bcs.org/contact
We dedicate this book to John Southall.

John was a member of the BCS staff and Registrar. He was instrumental in forming the Working Party of BCS Schools Committee members in the 1970s that started the small *Glossary*, which evolved over the years into the current edition.

John’s wit, wide knowledge of computer terminology and of BCS, and his attention to detail, made him a strong support for those who follow on. He was working on this thirteenth edition when he died.
CONTENTS

Figures and tables xi

INTRODUCTION XV
Acknowledgements xvi
Disclaimer xvii

HOW TO USE THIS GLOSSARY XVIII

PART A: HOW COMPUTER SYSTEMS ARE USED 1

A1 GENERAL COMPUTING TERMS 3
Information processing 3
Parts of the computer system 5

A2 USING YOUR COMPUTER 7
System software 8
Organising data 9
The size of things 12
Operation 13

A3 WORD PROCESSING AND TEXT MANIPULATION 20
Software 20
Processes 23
Elements of print 25
Layout 28
Styles 32

A4 GRAPHICS, DESIGN AND DIGITAL IMAGING 35
Image data formats 35
Graphic design applications 38
Digital still imaging 43
Digital video 44

A5 SOUND 49
Characteristics of sound 50
Sound processing 53
Devices 58
CONTENTS

<table>
<thead>
<tr>
<th>A6</th>
<th>USER INTERFACE AND DOCUMENTATION</th>
<th>62</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Graphical interfaces</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Other interface styles</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Documentation</td>
<td>71</td>
</tr>
<tr>
<td>A7</td>
<td>COMMERCIAL DATA PROCESSING (DP)</td>
<td>74</td>
</tr>
<tr>
<td>A8</td>
<td>SPREADSHEETS</td>
<td>83</td>
</tr>
<tr>
<td>A9</td>
<td>DATA HANDLING AND INFORMATION RETRIEVAL</td>
<td>90</td>
</tr>
<tr>
<td>A10</td>
<td>MODELLING AND SIMULATION</td>
<td>105</td>
</tr>
<tr>
<td>A11</td>
<td>INTERNET</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Accessing the internet</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Organising the internet</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>World Wide Web</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Electronic mail</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Other internet applications</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>Internet problems</td>
<td>128</td>
</tr>
<tr>
<td>A12</td>
<td>NETWORKING</td>
<td>130</td>
</tr>
<tr>
<td>A13</td>
<td>CONTROL AND MONITORING</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Virtual reality</td>
<td>147</td>
</tr>
<tr>
<td>A14</td>
<td>ARTIFICIAL OR MACHINE INTELLIGENCE</td>
<td>149</td>
</tr>
<tr>
<td>A15</td>
<td>COMPUTER PERSONNEL</td>
<td>155</td>
</tr>
<tr>
<td>A16</td>
<td>COMPUTER SECURITY, ABUSE AND RELATED LAW</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>Data security</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>Viruses and malicious code</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Copyright</td>
<td>172</td>
</tr>
<tr>
<td>A17</td>
<td>SPECIALISED COMPUTER APPLICATIONS</td>
<td>175</td>
</tr>
</tbody>
</table>

PART B: WHAT COMPUTER SYSTEMS ARE MADE OF

<table>
<thead>
<tr>
<th>B1</th>
<th>TYPES OF COMPUTER</th>
<th>183</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2</td>
<td>INPUT</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Manual input</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Automated input</td>
<td>191</td>
</tr>
<tr>
<td>B3</td>
<td>MEMORY</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>General concepts</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>Disk</td>
<td>196</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous forms of memory</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>202</td>
</tr>
</tbody>
</table>
CONTENTS

B4 OUTPUT
- Colour 206
- Quality 208
- Display 210
- Printing 212

B5 COMMUNICATIONS COMPONENTS 219

PART C: HOW COMPUTER SYSTEMS ARE DEVELOPED 225

C1 SYSTEMS DESIGN AND LIFE CYCLE 227
- Concepts 228
- Stages 231
- Project management 234
- General 238

C2 DESCRIBING SYSTEMS 245

C3 PROGRAMMING CONCEPTS 259
- Object-oriented techniques 260
- Traditional programming techniques 262

C4 PROGRAMMING (FLOW OF EXECUTION) 272

C5 PROGRAMMING (SUBPROGRAMS) 278

C6 PROGRAM SYNTAX 284

C7 DESCRIBING PROGRAMS 290

C8 TESTING AND RUNNING PROGRAMS 298

C9 PROGRAMMING LANGUAGES 307
- Levels of language 309
- Types of language 314
- Miscellaneous specialised languages 316

C10 DATA REPRESENTATION 323
- Concepts 323
- Structures 325
- Elements 329

C11 NUMERIC DATA REPRESENTATION 332

C12 MANAGING DATA FILES 339
- Files 339
- Operations 344
- General 349
| Figure A2.1 | Filters | 9 |
| Figure A2.2 | Two examples of customising | 14 |
| Figure A2.3 | Default options | 15 |
| Figure A2.4 | Horizontal scroll bar | 18 |
| Figure A3.1 | A word processor (top) and a desktop publishing package (bottom) | 21 |
| Figure A3.2 | Web editor | 22 |
| Figure A3.3 | Checking a document | 24 |
| Figure A3.4 | Mailmerge | 25 |
| Figure A3.5 | Italic fonts | 27 |
| Figure A3.6 | Tab stops | 30 |
| Figure A3.7 | Use of tabs | 30 |
| Figure A3.8 | Use of tables | 31 |
| Figure A3.9 | Justification of text | 31 |
| Figure A3.10 | Style definition dialogue box | 33 |
| Figure A4.1 | Vector graphics, at two scalings | 39 |
| Figure A4.2 | A graphics tablet and stylus | 40 |
| Figure A4.3 | A typical bitmapped graphic | 40 |
| Figure A4.4 | Examples of photo editing | 41 |
| Figure A4.5 | An example of image enhancement | 42 |
| Figure A4.6 | Typical clip art | 43 |
| Figure A4.7 | Typical semi-professional video-editing system | 47 |
| Figure A5.1 | A waveform (the opening of a Strauss waltz) | 50 |
| Figure A5.2 | Characteristics of a (sound) wave | 51 |
| Figure A5.3 | Harmonics and timbre (1) | 52 |
| Figure A5.4 | Harmonics and timbre (2) | 52 |
| Figure A5.5 | Stereophonic sound | 53 |
| Figure A5.6 | Volume envelope | 54 |
| Figure A5.7 | Two pitch envelopes | 54 |
| Figure A5.8 | Sampling | 56 |
| Figure A5.9 | The effect of sampling rates | 56 |
| Figure A5.10 | A typical computer sound-processing package | 60 |
| Figure A6.1 | Dialogue box | 66 |
| Figure A6.2 | List box | 66 |
| Figure A6.3 | Toolbar | 67 |
| Figure A6.4 | Directory tree | 68 |
| Figure A6.5 | Conversational dialogue screen | 69 |
| Figure A6.6 | Forms dialogue screen | 70 |
| Figure A7.1 | An example of a QR code | 79 |
FIGURES AND TABLES

Figure A7.2 Clock track on a machine-readable document 79
Figure A8.1 A typical spreadsheet 83
Figure A8.2 Cell contents 84
Figure A8.3 ‘What if?’ 85
Figure A8.4 Chart options 85
Figure A8.5 A cell block 86
Figure A8.6 Replication 87
Figure A8.7 Spreadsheet for a single shop 89
Figure A8.8 Two views of data from several shops 89
Figure A9.1 How a database management system works 92
Figure A9.2 A flat file or two-dimensional table 93
Figure A9.3 Hierarchical database 93
Figure A9.4 Sample metadata listing for a digital camera image 95
Figure A9.5 An example of data in normal form 96
Figure A9.6 An example of data modelling 99
Figure A9.7 A typical report 101
Figure A11.1 Anatomy of a website 116
Figure A11.2 Hyperlink 118
Figure A11.3 Search engine 119
Figure A11.4 The anatomy of an email 121
Figure A12.1 A bus network with spurs 132
Figure A12.2 A bus network 133
Figure A12.3 A ring network with spurs 133
Figure A12.4 A ring network 134
Figure A12.5 A star network 135
Figure A12.6 A backbone with three subnetworks 135
Figure A12.7 An example of a modern computer network 142
Figure A14.1 An expert system structure 153
Figure A16.1 Firewalls and proxy servers 166
Figure A16.2 How a public key cryptosystem works 170
Figure B3.1 Tracks on a disk and a cylinder 197
Figure B3.2 Cache memory 202
Figure B4.1 A character formed by a pattern of dots 205
Figure B4.2 Dithering 207
Figure B4.3 Data flow in a colour management system 208
Figure B5.1 Multiplexors connecting remote workstations to a computer 220
Figure B5.2 Section of coaxial cable 222
Figure C1.1 Relationship between the three cycles 230
Figure C1.2 An example Gantt chart 236
Figure C1.3 An example of Critical Path Analysis 237
Figure C2.1 An example of a block diagram (courtesy Acorn Computers) 246
Figure C2.2 Information flow diagram symbols 247
Figure C2.3 An example of an information flow diagram 247
Figure C2.4 Data flow symbols 248
Figure C2.5 Level 1 data flow diagram of the payroll process 248
Figure C2.6 Entity-relationship diagram used in designing a database 249
Figure C2.7 System flowchart symbols 250
Figure C2.8 An example of system flowchart using alternative symbols 251
Figure C2.9 A structure diagram for the payroll process 252
Figure C2.10 Expansion of process 3.20 in Figure C2.9 253
Figure C2.11	Flowchart symbols	253
Figure C2.12	An example of a flowchart	254
Figure C2.13	An example use case diagram	255
Figure C2.14	An example sequence diagram	256
Figure C2.15	An example activity diagram	257
Figure C2.16	An example class diagram	258
Figure C2.17	An example statechart diagram	258
Figure C3.1	An example of an algorithm in pseudo-code	264
Figure C3.2	An example of an assignment statement	264
Figure C3.3	Logical operation on a bit pattern	267
Figure C3.4	Examples of display and print format statements	269
Figure C4.1	Examples of count-controlled loops	273
Figure C4.2	Examples of condition-controlled loops	274
Figure C4.3	Examples of selection statements	275
Figure C4.4	Examples of multiple selection	277
Figure C5.1	An example of a function	279
Figure C5.2	Examples of a recursive subprogram	281
Figure C5.3	Examples of parameters	282
Figure C5.4	Examples of parameter passing to a function	283
Figure C6.1	Examples of block structure	285
Figure C6.2	An example of the use of a dummy variable	287
Figure C6.3	An example of ‘+’ operator	287
Figure C6.4	Examples of unary and binary operators	288
Figure C6.5	Examples of relational operators in pseudo-code	288
Figure C7.1	A decision table	292
Figure C7.2	Connector or continuation symbol	292
Figure C7.3	Input/output symbol	293
Figure C7.4	Alternative forms of decision box	293
Figure C7.5	Process symbol or box	294
Figure C7.6	Start/stop symbol or box	294
Figure C7.7	Subroutine symbol or box	294
Figure C7.8	An example of program module flowchart (in traditional form)	295
Figure C7.9	An example of program module flowchart (continuation)	296
Figure C7.10	Program module in pseudo-code	296
Figure C7.11	An example of program module flowchart (using very simple boxes)	297
Figure C8.1	Examples of trace tables	302
Figure C8.2	Program process states	304
Figure C9.1	Example of the use of a logical language	316
Figure C9.2	Example of Backus–Naur form	318
Figure C10.1	A typical tree structure	325
Figure C10.2	A one-dimensional array	326
Figure C10.3	A two-dimensional array	327
Figure C10.4	Declaring array dimensions	327
Figure C10.5	Fields and records in a data file	330
Figure C10.6	Key fields in a data file	330
Figure C11.1	Number ranges for different number forms	333
Figure C11.2	Fixed-point and floating-point representation	335
Figure C11.3	Denary to BCD conversion	336
Figure C11.4	Binary to octal conversion	337
FIGURES AND TABLES

Figure C11.5 Binary to hexadecimal conversion 337
Figure C12.1 An example of two data sets being merged using 'Name' as the key field 346
Figure C12.2 An example of two data sets being merged using 'ID' as the key field 346
Figure C12.3 Two examples of a data set being sorted, one using 'ID' and the other 'Surname' as the key fields respectively 347
Figure C12.4 Comparing the two methods of searching for the key 'Singh' 348
Figure C12.5 A simple example of data compression 350
Figure D2.1 Arithmetic shifts 375
Figure D2.2 Logical shifts 375
Figure D2.3 Cyclic shifts 376
Figure D2.4 DIP switches 382
Figure D3.1 Unmodulated carrier wave 389
Figure D3.2 Modulation by switching the wave off 390
Figure D3.3 Modulation by changing the amplitude 390
Figure D3.4 Modulation by changing the frequency 390
Figure D3.5 Phase modulation 391
Figure D4.1 Karnaugh map 395
Figure D4.2 Venn diagrams 396
Figure D4.3 NOT gate 397
Figure D4.4 OR gate 398
Figure D4.5 AND gate 398
Figure D4.6 NOR gate 399
Figure D4.7 NAND gate 399
Figure D4.8 XOR or NEQ gate 400
Figure D4.9 XNOR or EQ gate 401

Table A2.1 Common filename extensions 10
Table A4.1 Image compression formats 37
Table A5.1 Audio storage and compression schemes 57
Table A5.2 The effect of sampling and format on file sizes 58
Table B3.1 Optical storage 199
Table B4.1 Printers 214
Table C1.1 System life cycle 229
Table C1.2 Software development cycle 230
Table C3.1 Examples of different algebraic notations 263
Table C3.2 Examples of formatting numeric and date data 270
Table C9.1 Early programming languages 310
Table C9.2 Programming languages 312
Table C9.3 A small selection of common HTML tags 320
Table C11.1 Number of patterns provided by different numbers of bits 332
Table C12.1 Suitability of file access methods 341
Table D2.1 Common interfaces 379
Table D3.1 Seven-layer network organisation model (ISO 7) 386
Table D3.2 Relationship between OSI and TCP/IP protocols 387
INTRODUCTION

This Glossary, which contains over 3400 terms, provides not only a comprehensive definition of each term, but also sufficient additional material to enable the reader to understand the importance of the term, how to use it appropriately and its relation to other terms used in the same area of computing. To this end terms are gathered into five parts, describing how computer systems are used, what they are made of, how they are developed and how computers work. The fifth part consists of reference material.

Who is the Glossary aimed at?
One of the principal aims of the Glossary is meeting the needs of pupils who follow courses leading to examinations in schools and colleges at a variety of levels. The authors attempt to ensure that the Glossary reflects developments in the National Curriculum for England and Wales, GCSE, AS-Level and A-level specifications, Functional Skills in ICT, the Scottish Curriculum and the Northern Ireland system. At the same time it is intended to improve understanding and literacy in the subject matter.

It is a definitive reference source, mentioned in examination syllabuses. The content has found wide acceptance in universities and colleges for foundation courses as well as induction sessions and training courses. It is used in support of the European Computer Driving Licence (ECDL), within government departments and industry generally. The Glossary has also proved popular with home-based computer users.

How are the individual terms decided on?
BCS Glossary Working Party members continuously monitor relevant new and redundant terms and changes in usage. These are amended when it is felt appropriate by the members, as they become sufficiently established and widespread or have fallen out of use.

The Glossary provides definitions that cover the use of terms in the context of both very large computer systems and hand-held equipment. Although large computer systems may be outside the experience of many users, they are likely to encounter consequences of the use of such systems. It should be noted that some terms are included that have a different meaning in a computing environment to that in use in other subjects.
What are the origins of the Glossary?
The Glossary was first published over 30 years ago and has developed from a tiny listing to its current content. In 1974, the British Computer Society was invited by the Regional Examining Boards for the Certificate of Secondary Education to produce a standardised list of terms for use in computer studies courses, examination syllabuses and for their own reference. The Schools Committee of BCS set up a Working Party with a remit to produce a ‘one-off’ document containing about 100 terms. At the time, there was only one A-level computing examination and a small number of examinations for 16 year olds. Schools involved in computer studies relied on batch processing, preparing and sending their punched cards to university computing centres. A very few had access to an online terminal connecting to the local authority computer. Microcomputers were virtually unknown in schools. At this time almost all sources of computing expertise were inventing their own vocabulary.

Teachers soon requested that the Glossary be made available to pupils. At the end of 1974 work began on the first ‘public’ edition. This edition appeared in 1977, containing approximately 430 terms of which 260 were defined. Given that the target audience was the 14–16-year-old pupil, it was decided that, as far as possible without compromising technical accuracy, simple English should be used in the explanation of the term – an objective still retained wherever possible.

The popularity of the first BCS Glossary resulted in several reprints and the demand for further editions. These latter included new terms that were appearing almost daily. This publication was required to keep pace with the rapid development of the technology and with the increasing use of computers in education. It has been the practice of BCS, The Chartered Institute for IT, to update the Glossary approximately every three years.

The Working Party has a changing membership drawing on a wide range of expertise from the computing community.

Development
Early editions of the Glossary were lists of defined terms and hence resembled a dictionary. Over many editions the Working Party steered the Glossary to its present themed and structured layout.

ACKNOWLEDGEMENTS

The Working Party has appreciated the help it has received from members of Computing At School, and earlier from BCS members and the BCS Schools Committee, for their comments and suggestions about material to include in this edition.

We would like to mention Simon Chalton of Bird & Bird and Les Fraser who contributed significantly to the Computer Security and Data Protection references in Section A16.
The Working Party also welcomes offers from teachers willing to involve their pupils in a review of this edition and would like to express its thanks to those who have already commented, criticised and made helpful suggestions.

Please send comments by post to: BCS, The Chartered Institute for IT, Publishing, First Floor, Block D, North Star House, North Star Avenue, Swindon, SN2 1FA. www.bcs.org/contact

Alternatively contact any member of the Working Party through BCS.

DISCLAIMER

Neither BCS, The Chartered Institute for IT, nor contributors to the *Glossary* shall have any responsibility for loss suffered as a result of reliance on the *Glossary*, and readers should take legal advice on the application of the terms covered particularly in Section A16, which is intended as an aid to understanding computer security. The *Glossary* is not a definitive statement of the meaning of terms.
HOW TO USE THIS GLOSSARY

The only place you will find a full alphabetical list of all the terms covered in the Glossary is in the index at the back of the book. The Glossary is not a dictionary and the definitions are not in general arranged alphabetically, even within the sections. Knowing how to use the index is crucial to deriving the maximum value from the Glossary.

For example, looking up ‘virus checking’ in the index leads you to page 171. ‘Virus checking’ is not one of the main definitions on this page, but you will find it under ‘antivirus software’. Your eye should be led to it by the different appearance of the term you are searching for: Virus checking.

Antivirus software
also known as: vaccine utility
including: anti-virus monitor, virus checking, disinfection, quarantine, computer hygiene
is used to detect and remove viruses, see page 171.

Antivirus monitors are programs loaded permanently in memory continually monitoring the system for the tell-tale patterns indicating the presence of any of the thousands of viruses that have been identified. If any change is detected, the file is prevented from being run and a warning message is given. New data read into the computer is also screened for viruses and appropriate action taken.

Virus checking scans the files on a computer system to detect viruses.

Disinfection is the removal of viruses that have been detected.

Quarantine is the isolation of a file suspected of containing a virus. The file can then be investigated and the operation of the virus can be analysed.

Computer hygiene is the term used to describe the prevention and cure of problems caused by viruses.

An alternative way of finding the appropriate entry is to examine the lines immediately after the main entry: ‘also known as’, ‘including’. These provide a list of terms covered in that definition.
The *Glossary* is divided into five parts as described in the Introduction. Each part is divided into sections defining terms on a particular topic and large sections are further subdivided. It is hoped that readers will take advantage of this structure to browse within sections; to assist in this, each section has a general introduction (see, for example, page 160 to page 161) providing additional information that puts the terms into context.

Within most definitions, you will find references to other terms (for example, *virus*) in the first line of the definition. You may wish to read these in conjunction with the definition you are examining.

There are, of course, other ways of using this glossary. Related terms occur together, and you may find it helpful to read through a complete section or subsection.
PART A: HOW COMPUTER SYSTEMS ARE USED

A1 General computing terms 3
A2 Using your computer 7
A3 Word processing and text manipulation 20
A4 Graphics, design and digital imaging 35
A5 Sound 49
A6 User interface and documentation 62
A7 Commercial data processing (DP) 74
A8 Spreadsheets 83
A9 Data handling and information retrieval 90
A10 Modelling and simulation 105
A11 Internet 109
A12 Networking 130
A13 Control and monitoring 144
A14 Artificial or machine intelligence 149
A15 Computer personnel 155
A16 Computer security, abuse and related law 160
A17 Specialised computer applications 175

This section contains terms that may be met by any computer user working with applications in any of the areas covered. Some sections in Part A are concerned with general issues and others with well-defined areas of computer use. Some sections contain terms that might have been placed in Part B or even in Part C or Part D, but they were kept with other related terms for completeness; this is particularly true of the sections covering the internet, sound and user interfaces, as they became more prominent aspects of computer use. Some terms have references to terms in Part B, Part C or Part D that will provide readers with pointers to other associated terms and concepts.
A1 GENERAL COMPUTING TERMS

When you approach computing for the first time you meet a range of terms that people involved in the industry take for granted. These terms are often vague generalisations and may mean different things to different people. They are also applied to a wide range of situations within computing and their precise meaning may vary between contexts.

Most jargon you meet when using a computer is related to the task you are doing. The software used to perform the task is called an application. Examples of applications include word processing, computer art and using a database program. However, there is some jargon that relates to running the computer itself, that is, how you control or operate a computer.

This section provides general definitions of some of the more common computing terms that are either used in a general context or apply across many areas of computing.

INFORMATION PROCESSING

Information processing
is the organisation, manipulation and distribution of information. As these activities are central to almost every use of computers, the term is in common use to mean almost the same as ‘computing’. See also data and information page 323.

Information technology (IT)
including: ICT (information and communications technology)
is the application of technology to information processing. The current interest centres on computing, telecommunications and digital electronics.

In the UK schools sector, the preferred term is ICT (information and communications technology).

Telecommunications
is a general term describing the communication of information over a distance. The method of communication is normally via a cable, either wire or fibre optic (see page 222) or electromagnetic radiation. See also wireless communication, page 221. Computer data uses the same network as telephone systems.
Computer
is a machine that processes data. It takes data, in digital form, which is processed automatically before being output in some way. It is programmable so that the rules used to process the data can be changed. It is an automatic, programmable, digital data processor. These ideas are expanded in the introduction to Section B1, page 183. The definition excludes the *analog computer* (page 184).

Computer system
including: configuration
is the complete collection of components (hardware, software, peripherals, power supplies, communications links) making up a single computer installation. The particular choice of components is known as the *configuration* – different systems may or may not have the same configuration.

Computing
is the use of a computer to manipulate data or control a process. It is also an umbrella term used in higher education to cover the multitude of subjects relating to computers that can be studied.

Embedded system
is the use of a computer system built into a machine of some sort, usually to provide a means of control. The computer system is generally small, often a single microprocessor with very limited functions. The user does not realise that instructions are being carried out by a computer but simply that there are controls to operate the machine. Examples are electronic washing machines, burglar alarms and car engine management systems.

Multimedia
is the presentation of information by a computer system using graphics, animation, sound and text.

Facilities management
also known as: managed services
is the contracting of an organisation’s day-to-day operations to an outside company. The facilities management company employs the staff and runs the operation. Where it is computer operations to be managed, the equipment will usually be sited in the organisation’s own premises, although it may be owned or leased by the facilities management company. The contract for this kind of service will specify what the computer system must provide for the price. This is distinct from *outsourcing* (see page 4), where a well-defined task will be contracted out.

Outsourcing
is the purchase of services from outside contractors rather than employing staff to do the tasks. This use of contractors for a well-defined task is distinct from *facilities management* (see page 4) where day-to-day operations are involved. Traditionally large computer organisations have employed many staff such as *systems analysts* and *developers* (see Section A15 Computer personnel). It may be more economic to contract another organisation to provide these services and not have the expense and complication of direct employment of staff. With the use of networking, it is possible to outsource anywhere in the world.
Some of these tasks may be provided by a computer bureau (see page 5).

Computer bureau

including: data processor

is an organisation that offers a range of computing services for hire (for example, data preparation, payroll processing). Bureaux usually offer two types of service:

- They provide computing facilities for organisations that do not have any of their own.
- They also offer specialist services covering vital common operations (for example, payroll) to organisations that do not have the appropriate piece of applications software.

Compare this with facilities management and outsourcing.

Data processor is the name used in the *Data Protection Act (1998)* (see page 162), for a computer bureau.

PARTS OF THE COMPUTER SYSTEM

Hardware

is the physical part of a computer system – the processor(s), input and output devices, and storage. This is in contrast to the *software* (see page 6), which includes application packages, and the data in the storage.

Storage media

also known as: media

is the collective name for the different types of storage materials (such as compact disc, solid state, memory card, hard disk and even paper) used to hold data or programs. They are used either within the computer system or connected to it. See *peripherals* (see page 5) and Section B3, page 193.

Peripheral

also known as: device

including: input device, output device, input/output device (I/O device), storage device

is a piece of equipment (or hardware) that can be connected to the central processing unit. It is used to provide input, output and backing storage for the computer system. No particular peripheral is required by a computer but every computer must have some method of input and output (for example, a washing machine may simply have push buttons for input and actuators, page 145, for output). They are often referred to as follows:

Input device is a peripheral unit that can accept data, presented in the appropriate machine-readable form, decode it and transmit it as electrical pulses to the central processing unit.

Output device is a peripheral unit that translates signals from the computer into a human-readable form or into a form suitable for reprocessing by the computer at a later stage.
Input/output device (I/O device) is a peripheral unit that can be used both as an input device and as an output device. In some instances, ‘input/output device’ may be two separate devices housed in the same cabinet.

Storage device is a peripheral unit that allows the user to store data in an electronic form for a longer period of time and when the computer is switched off. The data can be read only by the computer and is not in human-readable form.

Software including: applications program, application, applications package, generic software, productivity tool
consists of programs, routines and procedures (together with their associated documentation) that can be run on a computer system.

An applications program, frequently abbreviated to application, is software designed to carry out a task (such as keeping accounts, editing text) that would need to be carried out even if computers did not exist.

An applications package is a complete set of applications programs together with the associated documentation (see user documentation, page 71). Where the application is appropriate to many areas, it is usual to describe it as generic software or as a productivity tool. For example, word processing (see page 20) can be used in personal correspondence, the production of business ‘form letters’, academic research, compilation of glossaries, writing books etc.

See also Section D1 Systems software, program, page 284 and Section C6.

Integrated package
also known as: integrated program
is a single piece of software that provides a user with basic information processing functions. It usually includes word processing, spreadsheets and small databases and may include additional facilities such as charts, a diary and communications. It is designed so that data can be simply moved between the various parts enabling complex tasks to be performed easily.

Tutorial
is a program that helps a user to learn about a new application. The tutorial will include a simple explanation of how to use the new system, diagrams and possibly examples the user can try whilst the tutorial program monitors the user’s progress.
INDEX

1NF (first normal form) 95, 96–97
2NF (second normal form) 97–98, 101
3G 112
3GL 309
3NF (third normal form) 98–99, 101
4G 112
4GL 309

A&B signals 53
abbreviations 405–422
abort 305
absolute address 262
absolute code 270
absolute reference 88
acceptance testing 241
access rights 167–168
access time 382
disk access time 197
accounting package 175
accumulator 373
ACK (acknowledge) signal 392
acronyms 405–422
action bar 65
active device 146
active system 144
active window 64
activity diagram 255–256, 257
actual parameter 282
actuator 145
adaptive maintenance 268
add-on software 358
additive synthesis 37
address 262
absolute address 262
base address 262
e-mail address 122
IP address 114
relative address 262
in spreadsheet 86
store address 195
address book 122
address bus 372
address calculation 370
address field 267
address modification 370
address register 369
address generating algorithm 340, 342
addressing
direct addressing 370
immediate addressing 370
indexed addressing 370
indirect addressing 370
symbolic addressing 268
ADSL (asymmetric digital subscriber line) 111
ADSR (attack, decay, sustain, release) 54
Advanced Encryption Standard (AES) 169
AES (Advanced Encryption Standard) 169
aggregator 120
agile development 231
AI (artificial intelligence) 149–150
algebraic notation 262–263
algorithm 263
address generating algorithm 340, 342
genetic algorithm 340
hashing algorithm 340
LZW algorithm 349
program algorithm 263, 264
RSA algorithm 170
sorting algorithm 346
alpha channel 38
alpha testing 240
alphabetic data 331
ALU (arithmetic logic unit) 373
AM (amplitude modulation) 390
American Standard Code for Information Interchange (ASCII) 324, 433–435
amplitude 50, 51
amplitude modulation (AM) 390
analog computer 184
analog signal 222–223
analog synthesizer 59
analog-to-digital (A-to-D) converter 223
analogue sensor 146
AND gate 398
AND operation 103, 266
animation, computer 44
annotations 23
anonymous FTP 124
anti-virus monitor 171
anti-virus software 171–172
API (application program interface) 240
app 124
append 344
application 6
application generation language 309
application program interface (API) 240
application server 138
applications package 6
applications program 6
applications programmer 157
arc 153
archive 77–78
archive file 343
argument 282
arithmetic logic unit (ALU) 373
arithmetic operator 288
arithmetic register 373
arithmetic shift 374–375
arithmetic unit 375
ARQ (Automatic Repeat Request) 388
array (data structure) 326–328
array (machine-code programming) 262
array bound 328
arrow key 65
article number 78
artificial intelligence (AI) 149–150
ASCII (American Standard Code for Information Interchange) 324, 433–435
assembler 358–359
assembler program 358
assembly 358
assembly language 314, 358
asset manager 159
assignment 264
assistant 71
asymmetric digital subscriber line (ADSL) 111
asynchronous transmission 384
A-to-D (analog-to-digital) converter 223
Atlas 184
ATM (automatic teller machine) 81
attachment 122–123
attack 54
attack, decay, sustain, release (ADSR) 54
attribute 91
audio
streaming 38, 57–58
see also sound
audio controller 59
audit trail 77
authentication 75
authoring language 316–317
authoring tool 316
authorisation 75
authorisation code 168
display screen 210
distributed database 92
distributed denial of service (DDoS) 129
distributed networking 131
distributed processing 139
dithering 206, 207
DMA (direct memory access) 371
DML (Data Manipulation Language) 102
do loop 273
document 9
turnaround document 81
document checking 23–24
document imaging 80
document reader 80
document scanner 80
documentation 234
hardware documentation 72–73
maintenance documentation 234
program documentation 234, 291
project documentation 235
software documentation 71–72
systems documentation 234
technical documentation 234
user documentation 71
domain name 114
geographical identifiers 430–432
domain name servers 114
dongle 173
DoS (deny of service) 129
DOTS (digital operating system) 357
dot matrix printer 213
dot pitch 208
dots per inch (dpi) 208, 209
double buffering 372
double clicking 65
double entry verification 76
double precision 338
down time 305
download 350
downward compatible 239
DP (data processing) 74–75
dpi (dots per inch) 208, 209
draft quality 209
drag 67
drag-and-drop editing 67
DRAM (dynamic random access memory) 201
drawing on the fly 39
driver 8
printer driver 209
drop-down menu 65
dry run 301
DSL (digital subscriber line) 111
dSS (decision support system) 178
DTP (desktop publishing) 21–22
dummy variable 287
dump 303
duplex 384
DV (Digital Video) format 45
DVCam 45
DVCProHD 45
DVD (digital versatile disk) 199
dye sublimation printer 216
dynamic compiler 360
dynamic HTML (DHTML) 319
dynamic IP address 114
dynamic random access memory (DRAM) 201
dynamic variables 286
E ink 210
EAN (European Article Number) 78
EAROM (electrically alterable read-only memory) 201
ease of maintenance 244
ease of use 244
echo 384
ECMA (European Computer Manufacturers’ Association) symbols 291
ecommerce 127–128
table text 80
editing 23
drag-and-drop editing 67
offline editing 46
online editing 48
photo editing 40–42
real-time editing 48
screen editing 70
video editing 46–48
EDSAC 184
EDVAC 184
EEPROM (electrically erasable programmable read-only memory) 201
EFT (electronic funds transfer) 80
EFTPOS (electronic funds transfer at point of sale) 81
electrically alterable read-only memory (EAROM) 201
electrically erasable programmable read-only memory (EEPROM) 201
electromagnetic interference (EMI) 391
electronic funds transfer at point of sale (EFTPOS) 81
electronic funds transfer (EFT) 80
electronic mail 120–122
electronic signature 164
else 276
em 26
e-mail 120–121
e-mail address 122
e-mail virus 171
embedded keyboard 189
embedded object 16
embedded system 4
EMI (electromagnetic interference) 391
emphasis 27
encryption key 168
end of file (EOF) marker 329
end-user licence agreement (EULA) 172
endnote 32
ENIAC 184
entity 91
entity-relationship 249
entity-relationship diagram 249
envelope 53–54
EOF marker (end of file marker) 329
EOR (Exclusive-OR gate) 400
payment 80–81
EPROM (erasable programmable read-only memory) 201
EQ (equivalence) gate 400
equivalence (EQ) gate 400
eresable programmable read-only memory (EPROM) 201
error 298, 301
compilation error 301
execution error 301
linking error 301
logical error 301
program syntax error 301
rounding error 351
run-time error 301
statement syntax error 301
structure error 301
syntax error 301
truncation error 351
trunca message 301
in applications 71
in programming 301
escaping 274
Ethernet 141
Ethernet hub 141
Eudora 122
EULA (end-user licence agreement) 172
European Article Number (EAN) 78
European Computer Manufacturers’ Association (ECMA) symbols 291
event 284–285
mouse event 189
exclusive-NOR (XNOR) gate 400–401
exclusive-OR (XOR) gate 400
execute phase 369
execution 301
execution error 301
executive program 363
exit 280
expansion card 378
expansion slot 378
expert system 151–152, 153
exponent 334
export 18
external language 315–316
external review 235
extranet 140–141
Facebook 127
facilities management 4
FALSE 103
fan-fold paper 217
FAQ (Frequently Asked Questions) 126
FAT (file allocation table) 202
father file 344
fault tolerance 145
favourite 118
FDN (frequency-division multiplexor) 221
feasibility study 231–232
feedback 145
haptic feedback 148
open/closed loop feedback 145
FEP (front-end processor) 186
fetch phase 349
fetch-execute cycle 369
field (data) 329, 330
key field 329, 330
response field 70
field (machine code) 227
address field 267
operation field 267
operation code field 267
field locking 345
field name 329, 330
simplex 384
SMTP 113
silicon disk 201
signal-to-noise ratio 389
signal routing 384–385
signal level 222
signal converter 222–223
signal booster 222
signal amplifyer 222
signal convertor 222–223
signal level 222
signal routing 384–385
signal-to-noise ratio 389
silicon disk 201
Simple Mail Transfer Protocol (SMTP) 113
simplex 384
simulation 105–107
single buffering 372
single precision 338
single stepping 300
single switch device 190
single thread 363
single-address instruction 267–268
single-tasking 363
single-user licence 173
site licence 173
Skype 125
slanting 27
slot 367, 378
small capitals 27
smart card 191
smartmedia 44
smartphone 185, 186
SMTP (Society of Motion Picture and TV Engineers) codes 55
SMTP (Simple Mail Transfer Protocol) 113
SNA (Systems Network Architecture) 365
smail 120
social networking 127
Society of Motion Picture and TV Engineers (SMPTE) codes 55
soft space 28
software 6
generic software 6
plug-in software 358
protected software 173
domain software 173
shrink-wrapped software 242
software 242
software library 358
software licence 195
software copyright 172–173
software development cycle 230–231
software documentation 71–72
software engineer 157
software engineering 155, 242
software library 358
software licence 172–173
software life cycle 230
software metric 238
software piracy 173–174
software support staff 159
software upgrade 242
solid-state drive (SSD) 198
son file 344
sort key 329, 330
sort list 101
sorting 345–348
sorting algorithm 346
sound 49
characteristics 50–53
devices 58–61
processing 53–58
sound controller 59
sound data 331
sound format 57
sound generation 55
sound generator 59
sound mixer 60
sound processor 59–60
sound sampling 49, 55, 56
sound source 59
sound synthesis 55–57
source code 359
source language 359
source program 359
space 28–29
spam 128
spam filter 128
specification 242–243
speech recognition 191
speech recognition software 191
speech synthesis 179
speech synthesizer 179
spell checking 23
spiral model 229
spoofing 362
spot colour 207
spreadsheet 83–86
spyware 128
SQL (Structured Query Language) 102
SSADM (Structured Systems Analysis and Design Methodology) 319
SSID (solid-state drive) 198
SSL (Secure Socket Layer) 165
stack 328
stack overflow 350
stakeholders 235
stand-alone computer 186
standard function 279–280
Standard Generalised Mark-up Language (SGML) 319
star network 134, 135
start bit 384
start/stop box 294
state diagram 256, 258
statechart diagram 256, 258
statement syntax errors 301
static IP address 114
static random access memory 201
static variables 286
station 139
stationary 217–218
statistical applications 178
statistical multiplexer 221
status bar 19
status byte 265
status word 265
step mode 300
step-time entry 61
stepper/stepping motor 147
stepwise refinement 243
stereo 51
stereo image 51
stereophonic sound 51–53
stop bit 384
stopped 304
stopping condition 281
storage 195
store location 195
store program concept 377
storyboard 241
streaming audio 38, 57–58
streaming video 38
strike-through 27
string data 331
string operator 288
strongly typed languages 286
structure diagram 252
structural errors 301
structured planning technique 243
structured programming 243
Structured Query Language (SQL) 102
Venn diagram 395–396
verification 76–77
disk verification 198
request verification 203
version 242
version management 239
very large-scale integration (VLSI) 381
very small aperture terminal (VSAT) 392
video, streaming 38
video adapter 211
video adapter card 211
video camera, digital 44
video capture card 45
video card 211
video clip 331
video data 331
video digitiser 45
video editing system 46–48
video RAM (VRAM) 211
virtual learning environment (VLE) 177
virtual local area network (VLAN) 143
virtual machine 360
virtual memory 371
virtual network 136
virtual private network 136
virtual private networking (VPN) 136
virtual reality 147
virtual reality cave 148
virtual reality systems 144–145
virtualisation 138–139
viruses 171
video checking 171
visual display unit (VDU) 210
visual programming tools 244
VLAN (virtual local area network) 143
VLE (virtual learning environment) 177
Voice over Internet Protocol (VoIP) 125
voice synthesiser 179
VoIP (Voice over Internet Protocol) 125
volatile memory 194, 196
volume 50
waveform 50
wavelength 50, 51
Web 2.0 117
web, the 115
web editor 22
web log 120
web page 115
web server 138
webcam 117
webmail 123
webmaster 117
website 115–117
website developer 158
weight 25
what you see is what you get (WYSIWYG) 18
while loop 275
white balance 38
white box 299
white space 28
Wi-Fi 145
wide area network (WAN) 132
widow 31–32
wildcard 68
WiMAX 112
WIMP (Windows Icons Menus Pointers) environment 63
window (screen) 63–64
Windows (operating system) 357
Windows Icons Menus Pointers (WIMP) environment 63
wire connector 221–222
wire frame 36
wireless access point 142
wireless communication 221
wireless Ethernet 143
wireless mesh 143
wizard 71
word 12–13
reserved word 289
status word 265
word length 12–13
word processor (computer) 187
word processor (software) 20–21
word wrap 29
workspace 14–15
workstation 140
music workstation 61
World Wide Web Consortium (W3C) 115
World Wide Web (WWW) 115
worm 171
WORM (write-once, read-many) 200
write 344
write protection 202–203
write-once, read-many (WORM) 200
WYSIWYG (what you see is what you get) 18
X.25 388
X.400 388
X.25bis 388
X.34 388
X.34bis 388
XDCAM 45
XMPP 319, 322
XNOR (Exclusive-NOR) gate 400–401
XOR (Exclusive-OR) gate 400
XOR operation 266
XY plotter 217
YMCK 207
YouTube 127
ZIP files 349
zipping 349
ZMODEM 388
zip 349

The BCS Glossary is the most authoritative and comprehensive work of its kind.

This unrivalled study aid and reference tool is divided into themed sections making it much more than just a list of definitions. It is specifically designed to support those taking computer courses or courses where computers are used, including GCSE, A-Level, ECDL and 14-19 Diplomas in Functional Skills in schools and further education colleges.

- 13th edition of this international bestseller
- Over 3,000 terms clearly defined and explained in context, with full indexing and cross-referencing
- Covers all the terminology in the Computing at School curriculum

ABOUT THE AUTHORS
This glossary has been compiled by members of the BCS Academy Glossary Working Party, many of whom are teachers. In creating the glossary, they have drawn heavily upon their many years’ experience in the education sector, as well as their detailed knowledge of computing.

I would recommend the BCS Glossary as the essential companion for students studying the subject at any level.

Ian Daddo-Langlois, Curriculum Manager, Computing, New College Telford

Remains the essential reference and support for those teaching or taking computer and ICT courses in schools, FE and universities from GCSE level onwards and cannot be recommended highly enough.

Ian Carey FCIEA, WJEC Subject Officer for Computing/ICT

You might also be interested in:

Computing; IT