A Framework for Effort Management in Software Projects

Topi Haapio
Tietoehto Telecom & Media
P.O Box 1779 FI-70801 Kuopio Finland
topi@haapio@tietoehto.com

Abstract

Objective. The objective of this paper is to provide a framework for effort management in software projects to increase effort estimation accuracy.

Method. We applied a multimethodological approach employing a case study and constructive research.

Results. Based on the case study on four earlier proposed frameworks related to effort management and three popular process maturity assessment models, we constructed a framework to manage effort in a software project in a proactive manner, yet fulfilling the requirements of the assessment models.

Conclusions. A project's software engineering process involves various functions which have an effect on the success of effort estimation. Two approaches, proactive and reactive, can be taken to manage effort in a software project. In this paper, a case study is conducted regarding both approaches. Based on the case study, we provide a new framework for effort management in software projects to increase effort estimation accuracy.

Keywords. effort management framework, maturity model, project management SPI

1. INTRODUCTION

It is crucial for both software suppliers and customers that the software project effort is estimated as accurately as possible to ensure adherence to projects budget and schedules, and the success of resource allocation [20]. Several formal models, methods and tools have been proposed for software project effort and cost estimation, although the informal expert judgment technique has remained as the most commonly employed estimation technique in practice [11]. However, despite the employed approach, the estimates have in many cases been unacceptably inaccurate. The reasons for inaccuracy include inadequate effort data collection of previous projects, and the light consideration on different activities involved with the project. The focus in effort estimation has been on software constructors and project management, whilst neglecting other support activities related to the software projects [3][4][5].

In other words, the success of the effort estimation in terms of accuracy may depend on only effort estimation but also of effort management, i.e., a high estimation error can be a result of insufficient control in a project [2]. Effort management is an organized process to estimate, collect, monitor and control, and analyze effort related to software projects and their activities. Software engineering literature (e.g., [15][16][20]), does focus on project management and effort but the emphasis is on effort estimation and effort-related planning (e.g., scheduling) rather than on a total management of effort. Moreover, the effort management-related functions are presented in the literature as parts of project management instead of presenting effort management as a coherent and an individual area of management. We believe a focus on effort management is advantageous. If a broader perspective on the topic is needed, in this paper, we propose a framework for effort management in software projects to be applied by project managers and effort analysts to increase control over the effort related to the software projects.
A Framework for Effort Management in Software Projects

Effort can be managed by taking either a proactive or a reactive approach. The proactive approach attempts to consider the issues and act in advance (ex ante). Different frameworks to manage effort represent the proactive approach. Earlier proposed frameworks related to effort estimation or effort management include [1][3][21][22]. The reactive approach considers the issues afterwards (ex post). The process maturity assessment models represent the reactive approach. The most widely known and employed capability maturity models include ISO/IEC 15504 [8][9], CMM [18], and CMMI [19]. The capability maturity models are used to improve the related processes and set different effort-related requirements on software projects. Hence, effort management can also be the focus of the software process improvement (SPI) activity. SP and the capability maturity model employment are under enormous interest of research, and numerous studies have been conducted applying the above-mentioned models in the software industry. However, studies describing improvement activity regarding software project effort management context are not common.

This paper is structured as follows. Section 2 describes the research methodology. In Section 3, a case study is conducted on the existing approaches on effort management. The analysis of the case study, a new framework is outlined in Section 4. The analysis in Section 5 is followed by a discussion in Section 6. A brief conclusion and suggestions for future work are given in Section 7.

2. RESEARCH METHODOLOGY

In this study, we apply a multimethodological research approach [14] employing two research methodologies influencing each other: case study [23] and constructive research [10]. Constructive research [7][10] also referred to as design science [6][13] or systems development [14], consists of two basic activities: building products and evaluating them [10]. Constructive research includes the development of new ideas and concepts, and constructor of conceptual frameworks, new methods or models [14], which result in research products: constructs, models, methods, and instantiations [10][13]. In this research, we construct an effort management framework, which represents a model. The research artifact is constructed on the basis of a case study. Case studies can also be used for evaluation [12]. The evaluation of the built product is based on user value or utility [10][13]. The evaluation process attempts to diminish the concern of unpractica research products [14] by applying suitable metrics and comparing the performance of artifacts for specific tasks [10][13]. The evaluation criteria of innovation for a mode are applied in this research: framework's fidelity with a real-world phenomenon, completeness, level of detail, robustness, internal consistency, and form and content. In other words, the research results need to be pragmatic in order to be utilized in the software industry and they must provide significant improvement [10][13].

3. CASE STUDY

The case study is on four effort management related frameworks and three popular process maturity assessment models. The frameworks represent a proactive approach on the subject and the assessment models represent a reactive approach. The cases (frameworks and assessment models) were chosen to represent typical approaches, and based on their popularity (assessment models). By choosing the first releases of CMM and ISO/IEC 15504 and the latest release of CMMI we strive to examine the effort management related trajectory of the competing models. Since CMMI has evolved from CMM and has been influenced by ISO/IEC 15504.

3.1. PROACTIVE APPROACH (1): EFFORT MANAGEMENT RELATED FRAMEWORKS

Case 1.1: Fairley, 1992. Although Fairley concentrates on presenting different software estimator techniques [1], he also proposes a framework for software estimation by describing different factors to be considered in preparing a software estimate. These factors can be categorized into product objectives, corporate assets, and project constraints, which continue to be valid factors. The employed software estimation technique should correspond with these factors to be effective. Hence, Fairley's framework is a cost estimation paradigm modeling the relationships between
these factors. Airey considers effort management related issues through the various estimation techniques presented besides the most considering effort-related function. Effort estimation includes collecting and analysis, and calibration of the estimation method. Additional considerations include effort repository and effort monitoring. Airey considers work breakdown as an alternative approach to derive effort.

Case 1.2: Vesterinen, 1998. Vesterinen's paper on a framework and process for effort estimation [22] consists of a process description and a framework for effort estimation. Vesterinen's comprehensive description on effort estimation process includes, besides making the estimates at certain estimation points, storing the estimates, and reporting and analyzing the effort data. Vesterinen's perspective on managing effort is heavily one of the estimation of effort and improving its process. In fact, the proposed framework is case specific or SEI's presentation on establishing a software measurement process [17] and consists of three main phases of planning, implementing, and improving. The scope objectives, issues, and measures are defined, and the procedures for measuring, collection, analysis, and feedback are defined in implementing, effort data is collected and analyzed in improving the process is evolved further. Although the framework focuses on effort estimation, it includes several effort management related functions in order to manage the estimation process. However, the described functions are more of process functions to improve estimations rather than effort management functions. Vesterinen urges that questions the effort-related process and its functions, and when necessary, improve them.

Case 1.3: Tsoi, 1999. Tsoi proposes a framework, Software Development Management (SDM) in the 90's [21]. SDM, which acknowledges effort management consists of two stages an acquisition phase and an operational phase. The acquisition phase deals with effort planning related functions. These functions involve the estimation of development effort, establishing effort management policy, establishing effort reporting and identifying the critical development factors. The operational phase includes all functions during the actual software development phase. The effort repository is employed during the operational phase. The major functions include reviewing monitoring and evaluation of effort, monitoring future effort, and evaluation of the collected information. Besides the various effort-related functions considered, resource allocation is also included in the SDM framework. However, as the framework covers the pre-project and project phases, the post-project functions, such as effort estimation method calibration, have been neglected. Moreover, SDM does not consider WBS or other activity-related functions.

Case 1.4: Haapio, 2006. We proposed a framework for improving software project effort management. The framework can be used for pinpointing areas needing the most attention in improving effort management, for which it provides a matrix. The framework identifies elements related to effort management and five phases (three project phases and a phase preceding and proceeding the project) and states different effort-related activity-related functions for each phase. A theoretical background is given for the key effort management functions and elements. Moreover, the framework acknowledges the significance of software project activities in effort management.

3.2. REACTIVE APPROACH (2): PROCESS MATURITY ASSESSMENT MODELS

Case 2.1: CMM, 1993. The Capability Maturity Model (CMM) is rather general and concise. The effort management related issues are considered first and foremost in CMM's maturity level 2 (repeatable) in the software project planning and process area, which goal 1 requires software estimates to be documented for use in planning and tracking the software project, goal 2 requires software project activities and commitments to be planned and documented, and goal 3 requires affected groups and individuals to agree with their commitments related to the software project. The CMM mode does not specify individual effort-related issues, or how to carry out the maturity requirements in practice. However, the descriptions refer to effort (cost) schedule, software activities, and resources. On the higher maturity levels, the requirements relate to effort management but from the perspective of the key process area.
Case 2.2: ISO/IEC 15504, 1993. The ISO/IEC 15504 assessment mode [8][9] formally known as SPICE, provides an extensive and detailed representation on the assessment of effort management related issues. However, effort is not isolated to an individual management area; instead, effort is included into the project process category (PPC) as one project resource parameter to be estimated together with size, cost, schedule, and resources [8]. The effort-related issues are considered throughout the project process category. The assessment documentation provides usable checklists to manage effort [9]. Therefore, the ISO/IEC 15504 mode can be employed as a proactive tool in project management, effort management included. Again, effort-related issues are not assembled together but are pointed out to be considered in several areas. The issues include, for example, schedule, WBS, estimate plan, project plans, progress status reports, and project measures.

Case 2.3: CMMI, 2006. Elements of effort management are required by CMMI. Mostly, the effort management relates to the project management process area in CMMI. Like CMM, CMMI requires an organization’s measurement repository, which is used to collect and make available measurement data on processes, e.g., effort and cost estimates, and the realized actual effort and costs, to analyze the measurement data. Moreover, the stage representation requires work to be arranged as work elements and their relationship to each other and to the end product, i.e., into a work breakdown structure to estimate the scope of the project and to plan the project resources and to manage configurations (at the lowest level indicating maturity, 2) [19].

4. EFFORT MANAGEMENT FRAMEWORK

Based on the analysis of the case study, we propose a new framework for effort management which enables to manage software project effort in a proactive manner, yet fulfilling the requirements of the assessment models. The framework is largely based on our earlier proposed framework for improving effort management [3] in software projects but is modified to assist managing the effort instead of improving the effort management.

4.1. FRAMEWORK ELEMENTS

The effort management framework includes several elements in ‘relationships with’ each other. These elements include:

- Framework perspectives, which include effort management lifecycle, effort-related functions, and effort distribution in particular activities or activity sets. These perspectives are described in Sect. 4.2.
- Effort management lifecycle, which include a prior-project phase, three phases of the project’s lifecycle (pre-project, project, and post-project phase), and a phase after the project’s existence. The lifecycle is described in Sect. 4.2.1.
- Software project activities. A software project consists of activities which can be arranged into a work breakdown structure (WBS). WBS is a particular tree-hierarchy in which project activities are categorized (16). A generic organization-proprietary WBS as a part of project-specific WBS enables comparison between projects within a company.
- Activity sets. A software project activity set is a specific set of project activities. For example, the activity sets of testing can include unit testing, integration testing, system testing, and customer acceptance testing [5].
- Software project effort. Effort of a software project can be generally defined as the number of person days (or hours or months) consumed by the project.
- Registration entities. The software project effort is registered in the work time registry system’s registration entities by the project group.
- Effort repository. Effort repository contains analyzed effort data, which is suitably organized. Effort repository is utilized in effort management functions, e.g., effort estimation and effort estimation method calibration. Preferably, the work time registry system and the effort registration are interconnected with each other with consistent activities, which enables an automatic interface between these two systems for an efficient and easy employment of software project activity information.
4.2. EFFORT MANAGEMENT PERSPECTIVES

The framework includes three perspectives into effort management. Effort management lifecycle with different phases and necessary functions during those phases and software project activities (Fig. 1). These perspectives influence each other.

![Lifecycle Phases Diagram](image)

Figure 1: The three perspectives of the effort management framework

4.2.1. Effort Management Lifecycle

The effort management lifecycle can be divided into continuous five phases. The three middle phases (pre-project, project and post-project) refer to software projects lifecycle (phases 1-IV highlighted with gray in Fig 1). However, the effort management lifecycle consists also of two phases preceding and following the software project’s phases.

During the pre-project planning, the project is planned and set up. Project planning includes the project activity planning and effort estimation sub-functions. Effort is initially estimated with the method in use with project information supplied by the customer. At this point, the different activities concerning the project are also planned. These activities include the activities related to actual software construction project management and other project-related activities. The planned activities are tested during the project setup into the work time registry system as registration entities for effort registrations during the project execution. These entities are organized into particular activity sets as a work breakdown structure.
During the actual project phase the project effort is collected, monitored and re-estimated. Effort is collected during the project execution to monitor its realization. If effort realizes different than planned, the reasons are explored and necessary actions are taken. Furthermore, effort is collected for re-estimations with adjusting project-specific data and for effort analysis after the project has been completed. The effort collection includes effort registration by the project group members or registration entities in the work time registry system. The new project activities and new sets of activities require an adoption period before effort can be registered on the new entities.

During project closure, the post-project phase, the delivered project is analyzed, and a project final report is drawn. As a sub-function effort analysis is conducted to produce input for a thorough usually qualitative project post-mortem analysis. In effort analysis the realized effort of project activities are compared with the estimated, and the reasons for the accuracy or inaccuracy are analyzed and explained. Effort analysis produces effort information for improving and calibrating the estimator method, thus improving the software process. Moreover, new significant activities are identified, they are recorded for activity planning of future projects.

Effort management, however, starts before a project exists and continues also afterwards. These effort management functions include the establishment of a general project-independent WBS. Also, the effort estimator method (tool) for the software project is either acquired or is a proprietary effort estimation method is constructed which after the method is initially prepared for estimations for example with effort or cost driver calibration. The method is adjusted after the project has been post-mortem analyzed. The analyzed effort data is stored in the effort repository. The effort repository requires preparation and adjusting actions during the first and last phase, respectively.

4.2.2. Effort Management Functions and the Role of Software Project Activities

Besides effort estimation, a software project involves various other effort-related functions throughout the project’s lifecycle. Some effort-related functions exist also before and after the project. The effort-related functions have an influence on effort estimation. Moreover, the software project activities are closely related to effort since the implementation of an activity requires a certain amount of effort. Therefore, it is advantageous to consider also the activity-related functions within the effort management framework. The effort-related and activity-related functions are listed in Table 1 and specified below.

<table>
<thead>
<tr>
<th>Framework Phase</th>
<th>Effort-Related Functions</th>
<th>Activity-Related Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior to project’s existence</td>
<td>Effort estimator method preparation, effort repository preparation</td>
<td>WBS establishment</td>
</tr>
<tr>
<td>Project: Pre-project</td>
<td>Effort estimation</td>
<td>Registrar entity creation</td>
</tr>
<tr>
<td>Project: Project</td>
<td>Effort collection, effort monitoring, effort ‘re-estimation</td>
<td>New registration entity adoption, effort ‘registration on registration entities</td>
</tr>
<tr>
<td>Project: Post-project</td>
<td>Effort analysis</td>
<td>Software project activity analysis</td>
</tr>
<tr>
<td>After project’s existence</td>
<td>Effort repository updating, effort estimator method adjustment</td>
<td>WBS adjustment</td>
</tr>
</tbody>
</table>

Effort-Related Functions

- Effort estimator method preparation. Before effort can be estimated, a suitable method and application must be chosen, and calibrated with effort history data to enable analogies.
- Effort ‘repository preparation. The effort ‘repository contains effort data of the completed projects and is populated with effort data resulting from effort analyses. The ‘repository can be used for calibrating the employed effort estimator method’s weights. The effort analyst
colliecs project activities anc relating effort anc reorganizes the activities consistent into the repository as specific reasonable activity sets [5]

- Effort estimation. Effort is initially estimated for a project during the pre-project bidding and tender phase. Effort is estimated with the chosen method(s) anc application(s).

- Effort collection. Effort is collected throughout the project duration. Effort data can be imported from the registrar entities in the work time registry system into the effort repository. The collected effort data is used for monitoring effort estimation, analysis, and calibration purposes.

- Effort monitoring. The realization of effort is monitored throughout the project duration. If effort realizes different than planned the reasons are explored and suitable measures are taken.

- Effort re-estimation. Effort is repeatedly re-estimated during project whenever new project-related effort data is available or the project situation has changed. Therefore, effort estimation is not a single event.

- Effort analysis. Effort is analyzed after the project has been completed, during the post-project phase as a part of post-mortem analysis. Effort analysis produces effort information for project reports. Moreover, based on the analysis, it can be determined whether a particular estimator mode emphasizes its effort factors and drivers correctly [5].

- Effort repository updating. The effort repository is updated with essential effort information [identify effort data and new activities] as the project has ended and its effort has been analyzed [5].

- Effort estimation method adjustment. The employed effort estimation application is adjusted when analyzed effort information is available, for example by calibrating the application’s weights used for effort derivation [5].

Activity-Related Functions

- WBS establishment. A WBS is established for each new software project. The established WBS is used for effort estimation and for creating the registrar entities in the work time registry system. Each custom software development project requires an individual WBS. However, these individual activities concern mainly the software and its construction. Most activities related to project management are in the non-construction activities (general project activities) occur in most projects. Therefore, parts of the WBS are generic, and these project-independent parts are established before a project exists.

- Registrar entity creation. The registrar entities are created in the work time registry system much according to the established WBS. The project group members feed their work time (effort) information on the entities.

- New registrar entity adoption. During project execution, the project group registers effort on the activity entities that were created for the project in the work time registry system. The effort registration on old, familiar activity entities begins immediately, and effort is usually registered on the correct activity entity. The new project activities and new sets of activities may require an adoption period before effort can be registered or the new entities. At worst, this period can last whole project execution which results in skewed effort data as effort is registered on wrong activities or is not registered at all. The correct registration of effort is essential for effort monitoring and effort re-estimations [4].

- Effort registration of registrar entities. Effort is registered or the registrar entities by project group members.

- Software project activity analysis. As a part of project’s post-mortem analysis, the planned project activities are analyzed in relation to the realized activities whether some activity did not realize as planned in the project, or occurred in the project unpredictable. If new activities are identified, they are described in the final report with relating effort proportions and if found significant complementation in the effort repository in corresponding activity set for further utilization in WBS and effort estimations [5].

- WBS adjustment. After the project is completed and its activity analysis is performed, the generic part of the employed WBS is adjusted by adding new generic activities into the WBS and removing the out-dated activities.
5. ANALYSIS

This paper introduces a framework for effort management in software projects. Since a framework refers to a model artifact in constructive research, the criteria metrics for the evaluation of a model are applied: fidelity with the real world phenomenon, completeness and detail, robustness, and interactivity consistency [13] and to the project content [10]. A model in the framework is an abstraction of the real world and completeness of the model in relation to the reality cannot be demanded [10]. Nevertheless, these criteria were the driving forces in constructing the proposed framework. Besides completeness and a suitable level of detail, robustness was a key premise for the framework. A starting point for our research was the earlier fragmented presentations of effort management. The criterion of interactivity consistency is a natural requirement from the research point of view (c.f. [10]). To support the criterion for content, special consideration was given to the presentation to support communication and diminish misunderstanding.

The construct innovation must provide significant improvement [10][13]. The proposed effort management framework was constructed by developing an existing framework for improving effort management in software projects [3] further. Moreover, the framework is based on the case study analysis or three other frameworks ([1][21][22], and three process maturity assessment models ([8][18][19]). A comparison between the framework proposed in this paper and the existing frameworks and capability maturity models in terms of the three perspectives or effort management implies that some major elements related to effort management seem to have been previously neglected (Table 2):

- A lifecycle relates to effort management is defined in our framework and two other frameworks [3][21]. However, the SDM framework [21] is limited to the pre-project activity and project phases whereas our framework includes phases before and after these two phases. The lifecycle assessment models refer to the process to be evaluated.
- All examined frameworks and assessment models identify several effort-related functions. The frameworks, however, concentrate mostly on the effort estimation activity whereas our framework identifies a larger range of effort-related functions concerning a software project.
- The role of software project activities is acknowledged in all but two frameworks ([21][22]). However, effort distribution is not included in the other frameworks as a key perspective in the effort management whereas the activities and sets of activities are a key perspective for our framework. Only our framework and the framework in [3] include activity-related functions. The assessment models identity activity-related functions, but only ISO/IEC 15504 [8] specifies them in more details.

The process maturity assessment models do not provide direct tools to improve effort management rather than requirements for the software engineering process to consider effort management i.e. the models tell what to do (or should be done), rather than how it should be done. The assessment models are focused on the improvement of the technical processes of software development rather than project management, in which effort management is commonly included in the assessment models.

Our framework aims to improve the accuracy of effort estimations. Therefore, the effort-related functions which are influenced by effort but which do not (significantly) influence effort are delimited from the framework. An example of such a function is ‘resource allocation’, which has an influence on the effort estimation since resources are not identical, i.e. other members are more experienced than others and thus require less effort to complete a task. However, we consider this influence to be rather insignificant since project groups are usually heterogenic, i.e. the group consists of both more- and less-experienced members.

The effort management framework has been employed in software development projects at TietoElnator Telecon & Media, the largest business area within TietoElnator Corporation. Not only has the framework increased the project managers’ knowledge or effort management-related issues, but also improved the adherence to the effort management-related process and functions. According to the framework, we have distinguished five phases and applied the effort-related and activity-related functions relevant to each phase. For effort management purposes and in
Table 2: A comparison on three effort management perspectives

<table>
<thead>
<tr>
<th>Framework</th>
<th>Identifies Effort Management Lifecycle Phases (#)</th>
<th>Specifies Effort Management Functions and Activity-Related</th>
<th>Acknowledges Software Project Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effort Management Framework</td>
<td>Yes</td>
<td>Both</td>
<td>Yes</td>
</tr>
<tr>
<td>Ailey, 1992</td>
<td>None</td>
<td>Effort-related</td>
<td>Yes</td>
</tr>
<tr>
<td>Haapio, 2006</td>
<td>Yes</td>
<td>Both</td>
<td>Yes</td>
</tr>
<tr>
<td>ISO, 1999</td>
<td>? emphasizes core part;</td>
<td>Effort-related</td>
<td>Nc</td>
</tr>
<tr>
<td>Vesterinen, 1998 '22</td>
<td>? (process improvement related)</td>
<td>Effort-related (process improvement related)</td>
<td>Nc</td>
</tr>
<tr>
<td>CMMI, 1999, 8</td>
<td>None</td>
<td>Both (?identifies, not specifies;)</td>
<td>Yes (?does not specify)</td>
</tr>
<tr>
<td>ISO/IEC 15504, 1993</td>
<td>None</td>
<td>Both</td>
<td>Yes</td>
</tr>
<tr>
<td>CMMI 2006, 19</td>
<td>None</td>
<td>Both (?identifies, not specifies;)</td>
<td>Yes (?does not specify)</td>
</tr>
</tbody>
</table>

Increase the project comparability we have divided effort into three major project activity sets: software construction, project management and non-construction activities [4] and established a WBS with a generic part concerning the non-construction activities to be employed with software projects.

6. DISCUSSION

This study complements the existing research on software process improvement in particular by focusing on a special case of effort management improvement in software projects. Although there has been a vast interest in the concepts of SPI and effort in software projects, effort management frameworks are in a short supply. A rigorous view on the software project effort in the form of effort management framework combines the traditionally separate elements of managing the project effort to a coherent presentation where the elements influence each other. We believe that the proposed framework can be employed within the software industry. The framework is independent from the organization and is relatively general and likely applicable in software development by project managers and effort analysts. The practitioners can apply the results of this research to derive own adapted version of the effort management framework with a suitable effort distribution categorization. A general breakdown of the activities is advantageous for comparing the projects to each other.

7. CONCLUSIONS AND FUTURE WORK

This paper proposes a framework for effort management in software projects. The effort management framework assists in a more complete management of effort in a software project compared to other frameworks we have analyzed in this paper's case study. The different effort-related functions, which can be found fragmented in the software engineering literature and in the capability maturity models, are assembled as a coherent presentation in the framework. In addition, this research supplements into the research of effort distribution by considering not just construction or project management but also the rest of the software project activities which are frequently ignored in research and the effort management in software industry. Further a follow-up case study or projects employing the proposed framework is endeavored to concretize the benefits.
Bibliography

