
Collaboration and telecollaboration in design

7th Turing Lecture: London, 20 January 2005

Professor Frederick P Brooks Jr, founding Kenan professor of computer
science, University of North Carolina.

The Turing Lectures are annual joint events of the British Computer
Society and the Institution of Electrical Engineers. The seventh Turing
Lecture took place in the lecture theatre at the IEE's headquarters in
Savoy Place, London, on 20 January 2005.

Frederick Brooks has a long and distinguished career both in industry
and education. He worked for the IBM Corporation from 1956 to 1965,
first as an architect of the Stretch and Harvest computers and then as
manager for the development of IBM's System/360 family of computers and
its OS/360 software. He was responsible for many key developments in
computing, including the development of interrupt systems and the
selection of the 8-bit byte, which made possible the use of a lowercase
alphabet for the System/360 and subsequent developments in word-
processing.

In 1964, he founded the Department of Computer Science at the
University of North Carolina at Chapel Hill and chaired it for 20
years. As Kenan Professor of Computer Science, his principal research
is in real-time, three dimensional computer graphics --’virtual
environments’.

His research has helped biochemists solve the structure of complex
molecules and enabled architects to ‘walk through’ buildings still
being designed.

In 1975, he reflected on the successes and failures of the development
of Operating System/360 in ‘The Mythical Man-Month: Essays in Software
Engineering’ (enlarged Anniversary Edition, 1995). He further examined
software engineering in his 1986 paper, ‘No Silver Bullet.’

Frederick Brooks started his lecture by pointing out that not only has
he experienced design issues in relation to computer software, but also
graphics projects, and a few building projects too. The design process
seems to him to be the same across all these fields of endeavour, and
several times he used examples from art, architecture and civil
engineering to illustrate his points.

Looking back across the last hundred years, what are the big changes
that have taken place in design? Prior to the twentieth century, all
designs and inventions in engineering were essentially the expression
of a single person's creative mind. But consider the example of the
Nautilus nuclear submarine -- who could you point to as its designer?
It was designed by a team of people. Design by teams is standard for
modern products. In this respect engineering has departed from most
other creative processes such as the writing of plays, painting, or the
composition of music.

Therefore the topic Brooks sought to address was understanding
collaboration in design work. There is an assumption that collaboration
is an undoubted good thing, that ‘all of us are smarter than any of

us’, and that therefore the more collaboration one has, the better. But
is this true?

Historically, it has not been unknown to have two people working on a
creative task, but when we examine these examples closely we find that
they have been working on complementary aspects of a production
(Gilbert and Sullivan would be an example, librettist and composer), or
that one has been the master and director of the project, while the
other has been the helper. For example, master painters might have
their students work on the backgrounds and crowd scenes.

The complexities of modern engineering

Why is modern engineering design done by teams? Because of the
complexity of every aspect of engineering. Brooks showed side by side
photographs of two bridges: the 1779 Iron Bridge near Coalbrookdale in
Shropshire, designed by Thomas Farnolls Prichard and built by Abraham
Darby, and the Sunniberg Bridge designed by Christian Menn. Pritchard's
design used a great deal of iron in a not particularly economical way,
while Menn's bridge designs exploit the properties of pre-stressed
concrete and very careful calculations of loading and deflection to
create structures that are not only extraordinarily strong for their
weight but also highly elegant, and easy to build with minimal
scaffolding.

Brooks proposed this postulate: ‘There are no naïve technologies left
in the West.’ He gave three examples of this. In shampoo manufacturing,
he has learned, computer simulations of the flow of viscous liquids is
used to make sure that the mixer blades don't separate the three-
layered emulsion of the shampoo. As an American farmer, his brother now
spends more time on the computer than on the tractor. And in a tour of
the Sara Lee cake factory, Brooks learned that as each new batch of
flour comes in, they change the cake recipe for the day based on a
chemical analysis of its content, which varies subtly from one grain-
growing region to another.

Therefore, in most modern engineering projects, the range of knowledge
and skills involved is larger than any one person can master.
Furthermore, there is a hurry to get groundbreaking new products to
market; it is said that the first entry to a new market will take 40
per cent of the market share, and Brooks cited the iPod as an example
of this.

Do many hands make light work, as the proverb says? Yes, quite often.

Do many hands make *more* work? Yes, said Brooks -- always!

This is because team working is complicated. The different jobs need to
be divided, the interfaces defined, the interfaces between them
interpreted and reconciled, the standard elements and common styles
defined, and all the bits put back together again. And that's a lot of
work.

Integrity is key

However, conceptual integrity is the key to success in design, and some
examples Brooks gave of engineering projects which display great
integrity at all levels are the supercomputer designs of Seymour Cray,
the bridges of Christian Menn, and Christopher Wren's St Paul's
Cathedral. All these come across as the consistent expressions of a
single mind.

Brooks raised a laugh by showing two lists of computing products,
divided into those that have fan clubs and those that don't:

Have fans: Fortran, VM/360, Unix & Linux, Pascal, C, Macintosh, APL.

Haven't: COBOL, OS/360, Microsoft NT, Algol, PL/I, PC, Ada

All of those products that have fan clubs were creating outside what
Brooks called ‘the normal design process’; all those without fans were
done inside that process. This suggests that the normal design process
doesn't create products that are innovative and that get loved. Perhaps
one can say that the normal process tries to minimize the creative
(disruptive) element in design.

There is a textbook on design which suggests that engineering design is
about ‘interdisciplinary negotiation’. But Brooks thinks this isn't
good enough. Rather, he approved the suggestion of Mills, who says that
for small programming projects you should have a single chief
programmer who is in charge of the integrity of the project AND is
responsible for writing ALL of the code that finally gets delivered.
Brooks anticipated that many companies would respond: ‘We don't have
anyone that good’; but he thought that the problems are chiefly
sociological.

Organizing the team

As a teacher of computing, Professor Brooks organises his students into
teams of four and gets them to elect a ‘team boss’ and a ‘system
architect’. This division of labour is rather like having a director
and a producer on a film, with the director being responsible for
conceptual integrity and the producer organizing to make sure the whole
project works.

Brooks recommended four key elements to a successful design project:

(a) The system architect
(b) The person in charge of the user interface
(c) Documenting the assumptions in the design
(d) Agreeing a common ‘style sheet’

The system architect has to be someone who can get his or her mind
around the whole system. As an example of this, Brooks mentioned a
discussion he had had with the person who was responsible for the
system architecture of the Geographical Positioning System. This man
grasped that the whole system was based on the complex inter-operation
of many component satellites and other components, and their common
currency was time, sliced into microseconds. Thus he saw it as his role
to ensure that each process got its necessary share of the microseconds

-- with, as Brooks put it, enough spare microseconds in his trouser
pockets to rescue parts of the project that were in difficulty!

The principle responsibility of the system architect is to be an
advocate for the user. Brooks said not much more about this, but
pointed out that four chapters of his book ‘The Mythical Man Month’
deals with this.

You also need to have one person in charge of the user interface. It is
highly appropriate to have one person handle this, because at the end
of the day there is one person -- the user, that is -- who is likewise
going to have to wrap their mind around the system. In other words, the
UI designer acts as a surrogate for the user. And in user interface
design, consistency and predictability are key. When Brooks asked Ken
Iverson ‘Why do people love APL?’, Iverson replied: ‘Because it does
what you expect it to.’

Document those assumptions!

You also need to document the assumptions behind the design. There are
all kinds of assumptions: assumptions about the characteristics of the
user community; assumptions not only about what the application will be
in the immediate future but also how people will want to use it further
down the line; assumptions too about the technologies of
implementation.

In any design team, everyone makes their own assumptions and they will
all be different. Brainstorming is a good way to winkle out those
assumptions and share them within the group. It is better to be wrong
in one's assumptions than to be silent or vague about them! Documenting
your assumptions is enables discussion of them. You can make a
‘sensitivity analysis’ of your assumptions (how much does this
assumption really matter? not much? a whole lot?); and the process also
directs ‘verification analysis’ (is there any evidence for these
assumptions?).

Once this is done, ‘you can get everyone singing off the same page’,
said Professor Brooks. The process enables a reference specification to
be created, a vital tool for any engineering project. As Brooks wrote
in 1987 in ‘No Magic Bullet’: The hardest part of the software task is
arriving at a complete and consistent specification, and much of the
essence of building a program is in fact the debugging of the
specification.

The other shared reference a design team needs is a style sheet. This
serves a purpose similar to when a team of authors write a book or
manual together. It ensures that things are referred to consistently by
the same nomenclature, that processes follow the same style and so on.
This is not because the *surface* style is essential to the conceptual
integrity, but it sure indicates that the team has thought about the
integrity of the ‘skeleton’ of the project.

Why does the bazaar work?

Professor Brooks next turned to a software engineering phenomenon,
which could be said to be an exception to his argument so far: the
design process that takes place in some parts of the Open Source/Free
Software community. Does this undermine his argument, or is it a
special case?

Or, as Eric Raymond has written: The lore of software engineering is
dominated by Brooks's Law, articulated in Fred Brook's classic ‘The
Mythical Man-Month’. Brooks predicts that as your number of programmers
N rises, work performed scales as N but complexity and vulnerability to
bugs rises as N-squared. N-squared tracks the number of communications
paths (and potential code interfaces) between developers' code bases.

Brooks's Law predicts that a project with thousands of contributors
ought to be a flaky, unstable mess. Somehow the Linux community had
beaten the N2 effect and produced an OS of astonishingly high quality.

Professor Brooks actually referred to Eric Raymond's paper on ‘The
Cathedral and the Bazaar’ -- the essay, evolved from a talk given to
the 1997 Linux Kongress, which contrasts the centrally planned design
process that was also the prevalent mode of development in the GNU
project led by Richard Stallman, with the seemingly anarchic Linux
development process. As Raymond writes:

‘I have been preaching the Unix gospel of small tools, rapid
prototyping and evolutionary programming for years. But I also believed
that there was a certain critical complexity above which a more
centralized, a priori approach was required. I believed that the most
important software (operating systems and really large tools like the
Emacs programming editor) needed to be built like cathedrals, carefully
crafted by individual wizards or small bands of mages working in
splendid isolation, with no beta to be released before its time.’

Linus Torvald's style of development -- release early and often,
delegate everything you can, be open to the point of promiscuity --
came as a surprise. No quiet, reverent cathedral-building here --
rather, the Linux community seemed to resemble a great babbling bazaar
of different agendas and approaches...out of which a coherent and
stable system could seemingly emerge only by a succession of miracles.

Professor Brooks suggested that the Linux bazaar is an evolutionary
model. It works because despite the community and the collaboration,
there is no design-by-committee: each component that is contributed has
its own conceptual integrity. The model emphasizes early and large
scale distributed ‘fixing’ -- and those who find the bugs are also the
ones who propose how to fix them.

The hacker community that Raymond describes is one in which prestige is
accorded to those who contribute, and contribute well; that is highly
motivational for this particular group. It should be noted that the
contributors are people who are getting fed anyway: it's not the day
job. The will to create excellence is also driven by the fact that the
contributors are also the intended users: they know what they need, and
they really care about it.

So, perhaps the Open Source (especially Linux) experience is the
exception that proves the rule. As Brooks asked: would you design an

air traffic control system by the bazaar method? It would be a
‘bizarre’ method.

From the many to the few and back

Many brains are useful in the early stages of a design project, when
you need to determine what the users' needs are. Brainstorming in these
early stages helps to explore radical alternatives. However, when it
comes to conceptual design, and the detailed design, you don't want
heaps of contributors.

Brooks says that the evidence is that two programmers working together
(pair-programming) takes about 1.4 times the time, the ‘man-months’ if
you like, to get the job done -- not twice as long. Why should a
company want to pay that extra 50 per cent? Because the evidence also
suggests that when two programmers work together on the code, there may
be as much as an order of magnitude fewer bugs. And that is real value
for money.

Once a design has been produced, or rather prototyped, is the time to
involve many minds again. The review process benefits from having many
reviewers.

As an example of how insights may come from unexpected sources, Brooks
told the story of an engineering project that was commented on by the
people who were going to paint the heavy girders. ‘You'll need to make
that bit out of heavy steel,’ they said. When they were asked why, they
said ‘Look where it's going to be placed -- we'll never get another
chance to paint that beam again.’ In fact the company didn't make that
component super-strong -- but they revised the design to ensure that
the painters would be able to get access to maintain those beams.

Textbook examples of design are almost always ‘way too simple,’ said
Brooks. In particular, they ignore the fact that complexity often
forces designs to change halfway through, and these changes then
involves many other changes. Finally, there is no substitute for ‘the
dreariness of labour and the loneliness of thought’ -- even though it
has been joked that committees are a place where people seek refuge
from that.

Telecollaboration

At this point in his lecture, Professor Brooks stopped to show us a
video clip of some of the experimental systems he has been working on,
which permit virtual meetings to take place among three people located
far away from each other. The system gives an impression of three-
dimensionality to the view of each participant's workspace by
synthesising the video image out of input from two TV cameras. Each
participant wears a device on his or her head that indicates head
position and orientation to the system, and changes the way the TV
images are merged, so that by moving one's head one is able to see
behind objects in the rooms being displayed on the screens.

What is the motivation for this research into telecollaboration?
Because complex projects need people with specialized skills, not all
of whom want to move to where the work is; because you might want to

have work going on all around the world and therefore around the clock;
because labour may be cheaper in some places; and also for political
reasons (e.g. one may have to involve Brazilians in a design for an oil
rig for Brazil, at the insistence of their government).

The Airbus 380 project not only has its components being made in four
countries; it has also been designed between four offices in different
countries. Nor is this particularly new: on the IBM 360, design was
taking place in the USA, Holland, Denmark and Sweden, with CPUs in four
labs in three countries.

However, telecollaboration is not simply a substitute for meeting in
person. ‘Face time,’ as Brooks called it, is crucial. The best and most
productive telephone conversations are between people who have a long
history of face time. ‘Travel is worth what it takes, which is why all
the planes are full,’ he said.

This is true not just at the executive level and between the top design
personnel. At IBM, they found it was productive to charter a bus and
take all the secretaries from IBM Poughkeepsie to IBM Yorktown, because
these were the people who played a critical role in the interface
between the two institutions.

Although the system which Professor Brooks had shown in the video clip
is ‘exotic’, it is by no means essential. If you and your collaborators
have the shared face-time, very low levels of technology will do the
job. Even email alone may be quite sufficient. If you can go further
by sharing a document or drawing -- sent perhaps as an email attachment
-- and then follow that up with a telephone discussion, it may be every
bit as effective as videoconferencing in many cases.

When is the effort and expense of videoconferencing worth the trouble?
Brooks suggested that it is valuable when participants are insecure and
the issues are vital to one or more of them. It may also help when the
participants are from very different cultures: getting as many cues as
possible to what is going on (e.g. by observing body language) can
help.

On one of his visits to the UK, Brooks had had the opportunity to ask
the chief engineer at BAe Systems in Filton, Geoff Jupp, how
collaboration at a distance was achieved in Airbus. Jupp explained that
as well using as the obvious telecollaboration methods, the partner
companies maintained ‘resident ambassadors at each other's courts’ --
people able to explain the political background to why discussions went
the way they did. They exchanged personnel between Broughton, Filton
and Toulouse -- and, being an aircraft company after all, they
dispatched a plane each way every day.

In making some closing remarks about developments in telecollaboration,
Brooks regretted that too much of the R&D is being driven by the
interests of the toolmakers, not those of the people who want to
collaborate. In other words the research isn't application-pulled; it
is technology-pushed.

Conrad Taylor is information design & electronic publishing Secretary,
BCS Electronic Publishing Specialist Group (www.epsg.org.uk)

www.epsg.org.uk

